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The paper describes a new effective procedure for solving a 0-1 integer
optimization problem with use of spreadsheet tables. It is pointed out that a
preoptimality analysis plays an important role in these types of problems. Next,
the algorithm procedure for use of Microsoft Excel was suggested. It is based on
a quick elimination of infeasible combinations and on a reduction of feasible
combinations which cannot be the optimal solution for sure. The remaining
feasible combinations are analysed in detail in a specifically prepared table in
which the optimum solution can be found effectively. In the last part, the
advantages of suggested procedure, in comparison with heuristic and exact (used
by Solver in Excel) methods, are considered.
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Introduction

The following decision-making problem often appears in the area of managerial :
or executive activities: there is a group of mutually independent and competitive |
projects, each of them requires a certain amount of limited resources and yields
certain economic contribution (for example Net Present Value of projects - NPV).
Very often, resources cannot cover a realization of the whole group of projects.
The task is to choose the set of projects that maximizes total economic
contribution and stays within budget and other possible constrains at the same
time. Projects can be represented by various activities, for example investment
projects, research projects, business plan, complex order etc. In literature, such a
problem is called “Capital Budgeting Problem”.

The crucial assumption is that projects are indivisible, it means a project can
be accepted or refused always as a whole, partial investments are not allowed.
Therefore this problem is a type of integer programming problem with 0-1
variables (called a 0-1 IP). A 0-1 variable is a decision variable that must equal 0
or 1. If a 0-1 variable corresponding to the activity (project) equals 1, then the
activity is undertaken,; if it equals 0, the activity is rejected.

Theory

Formulation of a 0-1 Integer Programming Problem

The basic 0-1 Integer Programming Problem can be written as follows
MAXIMIZE Z = Zn]: cx;
SUBJECT TO }ﬁ_:l(;ijxj < b fori =1, 2, ..m constraints

I
x;, = 0V1dforj = 1, 2, ..n independent projects

In a matrix form

MaxZ = ¢ x
Ax < b (1)
x=0V1

In some cases (see below), it is better to solve a dual of the ori ginal problem. The
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formulation of the dual problem is then

Ax 2 d
Minv = ¢ x (2)
x=0V1

"
where d, = 2%_ b, for { = 1, 2, .m constraints
J'=

Consequently, the easier task is chosen to solve the. problem. If the
constraints b, allow using less than 50 % of the sum of all resources required by
all projects, it would be better to solve the primal problem. On the contrary, if the
values of constraints are close to the sum of resources required by all projects (it
means we could realize more projects) it would be better to solve the dual
problem. In this case, the goal is to eliminate variables that minimally decreased
the amount of all possible contributions. Unlike the primal problem, 0-1 variable
equals O for the undertaken project and 1 for the not undertaken one.

Solving 0-1 1P Model

Even if the 0-1 IP model is a type of the integer linear programming, its solution

requires specific methods, different from procedures commonly used to solve LP

models. There are two different approaches to solving 0-1 IP problems:

1. exact solution procedures — mostly based on a combinatorial approach. The
main disadvantage is a high laboriousness (time demanding) — if we consider
n variables there are 2° of possible combinations to be examined (for example
in a model with 20 variables there are more than 1 mil. combinations).

2. heuristic methods — can lead to a good solution, not necessarily optimal, but
can provide useful information to the problem. The advantage is usually its
simplicity and clearness.

Some of the methods try to combine both approaches. The group of
combinations is reduced using heuristics, followed by combinatorial algorithm that
examines selected possible solutions, see [1,4], etc. In reality, most IP problems
are solved by the technique called branch-and-bound, see [2,4,8] etc. This method
is used by Excel Solver to solve integer linear optimization problems. In the case
of 0-1 IP problems, implicit enumeration is usually recommended as being
practical to use. Recently, development of spreadsheet techniques has brought new
inspirations and possibilities for heuristic and combinatorial solutions methods,
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see [3] ete.

The solution method for 0-1 IP problem suggested here is also based on a
combination of both approaches with use of spreadsheet techniques. The essential
part of this method is analysis that precedes the solution itself (preoptimality

analysis).

Discussion
Preoptimality Analysis of 0-1 IP model

Postoptimality analysis has been emphasized as a very important step for solving
standard problems of linear programming. The analysis is concerned with how
changes in the model's parameters affect the optimum solution to the problem.
Preoptimality analysis has similar importance for solving the 0-1 IP problems
because it reveals some important information on properties of the solution and on
the whole effectiveness of the model. Within the preoptimality analysis we suggest
to examine and evaluate:

- Relative value of constraints b,

The number of selected projects is always determined by those constraints that are
the strictest in view of the sum of resources required if all projects are realized. In
the case of constraints:

n

ax, < b., the strictest constraints are those with the smallest ratio
j=1

n
p; = bl.fz a; for i = 1,2, .m constraints and j = 1, 2, .»n independent
j=l

n
projects. On the other hand, in the case of constraints: E ax; z d; the strictest
j=1

n
constraints are those with the highest ratio p, = 5,/ a;.
) J=1
The constraints with the ratio close to 0.5 have the highest influence on
optimality efficiency. On the other hand, the importance (relevance) of the
optimizing procedure decreases as the ratio p; is closer to 1 or 0.
- Rank correlation of projects on the basis of project contribution per resource
invested, i.e. ratios c./ay.
The higher a direct correlation among effectiveness of invested resources, the
higher effect optimization will bring, because projects that dominate the others
(from all or most points of view) are selected. Preoptimality analysis and solution
algorithm for 0-1 IP model with the use of spreadsheet techniques is shown below
on a numerical example.
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Example

Let us assume a company is considering 8 mutually independent investment
projects. Resources (cash and new employees) required for each investment, limits
of both restricted sources and assumed contributions each investment adds to the
company are given in the first part (thickly framed) of Table 1. But entry data do
not contain any information about the problem properties or efficiency of a
potential optimalizing procedure. Therefore the results of preoptimality analysis

n
are shown in Table 1, too; i.e. ratios p, = bilfz a for both constraints, ratios

Jj=1

ry = ¢;la, representing relative efficiency of projectj with regard to source i and
the order of projects according to the ratio ... Based on this order, Spearman
coefficient of rank correlation is calculated which allows evaluation of the
independence rate between both criteria.

Table I Entry data and basic calculation for a projects group

Cash  Employees

Project required  required N PV Avr.
nu.mf)er mil CZK  mumber mil, CZK Fis Order ¥y Order Order
" a, a,; U
1 300 65 300 1000 4 4615 8 6
2 280 54 300 1.071 3 5.556 2 2.5
"3 150 30 180 1.200 1 6.000 1 1
4 450 80 400 0.889 7 5.000 6 6.5
5 320 68 350 1.054 2 5.147 3 2.5
6 220 40 200 0.909 6 5.000 5 5.5
7 350 60 280 0.800 B 4.667 7 7.5
8 330 63 320 0.970 5 5.079 4 4.5
z 2400 460 2330
Constraint 5, 1800 360 correlation coefficient = 0.7381

Rate p,% 75.00% 78.26%

Preoptimality analysis reveals that the rank correlation of project efficiency
is medium- strength and limits of both sources can be used up to 3/4 of resources
required by all projects. Therefore the optimizing procedure seems to be effective;
solving the problem can mean a significant contribution comparing to an empirical
or a random selection of projects.
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Heuristics

Heuristic solutions are mostly approximate, but fast and simple at the same time.
The key principle is mostly based on ranking projects according to a particular
viewpoint or a combination of factors and a consequent selection of projects until
all limits for individual sources are depleted. Procedures differ from each other in
the way that the ranking criteria are chosen. One of the simplest rules is shown by
Ragsdale [3]; he recommends to rank projects according to absolute value of
contributions (i.e. ¢;} and to choose a file of first k projects that still fulfil all the
constraints b,.

For our example, suggested solution is given in Table II. It selects the first
5 projects (i.e. 4, 5, 8, 2, 1) with NPV of 1670. This solution is the best of 5-
element combinations but as we will see later, this solution is still far from optimal
solution. The main disadvantage of this procedure is that the projects with the
highest NPV do not have to be the most efficient and there is no possibility to add
projects with lower NPV that are more efficient in using resources.

Table IT Order of projects on the basis of ¢

j = a; ay ¢ E a; X ay ; &
4 450 80 400 450 80 400
5 320 68 350 770 148 750
8 330 63 320 1,100 211 1,070
2 280 54 300 1,380 265 1,370
1 300 65 300 1,680 330 i
7 350 60 280 2,030 390 1,950
6 220 40 200 2,250 430 2,150
3 150 30 180 2,400 460 2,330

Sum 2,400 460 2,330

Constraint 1,800 360

The other possible approximate heuristic solution procedure lies in ranking
projects on the basis of ratios r, y = ¢;/a,. For problems with more than one
constraint (i > 2), we can rank prolects based on each i separately or based on
average order calculating all constraints. In our example, we can find three
approximate solutions, on the basis of ri;> 1o, and average position. Basic data are
gwen in Table I. Projects order ranked on the basis of r\;» cumulative values of
a » and ¢; are shown in Table ITI.

h15 solution indicates that a company can obtain NPV of 1650 by selecting
investments 3, 5, 2, 1, 8, and 6. Similarly, if we rank investments on the basis of
75, the selected projects are 2, 3, 4, 5, 6, and 8 with NPV of 1750. As we will see
later this solution is already one of the optimal solutions. If we rank investments

1.1’
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on the basis of average position, selected projects are the same as solution ranking
projects on the basis of 7, T with NPV of 1650.

Table III Order of projects on the basis of 7, ;

j=1 ry ; ay Ej: ay, ); c,
3 1.200 150 30
5 1.071 470 98
2 1.0594 750 152
1 0.970 1,050 217
8 0.909 1,380 280
6 1.000 1,600 320
4 0.889 2,050 400
7 0.800 2,400 460
Constraint X 1,800 360 X

Solving 0-1 IP problem with Excel's Solver

Our problem can be solved with Solver, too, see [6,7], etc. To solve IP problems
with Solver we must use Solver's binary option (the constraint "decision = bin"
indicates that variables are 0-1 variables). The solution for our example in Table
IV shows that we should undertake projects number 2, 3, 4, 5, 6 and 8 with
objective function value of 1,750 mil CZK. The solution is identical to one we
have already obtained using heuristics. :

Here, we must pay attention to the solver Option dialog that includes a
Tolerance field for IP models. The default Tolerance value is 5 % and it means that
the optimization procedure continues until the solution (its value of objective
function) is within 5 % of IP optimum value of objective function. A higher tole-

Table IV Solution of our problem using Excel's Solver.

Jj = a, a,, ¢ variables

1 300 65 300 0

2 280 54 300 i

3 150 30 180 1

4 450 80 400 1

5 320 68 350 1

6 220 40 200 1

7 350 60 280 0

8 330 63 320 1
constraint b, 1800 360
solution 1750 335
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rance value can speed up the procedure but the solution may not be the optimal
one and may be even farther from the real IP optimum. Tolerance of 0 % forces
Solver to find the actual IP optimum but is more time-consuming.

The solution in Table 4 was found using default Tolerance value of 5 %.
Setting Tolerance to 4 % (and lower %), Solver found solution again but chose
projects number 1, 2, 5, 6, 7, 8 to be undertaken with objective function value
1,750 mil CZK. One could think this solution would be better than the one with
tolerance value 5 % but this is not true because despite this solution having the
same objective function value, it uses more resources (1,800 mil CZK and 350
employees).

The advantage of Solver can be seen in the simplicity of finding the solution
but there are disadvantages, too. First, we do not always obtain the true optimal
solution and second, Solver does not provide any additional information about the
solution.

Efficient Method for 0-1 IP Problem Solving with Microsoft Excel

Next, we will introduce the optimisation method for solving a 0-1 IP problem
combining both the heuristic and combinatorial procedures with use of some of the
Excel tools. The whole procedure can be summarised in following steps:

. Formulation of 0-1 integer programming problem

. Preoptimality analysis, see procedure in Table I

. Selection of primal or dual problem for the optimisation

- Separation of k-elements subsets for £ = 1, 2, ..» into 2 groups: k, subsets

containing feasible solutions and £, subsets with infeasible solutions.

5. Reduction of k, subsets to &, subsets with possible optimal solutions and to
k,_ subsets that cannot contain optimal solution,

6. Complete examination of all combinations in k . subsets and determination of

the optimal solution.

W B

The algorithm of suggested method is shown on our example. Model
formulation and preoptimality analysis is discussed afore. Since p, = 75.00 %
and p, = 78.26 %, the dual problem is chosen (see Table I). The formulatlon of
dual problem is:
minimize 300x, + 3000x, + 180x; + 400x, + 350x, + 200x, + 280x, + 320x, = z

subject to:
300x, + 280x, + 150x, + 450x, + 320x, + 220x, + 350x, + 330x, > 600

65x, + 54x, + 30x, + 80x, + 68x, + 40x, + 60x, + 63x, > 100
xX; = 0Vl forj=12, .8
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Separation of k-Elements Subsets into Feasible and Infeasible Solutions

The separation of k-elements subsets (defined in step 4) can be efficiently carried
out in Excel using the following algorithm:

Projects are sorted according to above-mentioned constraints either in
ascending or descending order. Projects rearrangement according to a given
criteria can be done in Excel very simply by means of “Data\Sort” option. Project
rearrangement according to total resource requirements is shown in Table V.
Hence we can easily find out-two boundary combinations foreach & = 1, 2, ..n,
with the highest and the lowest value. If both boundary combinations for -
elements subset comply with a given constraint, all the rest combinations comply,
too. On the contrary, if both boundary combinations do not comply, none of the
other possible k-elements combinations comply either. Finally, if the lowest
combination fulfills the conditions and the highest does not (or contrariwise), such
a k-elements subset contains some combinations that comply with constraint and
other ones that do not. In maximizing model (1), infeasible combinations &, will
be determined by the highest value of £, in dual - minimizing model (2),
infeasible combinations will be, on the contrary, determined by the lowest
value & i

Table V Projects ranked according to a,,

Project according to a,, Project according to a,
g = 4, dy; < j= ay; a <
3 150 30 180 3 150 30 180
6 220 40 200 6 220 40 200
2 280 54 300 2 280 54 300
1 300 65 300 7 350 60 280
5 320 68 350 8 330 63 320
8 330 63 320 1 300 65 300
7 350 60 280 5 320 68 350
4 450 30 400 4 450 80 400
Sum 2,400 460 2,330 Sum 2,400 460 2,330
b, primal 1,800 360 X b, primal 1,800 360 X
d, dual 600 100 X d, dual 600 100 X

We start the examination for the dual model in accordance to step 4 with
one-element subsets, that is for £ = 1.1t is obvious from Table V that none of 1-
element combination complies with both constraint conditions because even the
project with the highest values does not comply either (it is not true that
a,, > 600 and it is not true that a,, = 100 either).

Letus now start with examination of 2-elements combinations (k = 2).The
total number of 2-elements combinations is 28. It can be deduced from Table V

14
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that combination of projects number 3 and 6 with the lowest requirements do not
comply with both given conditions, whereas combination of projects with the
highest requirements, number 7 and 4 or 5 and 4, comply with both conditions
already. Hence two elements subsets can coniain feasible and thus optimal
solution.

Next, we will continue with 3-elements combinations, k = 3. Using Table
V, we can deduce that combination of three projects with the lowest values,
projects 3, 6 and 2, is a solution feasible for both restricted conditions (150 + 220
+280) = 650 and (30 + 40 + 54) = 124, If this combination is a feasible solution,
all the rest of possible combinations will be feasible, too. We do not need to
examine following combinationsfor k£ = 4, 5, 6, 7 and 8 elements as they all are
evidently feasible.

Elimination of Combinations that Cannot Contain Optimal Solution

In next step, we will reduce feasible &£ combinations to those (£, ) with expected
optimal solutions according to point S'D and refuse combinations (£__) for which the
optimal solution cannot be expected. The practical procedure will be shown in our
example.

First, we examine 3-elements combinations that are all feasible. The best
solution in this group of solutions can easily be found in Table II with projects
ranked on the basis of ¢,. The minimal value of objective function for 3-elements
combinations has the value of 660 for projects combination of 3, 6, 7
(c3 + ¢, +c, = 660). Logically, we can exclude possibility that 4- and more
elements combinations can have a lower value of objective function. In the next
step, we must focus on 2-¢lements combinations containing feasible and infeasible
solutions.

Complete Examination of £, Combinations

As we excluded infeasible combinations and reduced some of feasible solutions,
it is obvious that the optimal solution is in the group of 2-elements combinations.
Therefore we have to examine this group completely. Even this step can be solved
effectively by reducing the number of combinations. For this purpose, the table
with 2-elements combinations is prepared.

Combinations are made systematically — from the highest values of aj; to
the lowest. At the same time, the combinations are verified whether they comply
with the first constraint. Selection stops if the next combinations cannot comply
with this constraint. The next step is to verify if selected combinations also comply
with the second constraint. Those which do not comply are eliminated — second
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reduction. In the case of selected combinations complying with both constraints,
the values of objective function are calculated and the minimum — optimal
solution is found (there can be more than one). The solution for our example is
demonstrated in Table VL.

Table VI 2-elements combinations — finding optimum solution

Jo Jpon a CPED DY TRUAED DY YRVAD DY e
4 7 450 350 800 140 680
4 g 450 330 780 143 720
4 5 450 320 770 148 750
4 1 450 300 750 145 700
4 2 450 280 730 134 700
4 6 450 220 670 120

4 3 450 150 600 110

7 8 350 330 680 123

7 5 350 320 670 128

7 1 350 300 650 125

7 2 350 280 630 114

8 5 330 320 650 131

8 1 330 300 630 128

8 2 330 280 610 117

5 1 320 300 620 133

5 2

320 280 600 122

Since all feasible solutions chosen according to first constraint ( a, j) comply
with the second constraint (a,;) we do not need to proceed with the second
reduction. There are 16 feasible solutions in Table VI and 3 of them are optimum
solutions of dual problem — combinations of projects 3, 4; 1, 7 and next 2, 7.
Objective function has a same value of 580 for all the three combinations. Since
all 1-element combinations are infeasible and minimal value of objective function
for 3-elements combinations is 660, all the three combinations are optimal solution
to our problem.

Transformation of Dual into Primal Problem

Transformation of dual into primal problem for our example is in Table VIL
Results from the Table show that the dual and primal problems have three optimal
solutions with the same value of objective function. At the same time, we can see
that these solutions are not completely the same in point of resource requirements.
The worst seems to be solution eliminating projects 3 and 4 with the highest
requirements on resources. The best appears to be the third solution with the
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lowest requirements on resources. It should be pointed out that there is no such
information if we solve the problem with Excel's Solver.

Table VII Optimal solution of dual and primal problems

Dual problem Primal problem
Projects Suma,, Sumag, Sumc, Projects Sum ¢, Suma, Sumc
3,4 600 110 580 1;2;5;6;7;8 1,800 350 1,750
2,7 630 114 580 1;3:4;5;6;8 1,770 346 1,750
1,7 650 125 580 2;3;4;5:6;8 1,750 335 1,750
Conclusion

The main advantage of the method suggested is effective connection of heuristic
and exact methods together with use of spreadsheet techniques of Excel. The
method includes preoptimality analysis and provides more possibilities for
postoptimality analysis in which the entry values are changed and influence on
feasibility and optimality can be observed. At the same time, the solution
procedure is highly effective, particularly when the spreadsheet technique with
database and logic functions is used. The method presented is applicable even to
more extensive models with more variables where a pure combinatorial solving
procedure has its limitations even if a more powerful computer is used. Another
benefit can be seen in easy interpretation and understandability of the whole
procedure. Therefore we believe that the method suggested can mean a valuable
contribution to the solving of this type of 0-1 integer problems even in practice.
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