ZnO Coated Anodic 1D TiO2 Nanotube Layers: Efficient Photo-Electrochemical and Gas Sensing Heterojunction.

Zobrazit minimální záznam

dc.contributor.author Kuberský, Petr
dc.contributor.author Ng, Siowwoon
dc.contributor.author Krbal, Milos
dc.contributor.author Přikryl, Jan
dc.contributor.author Gärtnerová, Viera
dc.contributor.author Moravcová, Daniela
dc.contributor.author Sopha, Hanna
dc.contributor.author Zazpe, Raul
dc.contributor.author Yam, Fong Kwom
dc.contributor.author Jäger, Aleš
dc.contributor.author Hromádko, Luděk
dc.contributor.author Beneš, Ludvík
dc.contributor.author Hamáček, Aleš
dc.contributor.author Macák, Jan
dc.date.accessioned 2017-10-02T07:52:29Z
dc.date.available 2017-10-02T07:52:29Z
dc.date.issued 2017-09-19
dc.identifier.issn 1527-2648
dc.identifier.uri http://hdl.handle.net/10195/69563
dc.description.abstract We demonstrate in this work a fascinating synergism of a high surface area heterojunction between TiO2 in the form of ordered 1D anodic nanotube layers of a high aspect ratio and ZnO coatings of different thicknesses, produced by atomic layer deposition. The ZnO coatings effectively passivate the defects within the TiO2 nanotube walls and significantly improve their charge carrier separation. Upon the ultraviolet and visible light irradiation, an increase of the ZnO coating thickness from 0.19 to 19 nm and an increase of the external potential from 0.4 - 2 V, yields up to 8-fold enhancement of the photocurrent density. This enhancement translates into extremely high incident photon to current conversion efficiency of ~95 %, which is among the highest values reported in the literature for TiO2 based nanostructures. In addition, the photoactive region is expanded to a broader range close to the visible spectral region, compared to the uncoated nanotube layers. Synergistic effect arising from ZnO coated TiO2 nanotube layers also yields an improved ethanol sensing response, almost 11-fold compared to the uncoated nanotube layers. The design of the high-area 1D heterojunction presented here opens pathways for the light- and gas-assisted applications in photocatalysis, water splitting, sensors, and so on. cze
dc.format p. 1-10 eng
dc.language.iso en cze
dc.publisher Wiley cze
dc.relation.ispartof Advanced Engineering Materials.2017.
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Czech Republic *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/cz/ *
dc.subject self-organized TiO2 nanotubes cze
dc.subject ZnO coatings cze
dc.subject ALD cze
dc.subject charge separation cze
dc.subject ethanol sensing cze
dc.title ZnO Coated Anodic 1D TiO2 Nanotube Layers: Efficient Photo-Electrochemical and Gas Sensing Heterojunction. cze
dc.type Article cze
dc.peerreviewed yes eng
dc.publicationstatus postprint eng
dc.identifier.doi 10.1002/adem.201700589
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/adem.201700589/abstract
dc.project.ID EC/H2020/638857/EU/Towards New Generation of Solid-State Photovoltaic Cell: Harvesting Nanotubular Titania and Hybrid Chromophores/CHROMTISOL
dc.identifier.scopus 2-s2.0-85030122766


K tomuto záznamu jsou přiřazeny následující licenční soubory:

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Czech Republic Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Czech Republic

Vyhledávání


Rozšířené hledání

Procházet

Můj účet