
University of Pardubice
Faculty of Economics and Administration

Detection of IoT Cyberattacks in Smart Cities using Deep Neural Networks

By

Zeru Kifle

Advisor

prof. Ing. Petr Hajek, Ph.D.

A Thesis Presented to Faculty of Economics and Administration of University of
Pardubice

in partial fulfillment of the Requirements for the Degree of Master of Science in
Informatics and System Engineering

Pardubice, Czech Republic

April 30, 2023

© 2023 By Kebede Zeru Kifle

Author’s Declaration
I declare:

The thesis entitled Detection of IoT Cyberattacks in Smart Cities using Deep Neural
Net is my own work. All literary sources and information that I used in the thesis are
referenced in the bibliography.

I have been acquainted with the fact that my work is subject to the rights and obliga-
tions arising from Act No. 121/2000 Sb., On Copyright, on Rights Related to Copyright
and on Amendments to Certain Acts (Copyright Act), as amended, especially with the
fact that the University of Pardubice has the right to conclude a license agreement for the
use of this thesis as a school work under Section 60, Subsection 1 of the Copyright Act,
and that if this thesis is used by me or a license to use it is granted to another entity, the
University of Pardubice is entitled to request a reasonable fee from me to cover the costs
incurred for the creation of the work, depending on the circumstances up to their actual
amount.

I acknowledge that in accordance with Section 47b of Act No. 111/1998 Sb., On
Higher Education Institutions and on Amendments to Other Acts (Higher Education Act),
as amended, and the Directive of the University of Pardubice No. 7/2019 Rules for Sub-
mission, Publication and Layout of Theses, as amended, the thesis will be published
through the Digital Library of the University of Pardubice.

In Pardubice on

Kebede Zeru Kifle, b.o.h.
April 30, 2023 (Roll No.E21821)

ii

Acceptance Certificate

Faculty of Economics and Administration

University of Pardubice

The thesis report entitled Detection of IoT Cyberattacks in Smart Cities using Deep Neural
Networks submitted by Mr. Zeru Kifle is carried under my supervision and guidance and
fulfilling the nature and standard required for the partial fulfillment of requirements of the
master of science degree in Informatics and System Engineering. The work encapsulated in
this thesis has not been submitted somewhere for the degree.

prof. Ing. Petr Hajek, Ph.D.
Faculty of Economics and Administration

University of Pardubice

Signature
April 30, 2023

iii

Abstract
Nowadays, IoT and smart cities are increasingly becoming popular topics among both re-
searchers and practitioners. IoT applications are the main backbone for building a smart city.
Many governments use IoT applications to provide better services for their citizens, and other
non-governmental organizations also use them to provide better services and products for their
customers. Moreover, the day-to-day activities of society and device interactions in a smart
city are carried out over IoT applications. Conversely, new and intelligent attacks are greatly
increasing due to the behavior of these applications. As a result, security becomes one of the
most crucial concerns that need to be addressed. To date, several intrusion detection models
have been proposed by several researchers for ensuring the security of IoT devices in the smart
city. In this thesis, I proposed deep neural network-based models MLP, LSTM, and GRU for
detecting binary and muti-class IoT cyber attacks, using an imbalanced big data set. The most
recent datasets, UNSW-NB15 and CICIDS 2017, were used for model training and evaluation,
which are enhanced by a variety of recently added cyber attacks. The experimental results
for the UNSW-NB15 dataset show that the MLP model outperformed other models in terms
of recall, precision, F1-score, and FPR (false positive rate) with values of 99.17%, 99.17%,
99.17%, and 0.0037, respectively. Furthermore, the LSTM model achieved a higher accuracy
of 99.26%. In the case of conventional and ensemble models, Random Forest outclasses other
models with respect to all metrics when trained and evaluated with the UNSW-NB15 dataset.
Further, when the dataset CICIDS2017 was used for training and evaluating the Random For-
est model, it outperformed other conventional and ensemble methods. Among the deep neural
network models, the MLP model classified attacks with the accuracy of 98.10%, precision of
98.20%, F1-score of 98.12%, and FPR of 0.0202, which makes it the best-performing deep
learning model.

Key Words: - IoT; Cyber Attack; Smart City; Attack Detection; Deep Learning; Big Data.

iv

Acknowledgment

In the first, place I want to forward my sincere thanks to God and Saint Mary. Next, I would
like to give my grateful and sincere thanks to Professor Petr Hajek for his guidance, patience,
and support during my graduate studies.

v

Table of Contents

Abstract iv

List of Figures viii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Introduction . 1
1.2 Statement of The Problem . 4
1.3 Objective . 5

1.3.1 General Objective . 5
1.3.2 Specific Objectives . 5

1.4 Scope of The Thesis . 5
1.5 Contribution . 5
1.6 Research Methodology . 6

1.6.1 Literature Review . 6
1.6.2 Data Collection . 7
1.6.3 IoT Attack Detection System Design and Implementation 7
1.6.4 Result Evaluation and Discussion . 7

1.7 Thesis Outline . 8

2 Theoretical Background 9
2.1 IoT Cyberattacks in Smart Cities . 9
2.2 IoT-based Smart City Architecture . 9
2.3 IoT applications in Smart Cities . 11
2.4 Cyberattack in IoT . 12

2.4.1 Cyber Attack Issues . 12

3 Review of Literature 14
3.1 Standard Machine Learning-Based IoT Device Attack Detection in Smart Cities 14
3.2 Deep Learning Model-Based IoT Device Attack Detection in Smart Cities . . . 15

4 Architecture of the Proposed IoT Cyber Attack Detection System 19
4.1 Model for Detection of IoT Cyber Attacks in Smart Cities 19

4.1.1 Deep Learning Methods . 19
4.1.1.1 Long Short-Term Memory 20
4.1.1.2 Gated Recurrent Units . 21
4.1.1.3 Multi-Layer Perceptron . 23

4.1.2 Random Forest Classifier . 24
4.1.3 Logistic Regression . 25
4.1.4 Naive Bayes Algorithm . 25

vi

Table of Contents vii

4.1.5 AdaBoost . 25
4.1.6 Decision Tree . 26

4.2 Data Collection and Preprocessing . 27
4.2.1 Dataset Description . 27
4.2.2 Data Preprocessing . 28

4.2.2.1 UNSW-NB15 Dataset Preprocessing 33
4.2.2.2 CICISD 2017 Dataset Preprocessing 34

5 Evaluation and Discussion of Results 39
5.1 Expermental Parameters and Environmental Setup 39

5.1.1 Simulation Environment Setup . 39
5.1.2 Model Parameter Configuration . 39

5.2 Result Evaluation Metrics . 41
5.3 Results of Modeling . 42

5.3.1 Classical and Ensemble ML Model Attack Classification 43
5.3.1.1 Classical and Ensemble ML Model Attack Classification Us-

ing CICIDS2017 Dataset 43
5.3.1.2 Classical and Ensemble ML Models Attack Classification

Using UNSW-NB15 Dataset 44
5.3.2 Deep Neural Network Model Attack Classification 45

5.3.2.1 Deep Neural Network Model Evaluation Using CICIDS2017
Dataset . 45

5.3.2.2 Deep Neural Network Model Evaluation Using UNSW-NB15
Dataset . 49

5.3.2.3 Performance Comparison with Earlier Research 50
5.3.3 Individual Attack Classification . 52

5.3.3.1 Conventional and Deep Neural Network Model for Individ-
ual Attack Classification Using CICIDS2017 52

5.3.3.2 Deep Neural Model Performance on Individual Attack Cate-
gories Using UNSW-NB15 53

6 Conclusion and Future Recommendation 54

References 56

Appendices 60

A Python Source Code 61
A.1 Data Preprocessing Sample Code Fragment 61
A.2 Models Setup Code . 63

A.2.1 Classical and Ensemble Model Configuration 63
A.2.2 Deep Neural Network Model Configuration 65
A.2.3 Correlation Heatmap for UNSW-NB15 and CICIDS2017 Dataset . . . 69
A.2.4 Deep Neural Network Model Performance Evaluation Using UNSW-

NB15 . 69

List of Figures

1.1 Basic architecture of IoT(Domínguez-Bolaño et al., 2022) 2

2.1 Smart city architecture (Cui et al., 2018) . 10
2.2 Smart city architecture with three layers (Alrashdi et al., 2019) 10
2.3 Smart city building component (Zhang et al., 2017), page 123 12
2.4 IoT attacks families in smart city architecture layers 13

4.1 Architecture for detecting IoT cyber attack in smart cities 19
4.2 LSTM structure adopted from Kandpal (2018); Dey & Salem (2017) 20
4.3 GRU structure adopted from Dey & Salem (2017); Dobilas (2022) 22
4.4 MLP architecture . 24
4.5 Data preprocessing phases . 29
4.6 Dataset UNSW-NB15 before and after normalization 30
4.7 Dataset CICIDS 2017 before and after standardization 32

5.1 Confusion matrix for decision tree on CICIDS2017 45
5.2 Confusion matrix for a random forest on CICIDS2017 46
5.3 Confusion matrix for a random forest on UNSW-NB15 47
5.4 Confusion matrix for an MLP on UNSW-NB15 50

A.1 UNSW-NB15 dataset features correlation heatmap 69
A.2 CICIDS2017 dataset features correlation heatmap 70
A.3 Acuracy of MLP, MLP (Keras), LSTM and GRU on UNSW-NB15 70
A.4 Recall of MLP, MLP (Keras), LSTM and GRU on UNSW-NB15 71
A.5 Precision of MLP,MLP(Keras), LSTM and GRU on UNSW-NB15 71
A.6 F1-Score of MLP, MLP (Keras), LSTM and GRU on UNSW-NB15 72
A.7 Model Training Time of MLP, MLP (Keras), LSTM and GRU on UNSW-NB15 72
A.8 Model Train Test Validation of LSTM on UNSW-NB15 73

viii

List of Tables

3.1 Review of literature summary . 18

4.1 Attack categories description in both datasets 35
4.2 UNSW-NB15 Dataset statistics . 36
4.3 CICIDS2017 Dataset Statistics . 37
4.4 Train and test dataset (UNSW-NB15) . 37
4.5 Train and test dataset (CICIDS2017) . 38

5.1 MLP with Scikit learn and MLP with Keras libraries 40
5.2 LSTM and GRU with Keras library . 40
5.3 Decision tree and random forest parameters configuration 41
5.4 AdaBoost, logistic regression and Naive Bayes parameters configuration 41
5.5 Conventional and ensemble ML algorithm model result using different data

split configuration . 44
5.6 Conventional and ensemble method model output using UNSW-NB15 dataset . 44
5.7 MLP, LSTM, and GRU with one hidden layer and 10 neurons on CICIDS2017

at random_state=42 . 46
5.8 MLP, LSTM, and GRU with one hidden layer and 20 neurons on CICIDS2017

at random_state=42 . 47
5.9 MLP, LSTM, and GRU with two hidden layers and 20, 10 neurons on CI-

CIDS2017 at random_state=42 . 48
5.10 MLP, LSTM, and GRU with one hidden layer and 10 neurons on CICIDS2017

at random_state=1 . 48
5.11 MLP, LSTM, and GRU with one hidden layer and 20 neurons on CICIDS2017

at random_state=1 . 48
5.12 MLP, LSTM, and GRU with two hidden layers and 20, 10 neurons on CI-

CIDS2017 at random_state=1 . 48
5.13 Deep neural network model with one hidden layer using UNSW-NB15 dataset . 49
5.14 MLP, LSTM, and GRU with two hidden layers and 20, 10 neurons on UNSW-

NB15 dataset . 49
5.15 Ranks of models based on accuracy using CICIDS2017 dataset 51
5.16 Ranks of models based on accuracy using UNSW-NB15 dataset 51
5.17 Individual attack category classification using CICIDS2017 dataset 53
5.18 Individual attack category classification using UNSW-NB15 dataset 53

ix

List of Abbreviations

ANN Artificial Neural Network . 3

CNN Convolutional Neural Network . 4

DNNs Deep Neural Networks . 4

DT Decision Tree . 3

GRU Gated Recurrent Units . 3

IoT Internet of Things . 6

KNN K-Nearest Neighbors . 3

LR Logistic Regression . 3

LSTM Long Short-Term Memory . 3

ML Machine Learning . 2

MLP Multi-Layer Perceptron . 3

RF Random Forest . 3

SVM Support Vector Machine . 3

x

Chapter 1 Introduction

1.1 Introduction

Internet of Things (IoT) means the process of sharing real-time data or information between

physical devices through the Internet without the intervention of human beings. These physical

devices are equipped with different sensors, which are embedded in different objects or sys-

tems to share information and communicate with each other to control or monitor the system

autonomously (Singh et al., 2021).

IoT devices are utilized for developing smart homes, offices, and cities. Some of the systems

developed with the help of IoT are smart door access control systems, lighting for homes and

offices, automated gate and garage systems, thermostats and humidity controllers, traffic man-

agement, lighting on streets, pollution monitoring and reporting, parking solutions, water man-

agement, waste management, wearable devices such as smartwatches, healthcare, autonomous

driving systems, agriculture and smart farming, industrial IoT for manufacturing, disaster man-

agement, logistics, and fleet management, smart grids and energy management, and big data

analytics (Singh et al., 2021; Page, 2023).

IoT is the main component for the development of a smart city. IoT devices in smart cities

are interconnected with each other through the Internet and perform their tasks autonomously.

One of the drawbacks of IoT devices in a smart city is their vulnerability to cyber attacks. This

vulnerability occurred due to the limited resources (Sha et al., 2020) of the IoT device, such as

its open communication medium, its lack of processing capability, and its lack of storage space

for implementing classical cyber attack detection and prevention algorithms on the device as

another network device.

Generally, the IoT is vulnerable to cyber attacks because of a lack of sufficient authentica-

tion and authorization, unreliable user interfaces, insecure networks, privacy issues, inadequate

transport encryption, the inadequacy of the security configuration, and poor physical security

1

2 Chapter 1. Introduction

Figure 1.1: Basic architecture of IoT(Domínguez-Bolaño et al., 2022)

(Vishwakarma & Jain, 2020).

The main purpose of the attacker on IoT devices is to divert the normal operation of the

device in its operating environment by controlling all functionalities of the device, blocking

data transmission between IoT devices, altering the data transmission from source to destination

and vice versa, drooping some part of the data transmission, etc. Botnets, denial of service

attacks (DoS), distributed DoS (Vishwakarma & Jain, 2020), man-in-the middle, identity theft,

and data theft, ransomware, remote recording, and advanced persistent threats (Chen et al.,

2021) are some of the cyber attacks for IoT device (Singh et al., 2021).

Based on classical Machine Learning (ML) algorithms, various IoT cyber attack detection

models for smart cities have been developed, trained, and evaluated with small, outdated, bal-

anced datasets. However, limited research has been done for an IoT cyber attack detection

model with deep learning techniques and model training and evaluation on the most recently

1.1. Introduction 3

available datasets, which consist of variant attack types for IoT devices in a smart city, so there

is a gap for deep learning models to detect and classify intrusions in the context of smart cities,

which needs to be addresssed by experimenting on big and imbalanced datasets.

In this thesis, I propose a deep neural network-based IoT cyber attack detection model for

smart cities. The deep neural network algorithms used for modeling are Multi-Layer Percep-

tron (MLP), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). These

detection and classification models were evaluated using accuracy, F1-score, precision, recall,

and false positive rate (FPR) metrics. In addition to this, I also compare the performance of

these models with other popular algorithms, such as Logistic Regression (LR), Support Vector

Machine (SVM), Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN),

and K-Nearest Neighbors (KNN), which are the most common and powerful algorithms for

classification tasks. I used two of the most recent datasets for training and evaluating the model.

These datasets are publicly available for cyber attack researchers, and they are UNSW-NB15

(Moustafa & Slay, 2016; Janarthanan & Zargari, 2017) and CICIDS 2017 (of New Brunswick,

2017; Sharafaldin et al., 2018). These models were simulated in the Python programming

language with the Jupiter notebook editor.

4 Chapter 1. Introduction

1.2 Statement of The Problem

Several research works haved evaluated different intrusion detection models using several

datasets to detect and classify IoT cyber attacks in smart cities to reduce IoT cyber attacks in

smart cities. These research works include both classical ML and deep learning models for

prediction and classification. Still, they evaluated their models with outdated datasets with a

small diversity of attacks, and on the other hand, some researchers used the small size of the

most recent datasets for their model training and evaluation. Classical machine learning models

such as LR, SVM, DT, RF, ANN, KNN by (Alrashdi et al., 2019; Rashid, Kamruzzaman,

Hassan, et al., 2020; Rashid, Kamruzzaman, Imam, et al., 2020) research has been done and

evaluated using the small size of the most recent datasets (UNSW-NB15 and CICIDS2017).

A deep learning model based on Convolutional Neural Network (CNN) and recurrent ANN

by (Al-Taleb & Saqib, 2022) evaluated by recent datasets, UNSW-NB15 and CICIDS2017,

and outdated datasets, BoT_IoT and ToN-IoT, KDDcup99, NSL-KDD, Koyot, and WSN-DS

(Vinayakumar et al., 2019). The performance of the cyber attack detection model is affected

by the types of algorithms and datasets used for modeling. Today, modeling efficient attack

detection model with deep learning techniques on big datasets is the hot research topic area.

Due to the diversity of attacks and dynamics of attack behavior, previous work is insufficient

to handle the current IoT cyber attack in smart cities. So, several researchers recommend

developing a new IoT cyber attack detection framework with new approaches, such as using

advanced modeling algorithms and a recent dataset enriched with new attack types.

By taking into consideration of the above issues, in this thesis, Deep Neural Networks

(DNNs) such as MLP, LSTM, and GRU is used to model IoT cyber attack detection for smart

cities. The proposed model is evaluated using the most recent USNW-NB15 and CICIDS2017

datasets, which were enhanced with varieties of IoT cyber attacks. The diversity of attacks in

each dataset is described in detail in chapter 4 section 4.2, Table 4.1. The proposed model’s

performance is evaluated using well-known model evaluation metrics: accuracy, precision, F1-

score, recall, and false positive rate (FPR).

1.3. Objective 5

1.3 Objective

1.3.1 General Objective

Characterize IoT architecture for smart cities, summarize existing approaches to detecting

IoT cyber attacks, propose a DNN-based model for detecting IoT cyber attacks, validate the

model using datasets relevant to smart cities, and discuss implications of the results for smart

cities.

1.3.2 Specific Objectives

• Select recent publicly available datasets enhanced with IoT cyber attack variants of smart

city.

• To perform data prepossessing for proposed model input.

• Modeling IoT cyber attack detection and prediction model using DNN methods.

• Evaluate the DNN-based attack detection model with selected datasets and compare the

result with classical and ensemble classification algorithms.

1.4 Scope of The Thesis

The scope of this thesis focuses on modeling DNN-based models (LSTM, GRU, and MLP)

for IoT cyber attacks in smart cities and evaluating the model with large, imbalanced datasets.

The classical and ensemble machine learning classifiers were trained and evaluated with the

same datasets without modification of the hyperparameter tuning parameters of their default

configurations for comparison.

1.5 Contribution

Various IoT cyber attack detection models have been developed by several researchers in

the past few years, and they are still being worked on. Each scholar uses several classification

algorithms for modeling and several datasets for evaluating their models. The research done

6 Chapter 1. Introduction

by (Alrashdi et al., 2019; Rashid, Kamruzzaman, Hassan, et al., 2020) for intrusion detection

models by RF, LR, SVM, DT, RF, ANN, and KNN algorithms, and their model trained and

evaluated with a subset of USNW-NB15 and CICIDS2017 datasets, on the other hand, (Shafiq

et al., 2020) used the ANN machine learning algorithm to model an intrusion detection system

and evaluated their model using outdated datasets, such as BoT-IoT_IoT. In this thesis, I model

an IoT attack detection model using DNNs (LSTM, GRU, and MLP) and evaluate it with the

most recent big datasets (USNW-NB15 and CICIDS2007) that are enhanced with varieties of

attacks. The main contribution of this thesis is listed as follows:

• Existing work does not consider much for deep learning algorithms on both datasets.

In this thesis, I demonstrate deep learning algorithms with all records of the datasets,

UNSW-NB15 and CICIDS2017.

• I explore the performance of deep learning algorithms with big datasets for attack detec-

tion and classification.

• To provide the attack detection and classification performance of a classical and ensemble

machine learning classifiers and a DNN model on big-size binary and multi class datasets.

• To provide the output of DNN-based model ability to detect and classify IoT cyber attacks

in a smart city environment for the researchers.

1.6 Research Methodology

1.6.1 Literature Review

Internet of Things (IoT) cyber attack prediction is a hot research topic in the smart city envi-

ronment. Numerous studies have been done to protect the IoT from cyber attacks. The literature

review conducted in this thesis mainly focuses on the existing cyber attack detection models

related to smart cities, the algorithms used for modeling the detection model, the datasets used

for model evaluation, the performance achieved, feature recommendations, and gaps that I have

figured out for further improvement relating to IoT cyber attacks.

1.7. Thesis Outline 7

1.6.2 Data Collection

A variety of datasets are available online for conducting cyber attack prevention research.

In this research, I collected the latest datasets containing new varieties of attack types that are

relevant for smart cities to evaluate the proposed IoT attack detection model. USNW-NB15

(Moustafa & Slay, 2015; Janarthanan & Zargari, 2017) and CICIDS2017 (of New Brunswick,

2017; Sharafaldin et al., 2018) datasets are the most recent datasets enriched with recent attack

types that are relevant for a smart city. UNSW-NB15 created by the dataset includes generic,

fuzzers, analysis, backdoor, exploit, reconnaissance, shellcode, and worm attack categories,

while CICIDS2017 created by the Canadian Institute of Cybersecurity also includes brute force

attacks, heartbleed attack, botnet, DoS attack, distributed DoS (DDoS) attack, web attack, and

infiltration attacks for further explanation, see in Chapter 4 at section 4.2.1.

1.6.3 IoT Attack Detection System Design and Implementation

In the proposed IoT cyber attack detection model designed and implemented phase, the

overall architecture of the model is designed, DNNs, classical machine learning, and ensemble

methods used for modeling are explained; relevant datasets for model evaluation are clearly

described, preprocessed, and prepared for training and evaluating the model. The algorithms

for the model and the dataset for model training and evaluation are selected based on the gaps

identified during the literature review and other researchers’ recommendations. Finally, the

model is simulated using the Python programming language, and I used Jupiter Notebook as

an editor; for further information, see in Chapter 4.

1.6.4 Result Evaluation and Discussion

To evaluate the performance of the IoT cyber attack detection model, I used commonly used

model performance metrics, accuracy, precision, F1-score, recall, time to train, and time to

predict.

8 Chapter 1. Introduction

1.7 Thesis Outline

The remaining part of this document is organized as follows. In Chapter 1, the introduction

to IoT, cyber attack challenges in IoT application smart city, research objective, statement of

the problem, the contribution of the thesis, and scope of the work are presented. The research

methodology is also presented in this chapter. In Chapter 2, a detailed description of IoT

applications in smart cities, smart city architecture, and the cyber attack in IoT technologies

challenges are discussed. In Chapter 3, a literature review focused on deep learning methods

and classical machine learning algorithms used for IoT cyber attack detection and classification

models which are more related to the current work are presented. In Chapter 4, the proposed

IoT cyber attack prediction model in smart city, algorithms used for the model description

and datasets used for evaluating the model with its description, and necessary steps of the

prepossessing phase in detail are presented. Finally, in Chapter 5 and Chapter 6, the discussion,

result evaluation, conclusion, and future recommendation of this thesis are presented.

Chapter 2 Theoretical Background

2.1 IoT Cyberattacks in Smart Cities

The infrastructures in smart cities are equipped with IoT devices that are used to provide

information access or services to the citizens (see Figure 2.1). The IoT application in the

smart city is used to simplify the life of people by improving the quality of service, reducing

the amount of time for getting information, and also the service providers easily provide their

service to their customers through customer IoT appliance (Chen et al., 2021).

Smart cities are characterized by heterogeneity, resource constraints, mobility, connectivity,

scalability, and user involvement. Heterogeneity is expressed by the existence of the variety of

IoT devices, platforms, communication protocols, technologies, mobility means, diverse hard-

ware performances, and so on (Cui et al., 2018) in smart city applications (Zhang et al., 2017) as

shown in Figure 2.2, while the characteristic of mobility indicates wireless communication and

real-time data flow monitoring. IoT devices implemented in smart cities are resource-limited,

such as in memory, battery capacity, and processing capabilities. This limitation occurred due

to the small size of the IoT device. Smart cities express connectivity and scalability by in-

volving various types of IoT devices for various applications on the smart city platform, and

scalability is expressed by the expansion of smart cities and the increment in the number of IoT

devices in the communication network (Cui et al., 2018). User requirements and participation

in demanding technology are one of the basic needs for the expansion of smart cities.

2.2 IoT-based Smart City Architecture

There is no consistent architecture for an IoT-based smart city. According to Cui et al.

(2018), IoT-based smart city architecture is organized into four layers. These are the percep-

tion layer (sensors, devices, etc.), network layer (wired and wireless communication), support

layer (cloud computing, fog computing, etc.), and application layer (smart health care, smart

9

10 Chapter 2. Theoretical Background

Figure 2.1: Smart city architecture (Cui et al., 2018)

Figure 2.2: Smart city architecture with three layers (Alrashdi et al., 2019)

agriculture, smart home, etc.).

2.3. IoT applications in Smart Cities 11

2.3 IoT applications in Smart Cities

The IoT technologies are widely applied for smart grids, smart transportation, smart envi-

ronment, smart living, smart health, and smart energy (Al-Turjman et al., 2022), see Figure 2.3.

In 2020, the global market value of smart city expected to reach US$ 1200 billion (Zhang et

al., 2017).

Smart environment

Environmental pollution and global warming are the main issues in this era. Implementing an

IoT-based smart environmental system in an urban area is one of the mechanisms to reduce

global warming and environmental pollution. The presence of IoT technologies and sensors

is one of the mechanisms for creating a smart environmental monitoring system in a smart

city. Some of the environmental problems that disrupt normal human living conditions are air

pollution (Alshamsi et al., 2017), water pollution, radiation pollution (Ullo & Sinha, 2020),

environmental change, weather forecasting, and so on. So that currently, smart cities integrate

IoT devices and sensors to monitor and control those disasters in their early stages.

Smart Transportation

According to the Allied Market Research report, the cost of IoT for the transportation system

in 2016, is $135 billion USD, and in 2023, it is expected to reach $328 billion USD (ME-

DIA, 2020). Integration of IoT technology in transportation systems has benefits for enhancing

customer experience by providing real-time and up-to-date data to them, improving safety, op-

erational performance, environmental impact, and energy usage improvement (MEDIA, 2020).

In smart transportation systems, customers can use their smart transport application on their

phone to access the required real-time information about transportation without going to the

physical transportation office (Cui et al., 2018).

The applications of IoT technologies in the transportation system are traffic management

(smart parking, traffic lights, smart accident assistance), toll and ticketing, connected cars, ve-

hicle tracking systems (trip schedules, fleet tracking, driving times, driver rest break schedul-

ing, alerts for speeding, harsh cornering, acceleration, or braking, monitoring of vehicle load,

12 Chapter 2. Theoretical Background

Figure 2.3: Smart city building component (Zhang et al., 2017), page 123

distance traveled, and fuel consumption), and public transport management, which includes

real-time vehicle tracking, data analysis and real-time management, and personalized travel

information (MEDIA, 2020).

2.4 Cyberattack in IoT

Nowadays, to simplify the living standard of citizens in urban areas, the infrastructure and

public services of the city are interconnected with IoT technologies, which build a smart city.

In a smart city, with the help of IoT devices, a huge amount of data is exchanged from different

devices in different directions. Due to the nature of IoT devices and applications, the smarty

city is easily vulnerable to attacks such as DoS, collusion attacks, Sybil attacks, eavesdropping

attacks, outside forgery attacks, spam attacks, outside forgery, likability attacks, inside curious

attacks, identity attacks (Cui et al., 2018), DDoS attacks (Vishwakarma & Jain, 2020), and so

on.

In 2015, around 230 thousand of Ukrainian are out of electric service due to the DoS attack

on the smart grids (Cui et al., 2018).

2.4.1 Cyber Attack Issues

The data or information can be collected to analyze the business situation, to support the

decision-making process, to take advantage of the competitors, or intentionally harm the in-

dividual or the society. The data or information of the society living in a smart city can be

2.4. Cyberattack in IoT 13

accessed by the smart device manufacturer, or service provider, through appliances used in

their home without harm (Cui et al., 2018). On the other hand, their data or information is

intentionally accessed by hackers. Protecting smart city from IoT cyber attack by using cryp-

tography, blockchain, biometrics, and other techniques, which are commonly used for other

resource reach application is insufficient for IoT device because the resource of IoT device in

a smart city is limited to implement such techniques (Cui et al., 2018). In this thesis, I focus

on machine learning-based and deep learning-based cyber attack detection and identification of

attacks in IoT-based smart cities. Almarshdi et al. (2023) categorizes IoT attacks into the phys-

ical layer, network layer, support layer, and application layer as shown in Figure 2.4, which is

taken on page 300.

Figure 2.4: IoT attacks families in smart city architecture layers

Chapter 3 Review of Literature

Nowadays, many IoT attack defense models have been developed. Most of them are mod-

eled based on classical machine learning algorithms, and a few are modeled based on DNN-

based methods. In this section, I present research done by various scholars related to IoT cyber

attack detection and mitigation using several machine learning algorithms and a few DNNs, as

well as the datasets used to evaluate the models.

3.1 Standard Machine Learning-Based IoT Device Attack Detection in

Smart Cities

Alrashdi et al. (2019) proposed a machine learning-based anomaly detection model for IoT

cyber attacks in smart cities. The model (AD-IoT) proposed by (Alrashdi et al., 2019) detects

the IoT devices that are compromised by a malicious attack in smart cities by using RF machine

learning. This model was evaluated with the UNSW-NB15 dataset, and its accuracy score was

99.34% for the binary classification problem (benign or malicious). This work was done on

a single-machine algorithm for attack detection, and they also recommend to use CNNs to

improve their work.

Rashid, Kamruzzaman, Hassan, et al. (2020) proposed machine learning techniques that are

used to detect and mitigate cyber attacks in IoT-based smart city applications. The authors’

motivation was to reduce IoT device failures in smart cities and improve the efficiency of sin-

gle attack classifiers that have been done previously (Alrashdi et al., 2019). They used DT, RF,

LR, SVM, KNN, and ANN machine learning algorithms to build a model for IoT cyber attack

detection and mitigation in smart cities. In addition to this, both single and ensemble classifier

methods of machine learning algorithms with advanced feature selection and performance eval-

uation were done for attack detection in smart city IoT applications. The ensemble (stacking)

detection model scored better results than the single classifier approach with the performance

metrics of accuracy, precision, recall, and F1-Score using the UNSW-NB15 and CICIDS2017

14

3.2. Deep Learning Model-Based IoT Device Attack Detection in Smart Cities 15

datasets. However, for further improvement, they recommend using deep learning.

To select an efficient machine learning algorithm for intrusion detection or cyberattacks in

IoT-based smart city applications, (Shafiq et al., 2020) proposed a machine learning selection

framework that applies a bijective soft set approach and its algorithm. This framework used

the Bot-IoT dataset for the proposed framework’s evaluation. NB, BayesNet, C4.5, RF, and

Random Tree were the algorithms used for it. From these algorithms, the NB machine learning

algorithm was selected for anomaly and intrusion detection of IoT device attacks in smart cities.

This algorithm performed better in terms of accuracy and the time taken to build the model of

performance metrics.

3.2 Deep Learning Model-Based IoT Device Attack Detection in Smart

Cities

Chen et al. (2021) conducted a paper review relating to IoT application cyber attacks in smart

city detection and attack classification using deep learning algorithms. The authors (Chen et al.,

2021) discussed deep belief networks, Boltzmann machines, restricted Boltzmann machines,

CNNs, recurrent ANNs, and generative adversarial networks for attack detection and classi-

fication for smart cities. In addition to this, the authors presented a few deep learning-based

cyber attack detection models for IoT applications in a smart city.

Al-Taleb & Saqib (2022) proposed an intelligent cyber threat identification model using a

hybrid machine learning algorithm for a smart city environment. A CNN and quasi-recurrent

network (CNN-QRNN)-based hybrid deep learning model designed by Al-Taleb & Saqib (2022)

was used to classify and analyze cyber threats in a real-time environment of smart cities. The

proposed model was evaluated with the BoT-IoT and ToN-IoT datasets. Its results show an

improvement in accuracy and a reduction in FPRs.

Rashid, Kamruzzaman, Imam, et al. (2020) proposed ANN-based cyber attack mitigation

techniques for smart city applications. They used the UNSW-NB151 dataset for evaluating the

proposed model. The proposed model is an ANN model. Its performance was evaluated using

1https://research.unsw.edu.au/projects/unsw-nb15-dataset

16 Chapter 3. Review of Literature

the most commonly used performance metrics, such as accuracy, precision, recall, and F1-

score, and its scores were 85.1%, 84%, 85%, and 84%, respectively. However, to improve the

performance of the detection model, they recommend a deep learning model for future work.

Vinayakumar et al. (2019) explores DNNs that are used to develop an adaptable and efficient

intrusion detection model to detect and categorize unplanned and unpredictable cyber attacks

in the network using various freely available cyber community malware datasets. The behavior

of malware attacks is dynamic, and this study aims to identify the best and most effective algo-

rithms for detecting cyber attacks. A DNN model for cyber attack detection experiments was

performed on the NSL-KDD2, UNSW-NB15, Kyoto, WSN-DS, CICIDS 20173, and KDDCup

99 datasets4, but it outperformed on the KDDCup 99 dataset. Vinayakumar et al. (2019) model

Scaled-hybrid_IDS with hybrid DNNs for detecting malware in the network. This model can

be used to monitor host-level and network traffic cyber attacks in real-time environments.

Meidan et al. (2018) proposed a network-based cyberattack anomaly detection method using

deep autoencoders. This model focused on Mirai and BASHLITE IoT-based botnet attacks that

were generated from nine infected IoT devices. The model’s false alarm rate performance

metric is lower than that of other anomaly detection algorithms. But the number of attacks

incorporated into the data set is small. Table 3.1 illustrates the summary of this review of the

literature.

To sum up, from the related works, it is clear that the IoT devices in smart cities need

improvement in security aspects to ensure seamless operation without any problems that are

discussed in the above literature. Thus, this is the motivation for this investigation, raises from

the security concerns reported by several authors, of a deep learning-based attack classification

model which is capable of detecting several IoT networks related cyber-attacks with the imbal-

anced datasets for learning. As a result, the present study will present a characterization of IoT

architecture for smart cities, summarises and compares existing methods developed for detect-

ing IoT cyber-attacks, propose a DNN-based model for detecting IoT cyber attacks, validate

2https://www.unb.ca/cic/datasets/nsl.html
3https://www.unb.ca/cic/datasets/ids-2017.html
4https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data

3.2. Deep Learning Model-Based IoT Device Attack Detection in Smart Cities 17

the model using datasets relevant to smart cities, and discuss implications of the results with

regards of the IoT application in the smart cities context.

18 Chapter 3. Review of Literature

Authors Proposed work Algorithm Dataset Train and
Test

Result Gap and recom-
mendation

Alrashdi et
al. (2019)

AD-IoT System de-
signed for IoT cy-
ber attack detection
in the smart city

RF UNSW-
NB15

Train: 65546,
Test: 634388

Accuracy: 99.34%, it
has the ability to detect
unknown attack unlike
previously signature-
based intrusion detec-
tion system

Experemnt done
only with the RF
algorithm and small
dataset size and
recommend CNN
algorithm for im-
provement.

Rashid,
Kamruz-
zaman,
Hassan, et
al. (2020)

Detection and miti-
gation of cyber at-
tacks in IoT-based
smart city applica-
tions

LR, SVM, DT,
RF, ANN and
KNN; fea-
ture selection
technique (in-
formation gain
ratio) used to
select relevant
features

UNSW-
NB15
& CI-
CIDS2017

UNSW-NB15
Train and
Test: 119241
& 56000,
CICIDS2017
Train and
Test: 41997
& 148777

Stacking ensemble
model performance:
accuracy scores
83.0% and 99.9%)
on UNSW-NB15 &
CICIDS2017, respec-
tively.

The authors recom-
mend improving at-
tack detection using
deep learning tech-
niques in the future.

Chen et al.
(2021)

The author presented
a review of a deep
learning-based cyber
attack detection
model for securing
a smart city IoT
application

Boltzmann ma-
chines, restricted
Boltzmann ma-
chines, deep
belief networks,
recurrent neu-
ral networks,
CNNs, and
generative
adversarial
networks are
presented.

— — Introduced some deep
learning technologies
and recommended dif-
ferent types of cyber
attacks to be detected
by them in smart city
applications

Recommended
LSTM for attack
detection

Al-Taleb
& Saqib
(2022)

Proposed CNN and
quasi-recurrent neu-
ral network-based
hybrid deep learning
model for cyber
threat intelligence

CNN and quasi-
recurrent neural
network used for
modeling

BoT-
IoT and
TON_IoT

BoT_IoT:
3668045,
TON-
IoT:461043,
Note: train
and test not
specified

Achieved better ac-
curacy on BoT-IoT
(99.9%) and TON_IoT
(99.9%), and FPR on
BoT-IoT (0.0003) and
TON_IoT (0.001)

Recommendation:
implementation of
the model in dis-
tributed environment

Rashid,
Kamruz-
zaman,
Imam, et
al. (2020)

An ANN-based
model for mitigating
cyber attacks in
smart city applica-
tions

ANN UNSW
NB15

Train: 65866,
Test: 16466

Accuracy, preci-
sion, recall, and
F1-score of 85.16%,
84%, 85%,84%,
for training and
85.10%,84%,85%,84%
for testing dataset, re-
spectively

Recommended en-
semble and deep
learning techniques

Vinayakumar
et al.
(2019)

The authors evalu-
ated the performance
of DNN and classical
machine learning
algorithm model for
intelligent intrusion
detection and they
proposed scalable
and hybrid DNNs
framework for real-
time cyber attack
detection

DNNs with dif-
ferent numbers
of layers

KDDCup
99, NSL-
KDD,
UNSW-
NB15,
Kyoto,
WSN-DS
&CICIDS
2017

Train:
494021, Test:
311029;
Train:
125973, Test:
22544; Train;
935000 Test:
28481; Train:
3054682,
Test:
1563923;
Train:
262260 Test:
112400; &
Train: 93500,
Test: 28481,
respectively.

The DNN model
performs better than
the classical machine
learning model for
the identification
and classification
of unforeseen and
unpredictable cyber
attacks

Experiments done
on small samples
of each dataset
and the number of
no-nattack instances
small compared to
attack instances, the
proposed scalable
and hybrid DNNs
framework was not
tested with existing
intrusion detection
dataset

Meidan et
al. (2018)

Proposed a deep
autoencoder-based
network-anomaly
detection model for
attacks generated
by comprised IoT
device

Deep Autoen-
coder

N-BaIoT — Applied autoencoders
for anomaly detection
purposes rather than
dimensionality reduc-
tion

Number of attacks
was small and
anomaly detector
trained only with
benign dataset

Table 3.1: Review of literature summary

Chapter 4 Architecture of the Proposed IoT Cyber Attack

Detection System

4.1 Model for Detection of IoT Cyber Attacks in Smart Cities

As shown in Figure 4.1, the first three models, MLP, LSTM, and GRU, are a group of DNNs,

and the remaining DT, AdaBoost, RF, LR, and Gaussian NB form a group of conventional

machine learning algorithms used to model IoT cyber attack detection system for smart cities.

Figure 4.1: Architecture for detecting IoT cyber attack in smart cities

4.1.1 Deep Learning Methods

Because the deep learning-based intrusion detection model exhibits an impressive perfor-

mance in many security applications, many researchers now favor it for modeling intrusion

detection systems (Huang, 2021). The deep learning approach is appropriate for analyzing

high-dimensional features on large datasets. Deep learning-based models for intrusion detec-

tion systems include both traditional MLP by (Mohammed et al., 2020), and recurrent models,

such as GRU by (Kasongo, 2023), and LSTM by (Huang, 2021; Kasongo, 2023). In this the-

19

20 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

sis, I simulate IoT cyber attack detection and classification in smart cities using deep learning

techniques.

4.1.1.1 Long Short-Term Memory

The LSTM neural network is a family of ANNs that is an enhanced version of recurrent

neural networks used in deep learning and artificial intelligence. LSTM was originally pro-

posed to handle the problem of gradient and vanishing gradient problems in recurrent neural

networks (Dey & Salem, 2017; Huang, 2021). The LSTM architecture is composed of three

subunits, which are called an input gate, an output gate, and a forget gate, as shown in Figure

4.2. The cell is a memory of the LSTM that stores important information for a random period.

The hidden state is considered short-term memory and the cell is considered long-term memory

in the LSTM architecture.

Figure 4.2: LSTM structure adopted from Kandpal (2018); Dey & Salem (2017)

Working Principles of LSTM

To determine the current memory state ct value, we can compute it using the equation (4.1).

Initially, the cell takes the previous memory state (Ct−1) and multiplies it element-wise with the

forget output value to come up with the decision point to pass or not to the memory (cell) state.

The decision of whether to pass or not pass the previous memory state mainly depends on the

output of the forget gate. The output value from forget (f) is 1 or 0. If the forget output value

4.1. Model for Detection of IoT Cyber Attacks in Smart Cities 21

is equal to 1, the previous memory state passes to the cell; otherwise, it does not. The new

memory (cell) state, Ct , in equation (4.2), is computed by the addition of the current memory

state and the element-wise multiplication of the input vector to it and the candidate memory

cell state in equation (4.3). Finally, the output is calculated by using the tanh(Ct) function or

g(Ct), where g is the activation function; it can be a "hyperbolic tangent (tanh) function“ or

"rectified linear unit (ReLU)“ (Dey & Salem, 2017; Dobilas, 2022; YADAV, 2019).

ct =Ct−1 ⊙ ft−1 (4.1)

Ct = ct + it ⊙ ĉt (4.2)

ĉt = g× (WcXt +Ucht−1 +bc) (4.3)

ht = ot ⊙g(ct) (4.4)

In our case, g represents the activation function, here g is tanh, ht represents the current hidden

state, W and U , represent the weight parameters for input vector Xt and previous hidden state

(ht−1), b represents for bias, and ĉt represents the cell state or candidate memory. The LSTM

architecture uses the "propagation through time" method to update the weight parameters dur-

ing model training (Huang, 2021).

The input, forget, and output gate or control signals of LSTM are expressed in equation

(4.5), (4.6), (4.7), respectively. The output gate is derived from the combination of the input

and forget gate:

it = σ(Wixt +Uiht−1 +bi) (4.5)

ft = σ(Wf xt +U f ht−1 +b f) (4.6)

ot = σ(Woxt +Uoht−1 +bo) (4.7)

4.1.1.2 Gated Recurrent Units

An update gate and a reset gate, which are represented by equations (4.8), (4.9), make up

a GRU. GRU has fewer gates than LSTM, but its computing performance is nearly identical

22 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

to LSTM; in some circumstances, it even outperforms LSTM (Dey & Salem, 2017). Figure

4.3 illustrates how the current input and past memory signals flowing into the GRU network

regulate the activation function and recent state updates.

zt = σ(Wzxt +Uzht−1 +bz) (4.8)

rt = σ(Wrxt +Urht−1 +br) (4.9)

ht = (1− zt)⊙ht−1 + zt ⊙ ĥt (4.10)

ht = g(Whxt +Uh(rt ⊙ht−1)+bh) (4.11)

Working Principles of GRU

Figure 4.3: GRU structure adopted from Dey & Salem (2017); Dobilas (2022)

The activation function at the reset gate stage of GRU takes the combination of the input vector

Xt at time t and the previous hidden state ht−1 and then computes the activation function output.

The output can be 0, 1 or between 0 and 1 because the output range for the sigmoid function

is between 0 and 1. This output decides to the previous hidden (ht−1) state is partially passed,

totally passed, or discarded to pass the update state (Dobilas, 2022; YADAV, 2019).

4.1. Model for Detection of IoT Cyber Attacks in Smart Cities 23

The activation function output is equal to 1, then the previous hidden state (ht−1) is mul-

tiplied by 1, and then totally passed to the update gate. On the other hand, the output value

between 0 and 1 is then multiplied by the previously hidden state (ht−1) and partially passed to

the update gate. The previously hidden state (ht −1) is not transferred to the update gate, while

the output from the activation function is 0.

The update gate zt value is computed by passing Wz and Uz through the sigmoid activation

function. Finally, the output and the new hidden state are computed using Wz and Uz and ht−1

as shown in Figure 4.3.

4.1.1.3 Multi-Layer Perceptron

An MLP is a neural network category and a family of feed-forward networks, which is built

from three basic layers, as shown in Figure 4.4. These are the input layer, hidden layer, and out-

put layer. As shown in Figure 4.4, input layers that contain the attributes of x1, x2, x3, ..., xn−1,

xn are given as input for a first hidden layer that contains four neurons, and then the output from

this layer is also passed as input for the second hidden layer, which contains three neurons, and

the output from this layer is given as input for the last output layer in the feed-forward network

manager from input to output layers. MLP can be designed with one or more hidden layers

with a different number of neurons. The input layer is equivalent to the number of features

(attributes) in the dataset, whereas the number of neurons in the hidden layer and output layers

varies based on the problem that we need to solve. Mostly, the number of output neurons is

decided based on the number of outputs that we need to generate and the activation function

applied to output neurons.

Working Principles of MLP

In an MLP neural network model, neurons take the input d)ata set features as input, multiply

these dataset features with their respective randomly generated weights, sum up the multipli-

cation result together, and feed this result to the activation function at the hidden layer. Each

hidden layer’s activation function output was sent forward as input for the subsequent hidden

layer or output layer neurons. The error occurred in this model when the model output deviated

from the predefined target value, which is the difference between the target value and the model

24 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

Figure 4.4: MLP architecture

prediction value. During model training, an MLP model employs a backpropagation learning

technique to minimize this error (Taud & Mas, 2018). This method is used to tune the input

feature weight parameters using the backpropagation algorithm until the model result reaches

the expected output. At the final stage, the output layer neurons accept input from preceding

layers, perform computation, and generate the final output based on the activation function de-

ployed in them. In our case, the output layer classifies our input data into normal and attack

classes.

4.1.2 Random Forest Classifier

A RF classifier is an ensemble machine learning model that combines different decision

trees and is used to solve classification problems. A random subset of the dataset’s features and

a random subset of the dataset itself are utilized to build the decision tree that is used to build a

RF. The forest is built using this decision tree construction method repeatedly. The RF classifier

model takes the average of each decision tree prediction result to predict the final model output.

Due to the ensemble learning method of the RF classifier, it is less prone to overfitting problems

compared to a single decision tree (Breiman, 2001). This model is applicable for classification

problems, such as fraud detection, image classification, and natural language processing.

4.1. Model for Detection of IoT Cyber Attacks in Smart Cities 25

4.1.3 Logistic Regression

LR is a statistical analysis method that is used in machine learning models for predicting

or classifying classes of input variables in binary tasks. The output for the logistic regression

model is either (yes or no) or (1 or 0). A mathematical logistic function is applied in logistic

regression to map the probability of input variables between 0 and 1. Based on the mathematical

logistic function mapping result, the logistic regression model decides that the output class of

all input variable classes is (1 or 0) or (yes or no) (Agresti, 2015). In our case, this model is used

to classify the network into attack class (1) or non-attack class (0). For modeling categorization

issues, the Python library includes this statistical analysis technique.

4.1.4 Naive Bayes Algorithm

The NB classifier algorithm was created using the "Bayes’ theorem. When the indepen-

dent variables that are utilized to forecast the dependent variable (intended output) have no

correlation with one another, this approach performs very well. Equation 4.12 contains the

mathematical formula for the NB classifier algorithm (Thakar, 2020):

P(C|X) =
P(X |C)×P(C)

P(X)
, (4.12)

where C represents the target class such as class 0 and class 1 in our case as attack class and

normal class, X represents the input or dependant variable with the features of x1, x2, x3, ... xn,

P(C|X) is a posterior probability, P(C) is called the prior, P(X |C) is the likelihood which is the

probability of predictor given class, and P(X) is predictor prior probability.

4.1.5 AdaBoost

Adaptive boosting (AdaBoost) is the most known ensemble machine learning method. This

algorithm was created by combining multiple weak classification algorithm models to improve

the performance of the classification model. The process of creating classifier models during

training continues until the expected result is generated (Das et al., 2020).

26 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

Working Principles of AdaBoost

Initially, all original datasets were equally weighted to train the first model, and the prediction

was done on the same dataset for the first iteration. The second iteration’s instance weight

update for the second model training and prediction dataset is based on the outcome of the

first model’s prediction. The dataset instance was misclassified, with the first model prediction

weighted higher than another instance during the weight update. Then the weighted updated

dataset was used as input for the second model’s training and prediction. Similarly, the training

dataset weight for the third model was updated by assigning a higher weight to the data instance

misclassified by the previous model (Das et al., 2020; Navlani, 2018). This weighted update

dataset instance for the new model process is continued until the predetermined model building

termination criteria are achieved and the predicting error reaches its expected minimum value.

Each successive model focuses on the weaknesses of the preceding models, except for the first

model in the first iteration. The final output of the model is the aggregation value of all models

built throughout each iteration (Das et al., 2020; Navlani, 2018).

4.1.6 Decision Tree

The DT algortihm is one of the most well-known and effective class of supervised machine

learning techniques. It is more suitable for classification and prediction problems. The structure

of the DT is hierarchical and constructed from the root node, branch, internal node, and leaf

node from top to bottom, respectively. The root node is the starting point for decision tree

construction. The root node is selected from the given dataset attribute using an attribution

selection measure such as information gain, gain ratio, or Gini index (Priyanka & Kumar,

2020). Branch and internal nodes that correspond to the distinct values of the root node attribute

are produced next to the root node selection. The internal node processes the data and sends

the decision to the terminal (leaf node). The output stored in the leaf node is the final result of

the DT. Between the first internal node and the leaf node of each decision tree, there are one or

many branches and internal nodes.

The advantage of the DT is that it has an easily understandable structure, works with datasets

that contain missing values, requires little computational effort and relatively high performance,

4.2. Data Collection and Preprocessing 27

and is applicable for feature selection, clustering, regression, and classification in the areas of

business, medicine, industry, intelligent vehicles, remote sensing, and so on.

4.2 Data Collection and Preprocessing

4.2.1 Dataset Description

The dataset is the heart of the machine learning and deep learning algorithm-based model.

The presence of the dataset is not only enough to model an efficient machine learning system,

but we also, rather than its presence, have to focus on the quality of the dataset for the given

scenario. For intrusion detection systems, there are numerous datasets. Some of the datasets for

are as follows: UNSW-NB15, CICIDS2017, CSE-CIC-IDS2018, BoTNeTIoT-L01, KDD98,

DARPA98, KDDCUP99, NSLKDD, and others (Moustafa & Slay, 2015), but all datasets do

not include the most recent varieties of attacks.

In this thesis, I used the two most recent publicly available datasets. These datasets (CI-

CIDS2007 and UNSW-NB15) include variant attacks compared to previous datasets. The vari-

ants in CICIDS2017 are DoS, DDoS, Brute Force, XSS, SQL Injection, Infiltration, Port scan,

and Botnet and the variants in UNSW-NB15 are generic, fuzzers, analysis, backdoor, exploit,

reconnaissance, shellcode, and worm. Thus, these datasets include the most recent attack vari-

ants for intrusion detection systems.

A. UNSW-NB15 dataset

The UNSW-NB15 dataset was created by (Moustafa & Slay, 2016; Janarthanan & Zargari,

2017) at the Australian Center for CyberSecurity by using the IXIA traffic generator. To

generate the CSV files from raw network traffic Pcap files with respective feature names,

they used Argus and Bro-IDS Tools, SQL Server 2008, and 12 algorithms developed with

the C# programming language. The generated CSV file contains seven CSV files. The first

four CSV files UNSW-NB15_1.csv, UNSWNB15_2.csv, UNSW-NB15_3.csv, and UNSW-

NB15_4.csv, contain the complete UNSW-NB15 dataset records. The ground truth table

is named UNSW-NB15_GT.CSV, which contains the labels of attack (Moustafa & Slay,

2015), the description of all features is named UNSW-NB15_features.csv, and the list of

28 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

events file is called UNSW-NB15_LIST_EVENTS, which contains a list of events in all

datasets. The first four CSV files above (Moustafa & Slay, 2016), include the complete

UNSW-NB15 dataset. The first four CSV files contain 2,540,044 records with 49 fea-

tures, including labels. According to the research (Moustafa & Slay, 2016) detailed de-

scription, these features are divided into five categories: flow features, basic features, time

features, content features, and additional generated features. In addition to this, there are

also UNSW-NB15_training-set.csv and UNSW-NB15_testing-set.csv files prepared from

the UNSW-NB15 dataset. The total size of the raw data set is 100 GB. This data set

includes the most recent attack varieties, categorized into nine main categories: generic,

fuzzers, analysis, backdoor, exploit, reconnaissance, shellcode, and worm.

B. Dataset CICISD 2017

The Canadian Institute of Cybersecurity creates different types of datasets for cyber security

researchers: IoT datasets, malware datasets, DNS datasets, dark web datasets, intrusion

detection datasets, and ISCX datasets. The CICIDS2017 is one of the intrusion detection

datasets provided by the Canadian Institute of Cybersecurity that is publicly available for

intrusion detection system purposes (of New Brunswick, 2017; Sharafaldin et al., 2018).

Many academics choose to use this dataset to test their intrusion detection models because

it contains various recent cyber attack types. Brute force attacks, Heartbleed attacks, botnet

attacks, DoS attacks, DDoS attacks, web attacks, and infiltration attacks are among the

attacks in this data collection that are organized by name. The description of each attack

group is in Table 4.1. Eight distinct CSV file names with normal and attack variants are

generated within five days and are included in the CICIDS2017 dataset. In total, 2,830,743

records with 79 attributes, including target features, are present.

4.2.2 Data Preprocessing

The data preprocessing stage is one of the most challenging aspects of modeling and assess-

ing deep learning and machine learning algorithms. Figure 4.5 illustrates the typical prepro-

cessing stage that was used for both datasets in this thesis.

4.2. Data Collection and Preprocessing 29

Figure 4.5: Data preprocessing phases

A. Feature Scaling Technique

Normalization and standardization feature scaling techniques are used for data preprocess-

ing in machine learning and statistics to transform numeric data values in the dataset to the

required scales and ranges of data formats.

Normalization

Normalization is the process of converting the value of an attribute into a range between 0

and 1. It is called a min-max scaler. It is preferable for datasets that have a wider range

between minimum and maximum values. It is computed as follows:

Xnorm =
X −Xmin

Xmax −Xmin
(4.13)

where Xmax is the maximum value and Xmin is the minimum value of the feature in the

dataset, respectively. X is the feature value to be scaled and Xnorm is the new equivalent

value of X after normalization. Figure 4.6 depict how the datasets appeared before and

after normalization, respectively.

30 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

(a) Dataset before normalization

(b) Dataset after normalization

Figure 4.6: Dataset UNSW-NB15 before and after normalization

4.2. Data Collection and Preprocessing 31

Standardization

Feature scaling is applied only to dataset features that have numerical values. This is done

to make sure that each feature contributes equally to the final output. The process of trans-

forming all datasets to have a mean of 0 and a standard deviation of 1 is known as feature

standardization as shown in figure 4.7. The value of the attribute is not constrained within a

range, unlike normalization. These techniques are mostly applicable for data that behaves

in a Gaussian (bell curve) distribution, where the distribution concentrates around the mean

of the data. It is called a standard scaler. It is computed as follows:

Xstd =
X −µ

σ
(4.14)

where σ standard deviation of the feature value, µ is the mean of the feature value, X is the

feature value to be scaled, and Xstd is the new equivalent value of X after standardization.

If the feature is not called for model training, the feature that has a higher value has a higher

probability of getting a higher weight factor(Mohmand et al., 2022)

B. Feature Selection - Correlation Formula and Explanation

All attributes in the dataset do not have the same significance level to influence the model

output. Most attributes have higher significance; some do not (Reddy et al., 2020). So that

by removing or dropping these fewer significant attributes, we can improve the model’s

importance and reduce the training time of the model. In this work, we use the person

correlation dimension reduction method to reduce less important attributes in our dataset.

The Pearson correlation coefficient is used to identify the relationship between two variables

or attributes in the dataset. These two variables are highly associated with one another if

their correlation coefficients are close to 1 for positive linear relations and -1 for negative

linear relations, respectively. Due to the correlation coefficient showing that each variable’s

relevance is similar and that one variable is sufficient for model training, we can delete

one of the variables from the dataset. Before removing a variable, it is important to verify

its relationship to the desired model result. If each variable is highly related to the target

32 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

(a) Dataset before standardization

(b) Dataset after standardization

Figure 4.7: Dataset CICIDS 2017 before and after standardization

4.2. Data Collection and Preprocessing 33

value, we have to keep it as it is. The person correlation coefficient mathematical equation

is represented as in equation 4.15.

r =
∑(Xi − X̄)× (Yi − Ȳ)√

∑((Xi − X̄))2 ×∑((Yi − Ȳ))2
, (4.15)

where r represents Pearson correlation coefficient, Xi represents x variable samples, X̄ rep-

resents the mean of value in x variable, Yi represents y variable samples, and Ȳ represents

the mean of value in y variable.

C. Encoders

Encodes in machine learning and deep learning models are used for converting multiple-

column data types into numerical data types. Label encoders and One Hot encoder are the

most popular categorical encoders used for it. In this thesis, I used the label encoder for

CICIDS2017 dataset categorical features, which is the target (’Label’) attribute value to

decode into numerical data. And also, I used one hot encoder for the USNW-NB15 dataset

to convert categorical features or attributes (proto, state service) into numerical data. The

reason for using one-hot encoding for it is that the features are not expressed in an ordinary

way, and the one-hot encoder is suitable for non-ordinary data types (Brownlee, 2020).

4.2.2.1 UNSW-NB15 Dataset Preprocessing

The preprocessing of this dataset started with merging four separate CSV files into a single

file, which made it easy to preprocess the whole dataset. The first step after merging is to split

the dataset into training and testing subsets. Then check the missing data set and ensure that

each feature data type aligns with the information provided by the dataset creator, as shown in

table 4.2 and adjust the data according to the given information.

Dataset split into train and test and handle missing and null values in dataset

The dataset was split into 70% train and 30% test. After splitting the training and testing

datasets of the merged USNW-NB15 dataset, there are some missing values and incorrect data

type representations. The training dataset features named "ct_flw_http_mthd“ contain 943,876

null values in the training dataset and 404,381 null values in the test dataset, "is_ftp_login“ con-

34 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

tains 1,001,037 null values in the training dataset and 428,849 null values in the testing dataset,

and "attack_cat“ contains 1,552,862 null values and 665,706 null values in test dataset. A num-

ber of flow methods such as Get and Post in the http service (ct_flw_http_mthd) 1,348,257 null

values substituted by 0 or 1 Moustafa & Slay (2016). Therefore, I added 0 to the value that was

missing.

On the other hand, the features in the training dataset are named with "is_ftp_login“ (if

the ftp session is accessed by the user and password, then 1 otherwise, 0), which is a binary

datatype. So that 1,429,886 null values within this feature name of a column were filled up

with 0 Moustafa & Slay (2016, 2015). Under the attack category, 2,218,568 null records of

(attack_cat) were filled up with the nominal data type "normal", which indicates the value of

the nonattack records. Originally "is_sm_ips_ports" and "is_ftp_login" are binary data types

but assigned as numerical, and also "ct_ftp_cmd", is categorized as a nominal data type but it

is a numerical data type as presented in Table 4.2.

Source IP address, source port number, destination IP address, destination port number,

and attack category named with srcip, sport, dstip, dsport, attack_cat respectively were not

important features for network attack detection in this scenario. In addition to this, after an-

alyzing the correlation between features such as sloss, dloss, dpkts, dwin, ltime, ct_srv_dst,

ct_src_dport_ltm, and ct_dst_src_ltm were dropped from the training and testing dataset.

4.2.2.2 CICISD 2017 Dataset Preprocessing

From the total instance count of 2,830,743 in the CICIDS 2017 dataset, there were 1358 null

instances. The number of instances in this instance is very small compared to the main dataset,

so we dropped it. After dropping it, 2,827,876 instances left in the dataset. Then, the dataset

was split into 70% train and 30%. Attacks that were small in number and had similar behaviors

have been grouped into single groups by renaming the attack label (Panigrahi & Borah, 2018).

So that I relabeled web-based attacks such as Web Attack - XSS, Web Attack - Sql Injection

into Web Attack, FTP-Patator, SSH-Patator, Brute Force as Brute Force, DoS GoldenEye, DoS

Hulk, DoS Slowhttptest, DoS slowloris into DoS and finally, we have the static records of the

cleaned dataset presented with Table 4.5.

4.2. Data Collection and Preprocessing 35

Table 4.1: Attack categories description in both datasets

Attack Type Attacking Mechanism Dataset
Fuzzers Identifying security loop hoes and send random

data through it to crash the system such as op-
erating system, program or network

UNSW-NB15

Generic A type of penetration attack through spam
emails, port scan, web script

UNSW-NB15

Backdoor Unauthorized access of systems using uncov-
ered security gap of device

UNSW-NB15

Exploit Attack performed by using fault of a computer
program, system, and machine

UNSW-NB15

Reconnaissance Collect information that is used to control com-
puters

UNSW-NB15

Shellcode penetrates a slight piece of code starting from a
shell to control the compromised machine

UNSW-NB15

Worm It replicated itself using a computer network to
control the victim computer

UNSW-NB15

Brute Force at-
tacks

Web application attack without using password CICIDS2017

Heartbleed at-
tack

Transport layer security issue exploited by mal-
formed heartbeat

CICIDS2017

Botnet Setal data, send spam, create the accessibility
of device for attackers through interconnected
device

CICIDS2017

DoS attacks Disrupt the operation of machines and networks
temporarily by making them unavailable the re-
source or making the system busy and disrupt-
ing authorized users

UNSW-NB15 &
CICIDS2017

DDoS attack Generating huge traffic and sending multiple
requests to the victim system to make it out of
control

CICIDS2017

Web attack Which is performed in the form of SQL injec-
tion, brute force over http to discover the pass-
word, Cross-Site Scripting (XSS)

CICIDS2017

Infiltration at-
tacks

Performed by finding vulnerabilities in the soft-
ware installed on the computer and performing
backdoor attacks such as IP sweep, Full port
scan, etc.

CICIDS2017

36 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

Table 4.2: UNSW-NB15 Dataset statistics

Dataset Class Name Number of Instance in
each Class

Normal 2218764
Attack

Generic 215481
Exploits 44525
Fuzzers 24246
DoS 16353
Reconnaissance 13987
Analysis 2677
Backdoor 2329
Shellcode 1511
Worms 174

Missing Data Feature Name
ct_flw_http_mthd 1348145
is_ftp_login 1429879
attack_cat 2218764
Number of total features 49

Data type in dataset
Categorical(Nominal) srcip, sport, dstip, dsport,

proto, state service, at-
tack_cat

Binary is_sm_ips_ports,
is_ftp_login, label

Numerical the rest of 37 features are
numerical

4.2. Data Collection and Preprocessing 37

Table 4.3: CICIDS2017 Dataset Statistics

File Names Dataset Class No.of
Records in
Class

No.of
Total
Records

Monday-
WorkingHours.pcap_ISCX.csv

BENIGN 529918 529918

Tuesday-
WorkingHours.pcap_ISCX.csv

BENIGN 432074 445909
FTP-Patator 7938
SSH-Patator 5897

Wednesday-
workingHours.pcap_ISCX.csv

BENIGN 440031 692703
DoS Hulk 231073
DoS GoldenEye 10293
DoS slowloris 5796
DoS Slowhttptest 5499
Heartbleed 11

Thursday-WorkingHours Morning-
WebAttacks.pcapISCX_.csv

BENIGN 168186 170366
Web Attack - Brute
Force

1507

Web Attack - XSS 652
Web Attack - Sql Injec-
tion

21

Thursday-WorkingHours Afternoon-
Infilteration.pcap.ISCX.csv

BENIGN 288566 288602
Infiltration 36

Friday-WorkingHours
Morning.pcap_ISCX.csv

BENIGN 189067 191033
Bot 1966

Friday-WorkingHours-Afternoon
PortScan.pcap_ISCX.csv

BENIGN 127537 286467
PortScan 158930

Friday-WorkingHours-Afternoon
DDos.pcap_ISCX.csv

BENIGN 97718 225745
DDoS 128027

Total 2,830,743 2,830,743

Table 4.4: Train and test dataset (UNSW-NB15)

Normal and attack class cate-
gory

Number of
records

Train
dataset

Test dataset
records

Normal 2218764 155330 665706
Generic 215481 151011 64470
Exploits 44525 31182 13343
Fuzzers 24246 16876 7370
DoS 16353 11419 4934
Reconnaissance 13987 9779 4208
Analysis 2677 1857 820
Backdoor 2329 1671 658
Shellcode 1511 1054 457
Worms 174 125 49

38 Chapter 4. Architecture of the Proposed IoT Cyber Attack Detection System

Table 4.5: Train and test dataset (CICIDS2017)

Dataset class category Number of
records

Train
dataset

Test data set

BENIGN 2271320 1590306 681014
DoS 251712 175867 75845
PortScan 158804 110968 47836
DDoS 128025 89718 38307
Brute Force 13832 9685 4147
Web Attack 2180 1546 634
Bot 1956 1392 564
Infiltration 36 26 10
Heartbleed 11 5 6

4.5(a) Train & test dataset split with random-state=42

Dataset class category Number of
records

Train
dataset

Test data set

BENIGN 2271320 1589931 681389
DoS 251712 175854 75858
PortScan 158804 111396 47408
DDoS 128025 89761 38264
Brute Force 13832 9653 4179
Web Attack 2180 1513 667
Bot 1956 1374 582
Infiltration 36 26 10
Heartbleed 11 5 6

4.5(b) Train & test dataset split with random-state=1

Chapter 5 Evaluation and Discussion of Results

5.1 Expermental Parameters and Environmental Setup

5.1.1 Simulation Environment Setup

Software and hardware environments used for simulating the proposed DNN-based model

for detecting IoT cyber attacks are presented as follows: The hardware used for it was a Lenovo

IdeaPad 5 14ITL05 laptop, which consists of an 11th Gen Intel(R) Core(TM) i5-1135G7 CPU

(2.40 GHz), 16 GB of RAM, and runs on 64-bit Microsoft Windows 11 Home. The software,

we used for the simulation was Python 3.11 with Jupyter notebook as an editor.

5.1.2 Model Parameter Configuration

The model parameters configuration of all classical machine learning, ensemble methods,

and deep learning models used in this thesis are presented in this section. For the experiments,

I used a similar model configuration for the UNSW-NB15 and CICIDS2017 datasets.

The performance of a deep learning model is affected by model parameters, such as the

number of hidden layers, number of neurons in each hidden layer, epochs, activation function,

and loss function, used by the model during model training. During the experiments, I focused

on the parameters of the number of epochs, batch size, number of hidden layers, and number of

neurons in each hidden layer. I created four different setups with different parameters to select

suitable parameters for our model and the dataset used for the experiment for DNN models.

In the first setup, two hidden layers were used with 20 and 20 neurons for each layer and an

epoch number of 200 by varying the batch size to 1024 and 2048. For the second setup, two

hidden layers were employed, with the first hidden layer having 20 neurons and the second

hidden layer having 10 neurons, the number of epochs equals 150, and we vary the batch size

to 1024 and 2048. The third experiment setup was with two hidden layers, with each layer

39

40 Chapter 5. Evaluation and Discussion of Results

having 20 and 15 neurons, a batch size of 1024, and an epoch number equal to 150. The final

experiment set up was one hidden layer with 10 and 10 neurons, with a batch size of 1024 and

an epoch number equal to 150. Batch size and epoch number have a significant effect on model

training time and performance (McCandlish et al., 2018; Aldin & Aldin, 2022). Based on the

experiment’s results, I selected the experiment parameters illustrated in Tables 5.1 and 5.2 for

our work. For the MLP model with Scikit-Learn, we used the default number of epochs for all

experiments.

A Deep leaning model parameters

The DNN model for attack classification used in this thesis is modeled with Scikit Learn

and Keras libraries. The setup of the MLP, which was used with both libraries, is shown in

Table 5.1. In addition to this configuration, I simulated this model using single hidden layers

with 10 and 20 neurons. The remaining DNN algorithms, LSTM and GRU, were simulated

using the Keras library with one hidden layer and two hidden layers, respectively. Table 5.2

shows how the model was set up with two hidden layers.

Table 5.1: MLP with Scikit learn and MLP with Keras libraries

Parameters MLP (Scikit learn) MLP (Keras)
hidden_layer_sizes 2 layers with (20,10) neu-

rons
2 layers with (20,10) neu-
rons

activation ReLU ReLU
solver Adam Adam
random_state 1 1
batch_size 1024 1024
epoch - 150
max_iter 200 -

Table 5.2: LSTM and GRU with Keras library

Parameters LSTM GRU
hidden_layer_sizes 2 layers :(20,10) neurons 2 layers: (20,10) neurons
return_sequence True True
activation sigmoid sigmoid
optimizer Adam Adam
loss binary_crossentropy binary_crossentropy
batch_size 1024 1024
epoch 150 150
verbose 2 2

5.2. Result Evaluation Metrics 41

B Classical machine learning algorithms and ensemble method model parameters

I modeled conventional and ensemble machine learning models for attack classification us-

ing the Scikit learn library. The configuration parameters for modeling DT, AdaBoost, RF,

LR, and NB models are illustrated in Tables 5.3 and 5.4.

Table 5.3: Decision tree and random forest parameters configuration

Parameters DT RF
criterion gini gini
max_depth None None
min_samples_leaf 1 1
min_samples_split 2 2
random_state 1 0
max_leaf_nodes None -
n_estimators - 100
max_features None auto

Table 5.4: AdaBoost, logistic regression and Naive Bayes parameters configuration

AdaBoost Logistic regression Naive Bayes
base_estimator DT max_iter 100 priors None
max_depth 1 solver lbfgs var_smoothing 1e-09
learning_rate 1 Verbose 0
random_state 96 n_jobs none
n_estimators 50 penalty l2
algorithm SAMME.R

5.2 Result Evaluation Metrics

The performance of machine learning models was evaluated with different metrics. Accu-

racy, recall, precision, F1-score, and FPR were used in this research (Vinayakumar et al., 2019).

To calculate the metrics, the following values from confusion matrix are used:

True Positive (TP):- The number of non-attack instances classified as an exactly non-attack

class.

True Negative (TN):- The number of attack instances classified as exact attack class.

False Positive (FP):- The number of attack instances classified as non-attack class i.e., as-

signed in incorrect class. In the original dataset, the instance or record is a group of attacks but

the model is classified as a non-attack class.

42 Chapter 5. Evaluation and Discussion of Results

False Negative (FN):- The number of non-attack instance classified as attack class.The model

misclassified non-attack instances into attack classes.

Then, the evaluation criteria are defined as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
(5.1)

If the number of instances of false positives and false negatives is low, the accuracy is high.

Precision =
T P

T P+FP
(5.2)

If a false positive is low the precision is high, this indicates the non. Attack instances are

classified as non-attack classes.

Recall =
T P

T P+FN
(5.3)

The recall is the ratio of the true positive class to the total number of real true classes in the

original instance.

F −measure(F1− score) = 2× Recall ×Precison
Recall +Precision

, (5.4)

has the value between 0 and 1. Precision is low, either precision or recall is low.

False positive rate (FPR) of a classification model can be obtained as follows (Powers, 2020):

FPR =
FP(attack considered as normal)

N(All negative instance in dataset)
=

FP
FP+T N

(5.5)

5.3 Results of Modeling

In this section, I present the attack classification performance of classical and ensemble

machine learning and DNN models.

5.3. Results of Modeling 43

5.3.1 Classical and Ensemble ML Model Attack Classification

5.3.1.1 Classical and Ensemble ML Model Attack Classification Using CICIDS2017 Dataset

As shown in Table 5.5, classical and ensemble model results were generated by varying the

random_state parameters of neural network parameters. The train and test split of the dataset

with different values of the random_state parameters is presented in Table 4.5.

The random_state parameters in the machine learning algorithm and DNN model are used

to create the same and consistent number of train and test datasets. This parameter is used to

ensure the consistency of model results whenever the algorithm is executed with the specified

value of the random_state parameter. However, if we change the value of it the similarity of

each record in train and test data is not consistent. The newly created instances for the train

and test datasets are not the absolutely same in type for different values of the random_state

parameter, but the overall number of records that exist in train and test datasets are similar. The

variation of the train and test dataset due to the random_state parameter value is shown in Table

4.5.

As we have seen in Table 5.5, the RF model outperforms than other models it scores

99.897% and 99.47% in terms of accuracy, recall, precision, and F1-score and it also scores

0.000913 and 0.0008 in FPR, 396.3 seconds, and 587.70 seconds to train models in both con-

figuration random_state = 42 and random_state = 1 respectively. While the decision trees model

is better next to the random forests model. It scores 99.864% in accuracy, recall, precision, and

F1-score, 0.0008 in FPR, and 49.2 seconds to train the model at random_state=42 but ran-

dom_state=1 AdaBoost model is the second. In terms of time to train the model decision tree

is better than the random forest and AdaBoost model.

As shown in Table 5.5(a), NB models perform less than others in terms of all model per-

formance metrics except model training time. The reason this model performs less than others

is the nature of the dataset containing more correlated input attribute features, which is not

suitable for the NB algorithm as discussed in 4 section 4.1.4.

The following Figures 5.1 and 5.2 confusion matrix show true positive (TP) true negative

44 Chapter 5. Evaluation and Discussion of Results

Table 5.5: Conventional and ensemble ML algorithm model result using different data split
configuration

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

DecisionTree 99.867% 99.867% 99.867% 99.867% 0.00084 49.2
AdaBoost 98.856% 98.108% 96.171% 97.130% 0.009599 230.6
Random Forest 99.897% 99.897% 99.897% 99.897% 0.000913 396.3
Logistic Regres-
sion

92.252% 92.252% 92.069% 92.124% 0.038068 18.8

Naive Bayes 59.730% 59.730% 85.671% 49.510% 0.632595 1.8

5.5(a) DT, AdaBoost, Random Forest, Logistic Regression and Naive Bayes at random_state=42

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

DecisionTree 96.08% 96.08% 96.12% 96.08% 0.0057 71.76
AdaBoost 97.19% 90.80% 94.71% 92.71% 0.0124 359.82
Random Forest 99.47% 99.47% 99.47% 99.47% 0.0008 587.70
Logistic Regres-
sion

92.24% 92.24% 92.06% 92.11% 0.0377 22.28

Naive Bayes 80.32% 80.32% 84.19% 71.55% 0.0000 2.51

5.5(b) DT, AdaBoost, Random Forest, Logistic Regression and Naive Bayes at random_state=1

(TN), false positive (FP), and false negative (FN) of the decision tree and random forest re-

spectively. From the 848363 test data set 680439 predicted as TP, 166798 predicted as TN, 575

predicted as FP and 551 predicted as FN instances by a decision tree, and 680392 predicted as

TP, 167097 predicted as TN, 622 predicted as FP and 252 predicted as FN by the RF model.

5.3.1.2 Classical and Ensemble ML Models Attack Classification Using UNSW-NB15

Dataset

As we have seen, DTs and RFs outperform other models when used to classify attacks using

the CICIDS 2017 dataset. These models also performed better when used to classify attacks

than other models used in this thesis on the UNSW-NB15 dataset. But other models also

showed some improvement compared to the CICIDS2017 dataset attack classification. The RF

and DT models scored 99.68% and 99.34% in accuracy, recall, precision, F1-score, 0.0019 and

0.0046 in FPR and 1281.1 seconds and 63.5 seconds in model training time, respectively. Since

the RF algorithm model is more complex than the DT model, its training time is longer.

Table 5.6: Conventional and ensemble method model output using UNSW-NB15 dataset

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

DecisionTree 99.34% 99.34% 99.35% 99.34% 0.0046 63.5
AdaBoost 99.09% 96.49% 96.22% 96.35% 0.0055 252.3
Random Forest 99.68% 99.68% 99.68% 99.68% 0.0019 1281.4
Logistic Regres-
sion

98.93% 98.93% 98.95% 98.93% 0.0085 21.3

Naive Bayes 88.84% 88.84% 90.00% 84.79% 0.0002 8.1

5.3. Results of Modeling 45

Figure 5.1: Confusion matrix for decision tree on CICIDS2017

The following Figure 5.3 shows the confusion matrix of the RF model using the UNSW-

NB15 dataset. From 762015 instances, 2452 instances were misclassified which is 1266 in-

stances is predicted as false positive and 1186 is predicted as false negative.

5.3.2 Deep Neural Network Model Attack Classification

5.3.2.1 Deep Neural Network Model Evaluation Using CICIDS2017 Dataset

In this section, I discuss the DNN models’ attack classification performance using the CI-

CIDS 2017 dataset. The performance of DNN models was mainly affected by the number of

hidden layers, the number of neurons in each layer, the number of epochs, the batch size, and

the learning rate. In this thesis, I present different results by a varying number of hidden layers

and neuron parameters of the model.

MLP, LSTM, and GRU neural network models with one hidden layer with 10 and 20 neu-

rons, two hidden layers 20 and 10 neurons attack classification performance was evaluated

based on the parameters illustrated in Table 5.1 and 5.2.

46 Chapter 5. Evaluation and Discussion of Results

Figure 5.2: Confusion matrix for a random forest on CICIDS2017

A Scenario One: Train and Test data split scenario one (random-sate = 42)

Table 5.7: MLP, LSTM, and GRU with one hidden layer and 10 neurons on CICIDS2017 at
random_state=42

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

MLP 97.441% 97.441% 97.576% 97.476% 0.02536 435.1
MLP (Keras) 97.969% 98.235% 91.960% 94.551% 0.02114 537.4
GRU 98.353% 98.187% 93.691% 95.515% 0.01624 804.4
LSTM 98.245% 97.913% 93.426% 95.223% 0.01693 969.7

In terms of detection accuracy, GRU with a single layer with 10 neurons and 20 neurons

and two hidden layers with 20 neurons and 10 neurons outperforms other deep neural on the

CICIDS2017 dataset using the train and test data split with random_state parameter value

equal to 42. Whereas the overall performance metric MLP detection capability with the

same parameters mentioned above is greater than others on this dataset as shown in table

5.9,5.8 and 5.7.

5.3. Results of Modeling 47

Figure 5.3: Confusion matrix for a random forest on UNSW-NB15

Table 5.8: MLP, LSTM, and GRU with one hidden layer and 20 neurons on CICIDS2017 at
random_state=42

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

MLP 98.119% 98.119% 98.114% 98.116% 0.02183 425.8
MLP (Keras) 98.107% 98.639% 92.238% 94.916% 0.02042 1355.0
GRU 98.385% 98.482% 93.595% 95.613% 0.01144 4227.4
LSTM 98.192% 98.284% 92.891% 95.111% 0.01849 758.8

B Scenario Two: Train and Test data split scenario two (random-sate = 1) Tables 5.10 and 5.11

show the DNN model attack classification result using the CICIDS2017 dataset that was

split into the train and test dataset by setting random_state parameters to 1.

For the second configuration of the CICIDS2017 dataset split into train and test with ran-

dom’_state values equal to 1, in terms of accuracy and FPR, GRU outperforms with one

hidden layer with 10 and 20 neurons whereas LSTM outperforms with two hidden layers

with 20 and 10 neurons. But in the overall performance, MLP with Scikit Learn library per-

formed well because the Sckit Learns library is more stable than the Keras library as shown

in table 5.14,5.11 and 5.10.

48 Chapter 5. Evaluation and Discussion of Results

Table 5.9: MLP, LSTM, and GRU with two hidden layers and 20, 10 neurons on CICIDS2017
at random_state=42

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

MLP 98.119% 98.119% 98.114% 98.116% 0.01062 213.9
MLP (Keras) 98.529% 96.730% 95.721% 95.875% 0.01047 463.9
GRU 98.726% 98.123% 95.429% 96.460% 0.01145 1243.3
LSTM 98.561% 97.524% 95.181% 96.001% 0.01203 2690.1

Table 5.10: MLP, LSTM, and GRU with one hidden layer and 10 neurons on CICIDS2017 at
random_state=1

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

MLP 97.26% 97.26% 97.57% 97.32% 0.0332 298.34
MLP (Keras) 96.88% 99.41% 86.83% 91.97% 0.0369 404.67
GRU 97.40% 99.21% 88.75% 93.15% 0.0307 961.31
LSTM 97.27% 99.63% 87.98% 92.90% 0.0333 1005.94

Table 5.11: MLP, LSTM, and GRU with one hidden layer and 20 neurons on CICIDS2017 at
random_state=1

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

MLP 97.70% 97.70% 97.91% 97.75% 0.0272 465.10
MLP (Keras) 96.97% 99.68% 86.79% 92.20% 0.0372 568.13
GRU 98.16% 99.39% 91.80% 95.03% 0.0217 1738.61
LSTM 97.24% 99.67% 87.82% 92.82% 0.0339 2005.71

Table 5.12: MLP, LSTM, and GRU with two hidden layers and 20, 10 neurons on CICIDS2017
at random_state=1

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

MLP 98.10% 98.10% 98.20% 98.12% 0.0202 867.63
MLP (Keras) 96.03% 94.38% 86.52% 89.47% 0.0360 768.31
GRU 97.17% 99.35% 87.81% 92.66% 0.0339 6249.95
LSTM 97.27% 99.58% 88.02% 92.90% 0.0332 3590.27

5.3. Results of Modeling 49

5.3.2.2 Deep Neural Network Model Evaluation Using UNSW-NB15 Dataset

Using the UNSW-NB15 dataset for model training and evaluation, the performance of DNN

is presented on attack classification using several performance indicators. LSTM and GRU

scores were 99.23% and 99.22% in accuracy with one hidden layer with ten neurons, and the

training time for the model was 772.1 seconds and 1083.4 seconds, respectively. LSTM and

GRU models with two hidden layers and 20 and 10 neurons scored 99.26% and 99.25% in

accuracy, respectively. This is slightly better than this model with one hidden layer and ten

neurons, but the model training is much longer because of the increment in the number of

neurons and the complexity of the models.

The Scikit learn library was more stable, and MLP with Scikit learn performed better than

MLP trained with the Keras library. In general, MLP with the Scikit learns library achieved

scores of 99.11% to 99.17% in accuracy, recall, precision, and F1-score. All deep neural models

and their performance on the UNSW-NB15 dataset with different configurations and parame-

ters are presented in Tables 5.13,5.14 and Figures A.3,A.4,A.5,A.6,A.8.

Table 5.13: Deep neural network model with one hidden layer using UNSW-NB15 dataset

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

MLP 99.11% 99.11% 99.11% 99.11% 0.0059 151.6
MLP (Keras) 99.12% 96.30% 94.42% 94.86% 0.0066 513.7
GRU 99.22% 95.07% 96.17% 95.18% 0.0035 1083.4
LSTM 99.23% 95.47% 95.93% 95.26% 0.0040 772.1

5.13(a) Deep neural network with 10 neurons classification performance

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Seconds

MLP 99.17% 99.17% 99.17% 99.17% 0.0054 195.1
MLP (Keras) 99.19% 95.12% 95.96% 95.07% 0.0039 925.5
GRU 99.24% 96.07% 95.54% 95.38% 0.0047 3132.8
LSTM 99.25% 95.40% 96.07% 95.30% 0.0037 2072.0

5.13(b) Deep neural network with 20 neurons classification performance

Table 5.14: MLP, LSTM, and GRU with two hidden layers and 20, 10 neurons on UNSW-
NB15 dataset

Model Accuracy Recall Precision F1-Score FPR Time to Train Model in
Second

MLP 99.17% 99.17% 99.17% 99.17% 0.0037 269.7
MLP (Keras) 99.23% 95.26% 96.06% 95.21% 0.0038 982.5
GRU 99.25% 95.54% 96.00% 95.34% 0.0039 6284.9
LSTM 99.26% 95.54% 96.08% 95.39% 0.0038 10984.2

Figure 5.4 shows the TP, TN, FP, and FN using the UNSW-NB15 dataset using two hidden

layers with 20 neurons and 10 neurons. The model predicted 3923 instances as normal but the

50 Chapter 5. Evaluation and Discussion of Results

instance is attacked as well as 3211 instances predicted as attacks but the actual instance was

non-attack.

Figure 5.4: Confusion matrix for an MLP on UNSW-NB15

5.3.2.3 Performance Comparison with Earlier Research

A. CICIDS2017 Dataset

The MLP and RF models were used for the CICIDS 2017 by (Sharafaldin et al., 2018) to

model an attack detection system. The accuracy of their MLP and RF model detection was

77% and 98%, respectively. Their model’s precision and recall were 83%, 97%, 76%, and

97% for MLP and RF, respectively. My results illustrated in Table 5.15 show an improve-

ment in all performance metrics.

B. UNSW-NB15 Dataset

Using RF and a small portion of the UNSW-NB15 dataset, the IoT attack detection model

5.3. Results of Modeling 51

Table 5.15: Ranks of models based on accuracy using CICIDS2017 dataset

Model Rank Accuracy Recall Precision F1_Score FPR
RF 1 99.90% 99.90% 99.90% 99.90% 0.000913
DecisionTree 2 99.87% 99.87% 99.87% 99.87% 0.00084
AdaBoost 3 98.86% 98.11% 96.17% 97.13% 0.009599
GRU 4 98.73% 99.58% 88.02% 92.90% 0.0332
LSTM 5 98.56% 99.35% 87.81% 92.66% 0.0339
MLP (Keras) 6 98.53% 94.38% 86.52% 89.47% 0.036
MLP 7 98.12% 98.10% 98.20% 98.12% 0.0202
Logistic Regression 8 92.25% 92.25% 92.07% 92.12% 0.038068
Naïve Bayes 9 59.73% 59.73% 85.67% 49.51% 0.632595

provided by (Alrashdi et al., 2019) obtained a 99.34% accuracy rate. Using the entire

UNSW-NB15 dataset, I was able to achieve 99.68% accuracy with RF, 99.34% accuracy

with a DT, 99.26% accuracy with LSTM models, and 99.25% accuracy with GRU models

in my research. MLP, GRU, and LSTM models for attack detection proposed by (Disha &

Waheed, 2022) performance evaluation using a selected subset of the UNSW-NB15 dataset

with F1-score metrics archived 87.2%, 86.39%, and 90.31%, respectively. While my mod-

els using the entire instance of the UNSW-NB15 dataset improved the F1-score metric

scores to 99.17%, 95.34%, and 95.35%, respectively.

Table 5.16: Ranks of models based on accuracy using UNSW-NB15 dataset

Model Rank Accuracy Recall Precision F1-Score FPR
Random Forest 1 99.68% 99.68% 99.68% 99.68% 0.0019
DecisionTree 2 99.34% 99.34% 99.35% 99.34% 0.0046
LSTM 3 99.26% 95.54% 96.08% 95.39% 0.0038
GRU 4 99.25% 95.54% 96.00% 95.34% 0.0039
MLP(Keras) 5 99.23% 95.26% 96.06% 95.21% 0.0038
MLP 6 99.17% 99.17% 99.17% 99.17% 0.0037
AdaBoost 7 99.09% 96.49% 96.22% 96.35% 0.0055
Logistic Regression 8 98.93% 98.93% 98.95% 98.93% 0.0085
Naïve Bayes 9 88.84% 88.84% 90.00% 84.79% 0.0002

According to the experimental results shown in table 5.16 the Random Forest model per-

forms better in terms of accuracy on the dataset UNSW-NB15, from the conventional ma-

chine learning models the decision tree ranked second based on the same metrics. from the

deep, learning algorithm LSTM outclasses the other deep learning models and generally, it

is the third-ranked model in this experiment. based on the precision matrix the MLP model

has a higher score than other deep learning models. whereas, the Naive base model per-

forms the least among both the deep learning and conventional & ensemble models when

evaluated in terms of all the matrices except false positive rate metrics.

52 Chapter 5. Evaluation and Discussion of Results

The limitation of this research is the threshold value selection for correlated features in the

dataset. To reduce the correlated features, I performed only two experiments with threshold

values of 0.90 and 0.96. For the UNSW-NB15 dataset, 0.90 performed better, but for the

CICIDS 2017 dataset, features are highly correlated, and a threshold value of 0.96 achieved

better performance. In addition to this, models implemented with the Keras library show little

variation in the results.

5.3.3 Individual Attack Classification

In this section, I have discussed the performance of the conventional machine learning

model, ensemble machine learning model, and DNN model on each attack class using the

UNSW-NB15 dataset and CICIDS2017 datasets.

5.3.3.1 Conventional and Deep Neural Network Model for Individual Attack Classifica-

tion Using CICIDS2017

The attack classification performance of several models for individual attack classes in the

CICIDS2017 dataset is displayed in Table 5.17. Based on the results, for attack type bots

and infiltration, the DT model outperformed others, whereas the detection capabilities of other

models were weak. Even if the overall performance of the IoT attack detection model scored

a high detection accuracy rate for binary classification, that does not mean the detection model

performs well for all categories of attacks. My experiment resulted in the overall detection

performance of our model achieving higher detection accuracy, but the model’s detection ac-

curacy was very low on some attack types. As shown in Table 5.17, the model performance

attack classification on individual attack types that exist in the CICIDS 2017 dataset was lower

for bots and infiltration. In a smart city environment, several IoT devices are used to provide

products or services, so when we implement an attack detection system we have to focus on

which varieties of attacks affect our system and which type of detection system is more suitable

for our business environment rather than selecting based considering the overall performance

of the detection systems.

5.3. Results of Modeling 53

Table 5.17: Individual attack category classification using CICIDS2017 dataset

Models BENIGN Bot Brute
Force

DDoS DoS Heartbleed Infiltration PortScan Web At-
tack

DecisionTree 99.92% 82.27% 99.98% 99.98% 99.88% 100.00% 100.00% 99.29% 99.05%
AdaBoost 99.04% 1.42% 97.32% 99.80% 98.26% 83.33% 0.00% 98.98% 5.21%
Random For-
est

99.91% 68.62% 99.98% 99.96% 99.96% 83.33% 80.00% 99.98% 97.32%

Logistic
Regression

96.19% 26.77% 28.33% 78.46% 71.53% 16.67% 0.00% 87.62% 0.16%

Naïve Bayes 50.49% 62.41% 51.07% 99.96% 98.31% 0.00% 60.00% 99.32% 6.78%
MLP 98.62% 36.70% 96.17% 98.56% 99.55% 33.33% 0.00% 95.23% 10.73%
MLP (keras) 98.70% 36.88% 97.71% 99.18% 99.77% 50.00% 10.00% 94.64% 11.36%
LSTM 98.73% 34.93% 99.45% 98.97% 99.84% 0.00% 10.00% 95.95% 34.23%
GRU 98.84% 37.06% 89.53% 98.51% 99.83% 83.33% 0.00% 96.50% 9.15%

5.3.3.2 Deep Neural Model Performance on Individual Attack Categories Using UNSW-

NB15

The performance of several models for specific attack classes in the UNSW-NB15 dataset

is displayed in Table 5.18. In comparison to other attack categories, the fuzzer attack category

had inferior detection capabilities across all models. RF, DT, LR, LSTM, and GRU models

each had a detection rate of 88.32%, 79.13%, 79.61%, 67.80%, and 66.23% for this attack

type, respectively. The shellcode attack was more challenging to recognize next to the fuzzer

attack category with those models.

Table 5.18: Individual attack category classification using UNSW-NB15 dataset

Models Normal Analysis Backdoor DoS Exploits Fuzzers Generic Reconnaissance Shellcode Worms
DecisionTree 99.54% 92.93% 99.54% 98.87% 98.59% 79.13% 99.95% 98.81% 89.06% 95.92%
AdaBoost 99.45% 90.24% 93.47% 97.08% 96.57% 66.08% 99.89% 99.38% 86.43% 97.96%
Random For-
est

99.79% 93.17% 99.85% 99.80% 99.54% 88.32% 99.99% 99.86% 97.16% 100.00%

Logistic
Regression

99.15% 90.98% 95.74% 96.62% 96.36% 79.61% 99.90% 96.06% 88.84% 93.88%

Naïve Bayes
Prediction

99.98% 73.54% 76.60% 72.01% 36.38% 10.05% 0.85% 14.21% 0.00% 0.00%

MLP 99.63% 81.71% 97.11% 97.75% 96.90% 62.43% 99.91% 95.06% 85.12% 97.96%
MLP(Keras) 99.62% 83.29% 97.87% 98.16% 97.31% 64.18% 99.91% 99.33% 85.78% 100.00%
LSTM 99.61% 82.44% 98.02% 98.46% 97.17% 67.80% 99.91% 98.74% 90.81% 95.92%
GRU 99.62% 82.32% 97.42% 98.64% 97.72% 66.23% 99.93% 99.12% 91.68% 97.96%

Chapter 6 Conclusion and Future Recommendation

In this thesis, I propose DNN models for IoT attack detection and classification frameworks

in smart cities. In addition to this, I also provide conventional machine learning and ensemble

machine learning methods for attack detection and classification for comparison purposes. I

have used two of the most recent datasets, the CICIDS2017 and UNSW-NB15 datasets, for

training both kinds of models and evaluation. These datasets are chosen due to the fact that they

are enhanced by a variety of recently added cyber attacks that exist in smart city environments.

The proposed DNN models, that is MLP, LSTM, and GRU, were evaluated in terms of

accuracy, recall, precision, F1-score, and FPR. I also use those performance metrics for the

evaluation of other models, such as DT, RF, AdaBoost, LR, and NB models. Using the UNSW-

NB15 dataset, the MLP model outperforms other models in terms of recall, precision, F1-score,

and FPR with values of 99.17%, 99.17%, 99.17%, and 0.0037, respectively. In contrast, the

LSTM model achieves a higher accuracy of 99.26%. In the case of conventional and ensemble

models, RF outclasses other models with respect to all metrics when trained and evaluated with

the UNSW-NB15 dataset. Despite this, when the dataset CICIDS2017 was used for training and

evaluating the RF model, it outperformed other conventional and ensemble methods. Among

the DNN models, the MLP model classified attacks with a high accuracy (98.10%), precision

(98.20%), F1-score (98.12%), and FPR (0.0202), which makes it the best DNN performer for

this dataset.

Mostly, the results show that RF has better accuracy than MLP in attack detection in terms of

all evaluation metrics. My findings imply that the DT and RF models performed best in terms

of stability for different attack category classification. The deep learning models struggled for

several attack types in the CICIDS2017 dataset (Bot, Heartbleed, and Infiltration), which sug-

gests that more data are needed for these attack categories to further improve the performance

of the DNN models. Though, smart cities intensively use IoT devices that are generating a

huge volume of data. As a result, a big concern might be using conventional attack classi-

54

55

fication models as they have dimensionality problems. In this research, I have observed that

the performance of conventional methods generally degraded as the dimensionality is increas-

ing. Thus, I recommend the deep learning model for attack detection in smart cities where

high-dimensional data are available. For the future work, I propose evaluating the models with

real-time smart city traffic datasets.

References

Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley & Sons.

Aldin, N. B., & Aldin, S. S. A. B. (2022). Accuracy comparison of different batch size for
a supervised machine learning task with image classification. In 2022 9th international

conference on electrical and electronics engineering (iceee) (pp. 316–319).

Almarshdi, R., Nassef, L., Fadel, E., & Alowidi, N. (2023). Hybrid deep learning based attack
detection for imbalanced data classification. Intelligent Automation & Soft Computing, 35(1),
297–320.

Alrashdi, I., Alqazzaz, A., Aloufi, E., Alharthi, R., Zohdy, M., & Ming, H. (2019). Ad-iot:
Anomaly detection of iot cyberattacks in smart city using machine learning. In 2019 ieee 9th

annual computing and communication workshop and conference (ccwc) (pp. 0305–0310).

Alshamsi, A., Anwar, Y., Almulla, M., Aldohoori, M., Hamad, N., & Awad, M. (2017). Mon-
itoring pollution: Applying iot to create a smart environment. In 2017 international confer-

ence on electrical and computing technologies and applications (icecta) (pp. 1–4).

Al-Taleb, N., & Saqib, N. A. (2022). Towards a hybrid machine learning model for intelligent
cyber threat identification in smart city environments. Applied Sciences, 12(4), 1863.

Al-Turjman, F., Zahmatkesh, H., & Shahroze, R. (2022). An overview of security and pri-
vacy in smart cities’ iot communications. Transactions on Emerging Telecommunications

Technologies, 33(3), e3677.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

Brownlee, J. (2020). Why one-hot encode data in machine learning? Retrieved 04-26-
2023, from https://machinelearningmastery.com/why-one-hot-encode-data-in

-machine-learning/

Chen, D., Wawrzynski, P., & Lv, Z. (2021). Cyber security in smart cities: A review of deep
learning-based applications and case studies. Sustainable Cities and Society, 66, 102655.

Cui, L., Xie, G., Qu, Y., Gao, L., & Yang, Y. (2018). Security and privacy in smart cities:
Challenges and opportunities. IEEE access, 6, 46134–46145.

Das, H., Naik, B., & Behera, H. (2020). An experimental analysis of machine learning classi-
fication algorithms on biomedical data. In Proceedings of the 2nd international conference

on communication, devices and computing: Iccdc 2019 (pp. 525–539).

56

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

References 57

Dey, R., & Salem, F. M. (2017). Gate-variants of gated recurrent unit (gru) neural networks.
In 2017 ieee 60th international midwest symposium on circuits and systems (mwscas) (pp.
1597–1600).

Disha, R. A., & Waheed, S. (2022). Performance analysis of machine learning models for
intrusion detection system using gini impurity-based weighted random forest (giwrf) feature
selection technique. Cybersecurity, 5(1), 1.

Dobilas, S. (2022). Gru recurrent neural networks — a smart way to predict se-

quences in python. Retrieved 03-03-2023, from https://towardsdatascience.com/

gru-recurrent-neural-networks-a-smart-way-to-predict-sequences-in

-python-80864e4fe9f6

Domínguez-Bolaño, T., Campos, O., Barral, V., Escudero, C. J., & García-Naya, J. A. (2022).
An overview of iot architectures, technologies, and existing open-source projects. Internet

of Things, 100626.

Huang, X. (2021). Network intrusion detection based on an improved long-short-term memory
model in combination with multiple spatiotemporal structures. Wireless Communications

and Mobile Computing, 2021, 1–10.

Janarthanan, T., & Zargari, S. (2017). Feature selection in unsw-nb15 and kddcup’99 datasets.
In 2017 ieee 26th international symposium on industrial electronics (isie) (pp. 1881–1886).

Kandpal, A. (2018). The lstm cell (long-short term memory cell). Retrieved 04-23-
2023, from https://towardsdatascience.com/gru-recurrent-neural-networks-a

-smart-way-to-predict-sequences-in-python-80864e4fe9f6

Kasongo, S. M. (2023). A deep learning technique for intrusion detection system using a
recurrent neural networks based framework. Computer Communications, 199, 113–125.

McCandlish, S., Kaplan, J., Amodei, D., & Team, O. D. (2018). An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162.

MEDIA, N. P. . (2020). Iot in transportation – 5 applications of iot technology in transporta-

tion. Retrieved 04-26-2023, from https://www.nec.co.nz/market-leadership/

publications-media/iot-in-transportation-5-applications-of-iot

-technology-in-transportation/

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D., & Elovici,
Y. (2018). N-baiot: Network-based detection of iot botnet attacks using deep autoencoders.
IEEE Pervasive Computing, 17(3), 12–22.

https://towardsdatascience.com/gru-recurrent-neural-networks-a-smart-way-to-predict-sequences-in-python-80864e4fe9f6
https://towardsdatascience.com/gru-recurrent-neural-networks-a-smart-way-to-predict-sequences-in-python-80864e4fe9f6
https://towardsdatascience.com/gru-recurrent-neural-networks-a-smart-way-to-predict-sequences-in-python-80864e4fe9f6
https://towardsdatascience.com/gru-recurrent-neural-networks-a-smart-way-to-predict-sequences-in-python-80864e4fe9f6
https://towardsdatascience.com/gru-recurrent-neural-networks-a-smart-way-to-predict-sequences-in-python-80864e4fe9f6
https://www.nec.co.nz/market-leadership/publications-media/iot-in-transportation-5-applications-of-iot-technology-in-transportation/
https://www.nec.co.nz/market-leadership/publications-media/iot-in-transportation-5-applications-of-iot-technology-in-transportation/
https://www.nec.co.nz/market-leadership/publications-media/iot-in-transportation-5-applications-of-iot-technology-in-transportation/

58 References

Mohammed, A. J., Arif, M. H., & Ali, A. A. (2020). A multilayer perceptron artificial neural
network approach for improving the accuracy of intrusion detection systems. IAES Interna-

tional Journal of Artificial Intelligence, 9(4), 609.

Mohmand, M. I., Hussain, H., Khan, A. A., Ullah, U., Zakarya, M., Ahmed, A., . . . others
(2022). A machine learning-based classification and prediction technique for ddos attacks.
IEEE Access, 10, 21443–21454.

Moustafa, N., & Slay, J. (2015). Unsw-nb15: a comprehensive data set for network intru-
sion detection systems (unsw-nb15 network data set). In 2015 military communications and

information systems conference (milcis) (pp. 1–6).

Moustafa, N., & Slay, J. (2016). The evaluation of network anomaly detection systems: Statis-
tical analysis of the unsw-nb15 data set and the comparison with the kdd99 data set. Infor-

mation Security Journal: A Global Perspective, 25(1-3), 18–31.

Navlani, A. (2018). Adaboost classifier. Retrieved 25-03-2023, from https://www.datacamp

.com/tutorial/adaboost-classifier-python

of New Brunswick, U. (2017). Intrusion detection evaluation dataset (cic-ids2017). Retrieved
09-26-2022, from https://www.unb.ca/cic/datasets/ids-2017.html

Page, R. (2023). Applications of internet of things (iot). Retrieved 04-26-2023, from https://

www.rfpage.com/applications-of-internet-of-things-iot/

Panigrahi, R., & Borah, S. (2018). A detailed analysis of cicids2017 dataset for designing
intrusion detection systems. International Journal of Engineering & Technology, 7(3.24),
479–482.

Powers, D. M. (2020). Evaluation: from precision, recall and f-measure to roc, informedness,
markedness and correlation. arXiv preprint arXiv:2010.16061.

Priyanka, & Kumar, D. (2020). Decision tree classifier: a detailed survey. International Journal

of Information and Decision Sciences, 12(3), 246–269.

Rashid, M. M., Kamruzzaman, J., Hassan, M. M., Imam, T., & Gordon, S. (2020). Cy-
berattacks detection in iot-based smart city applications using machine learning techniques.
International Journal of Environmental Research and Public Health, 17(24), 9347.

Rashid, M. M., Kamruzzaman, J., Imam, T., Kaisar, S., & Alam, M. J. (2020). Cyber attacks
detection from smart city applications using artificial neural network. In 2020 ieee asia-

pacific conference on computer science and data engineering (csde) (pp. 1–6).

https://www.datacamp.com/tutorial/adaboost-classifier-python
https://www.datacamp.com/tutorial/adaboost-classifier-python
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.rfpage.com/applications-of-internet-of-things-iot/
https://www.rfpage.com/applications-of-internet-of-things-iot/

References 59

Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput, D. S., Srivastava, G., &
Baker, T. (2020). Analysis of dimensionality reduction techniques on big data. Ieee Access,
8, 54776–54788.

Sha, K., Yang, T. A., Wei, W., & Davari, S. (2020). A survey of edge computing-based designs
for iot security. Digital Communications and Networks, 6(2), 195–202.

Shafiq, M., Tian, Z., Sun, Y., Du, X., & Guizani, M. (2020). Selection of effective machine
learning algorithm and bot-iot attacks traffic identification for internet of things in smart city.
Future Generation Computer Systems, 107, 433–442.

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion
detection dataset and intrusion traffic characterization. ICISSp, 1, 108–116.

Singh, S., Fernandes, S. V., Padmanabha, V., & Rubini, P. (2021). Mcids-multi classifier in-
trusion detection system for iot cyber attack using deep learning algorithm. In 2021 third

international conference on intelligent communication technologies and virtual mobile net-

works (icicv) (pp. 354–360).

Taud, H., & Mas, J. (2018). Multilayer perceptron (mlp). Geomatic approaches for modeling

land change scenarios, 451–455.

Thakar, P. (2020). The math behind machine learning algorithms. Retrieved 04-24-2023,
from https://towardsdatascience.com/the-math-behind-machine-learning

-algorithms-9c5e4c87fff

Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using
iot and sensors. Sensors, 20(11), 3113.

Vinayakumar, R., Alazab, M., Soman, K., Poornachandran, P., Al-Nemrat, A., & Venkatraman,
S. (2019). Deep learning approach for intelligent intrusion detection system. Ieee Access, 7,
41525–41550.

Vishwakarma, R., & Jain, A. K. (2020). A survey of ddos attacking techniques and defence
mechanisms in the iot network. Telecommunication Systems, 73(1), 3–25.

YADAV, S. (2019). Intro to recurrent neural networks lstm | gru. Re-
trieved 03-03-2023, from https://www.kaggle.com/code/thebrownviking20/intro

-to-recurrent-neural-networks-lstm-gru

Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. (2017). Security and privacy in
smart city applications: Challenges and solutions. IEEE Communications Magazine, 55(1),
122–129.

https://towardsdatascience.com/the-math-behind-machine-learning-algorithms-9c5e4c87fff
https://towardsdatascience.com/the-math-behind-machine-learning-algorithms-9c5e4c87fff
https://www.kaggle.com/code/thebrownviking20/intro-to-recurrent-neural-networks-lstm-gru
https://www.kaggle.com/code/thebrownviking20/intro-to-recurrent-neural-networks-lstm-gru

Appendices

60

Appendix A Python Source Code

Due to the size, we’ve included a few snippets of this thesis’s Python source code in this
section.

A.1 Data Preprocessing Sample Code Fragment

1 import numpy as np # for array
2 from numpy import array
3 import pandas as pd # for csv files and dataframe
4 import matplotlib.pyplot as plt # for plotting
5 import seaborn as sns # plotting
6 import pickle # To load data int disk
7 from scipy.sparse import coo_matrix
8 import warnings
9 warnings.filterwarnings("ignore")

10 from sklearn.preprocessing import StandardScaler # Standardizer
11 from sklearn.preprocessing import LabelEncoder , OneHotEncoder # One

hot Encoder
12 from scipy.sparse import csr_matrix # For sparse matrix
13 from sklearn.model_selection import train_test_split
14 from sklearn.metrics import accuracy_score , confusion_matrix ,

make_scorer # Scoring functions
15 from sklearn.metrics import auc , f1_score , roc_curve , roc_auc_score #

Scoring fns
16 from sklearn.metrics import precision_score , recall_score ,

accuracy_score
17 import time
18 import os
19 %matplotlib inline

Listing A.1: Import most common library here

1

2 # Reading datasets
3 dfs = []
4 for i in range (1,5):
5 path = ’./UNSW -NB15_ {}.csv’ # There are 4 input csv files
6 dfs.append(pd.read_csv(path.format(i), header = None))
7 all_data = pd.concat(dfs).reset_index(drop=True) # Concat all to a

single df
8 # This csv file contains the names of all the features
9 df_col = pd.read_csv(’./NUSW -NB15_features.csv’, encoding=’ISO -8859 -1’)

10 # Making column names lower case , removing spaces

61

62 Appendix A. Python Source Code

11 df_col[’Name’] = df_col[’Name’]. apply(lambda x: x.strip().replace(’ ’,
’’).lower ())

12 # Removing spaces and changing column names to lowercase
13 df_col[’Name’] = df_col[’Name’]. apply(lambda x: x.strip().replace(’ ’,

’’).lower ())

Listing A.2: Loading dataset and merging CSV files

1 train , test = train_test_split(all_data , test_size =0.3, random_state =1)

Listing A.3: Dataset split in to train and test

1 # Plotting the correlation matrix of the dataset
2 # Refer: https :// towardsdatascience.com/feature -selection -correlation -

and -p-value -da8921bfb3cf
3 method_1 = "pearson"
4 # correlation matrix
5 corr_matr = x_train.corr(method=method_1)
6 plt.figure(figsize =(12 ,12))
7 sns.heatmap(corr_matr , square=True)
8 plt.show()

Listing A.4: Identification of correlated data using person method

1 #Reference: https ://www.kaggle.com/code/prashant111/comprehensive -guide
-on -feature -selection

2 #with the following function we can select highly correlated features
3 # it will remove the first feature that is correlated with anything

other feature
4 def correlation_2(dataset , threshold):
5 col_cor = set() # Set of all the names of correlated columns
6 corr_matrix_2 = x_train.corr().abs()
7 for i in range(len(corr_matrix_2.columns)):
8 for j in range(i):
9 if abs(corr_matrix_2.iloc[i, j]) > threshold: # we are

interested in absolute coeff value
10 colname = corr_matrix_2.columns[i] # getting the name

of column
11 col_cor.add(colname)
12 return col_cor

Listing A.5: Removing highly correlated data

1 # Standardizing the data
2 scaler = StandardScaler ()
3 scaler = scaler.fit(x_train[num_col])
4 scalerT = StandardScaler ()
5 scalerT = scalerT.fit(x_test[num_colT])
6 x_train[num_col] = scaler.transform(x_train[num_col])

A.2. Models Setup Code 63

7 x_test[num_colT] = scalerT.transform(x_test[num_colT])

Listing A.6: Standardization of train and test dataset

1 # Onehot Encoding for Train
2 service_ = OneHotEncoder ()
3 proto_ = OneHotEncoder ()
4 state_ = OneHotEncoder ()
5 ohe_service = service_.fit(x_train.service.values.reshape (-1,1))
6 ohe_proto = proto_.fit(x_train.proto.values.reshape (-1,1))
7 ohe_state = state_.fit(x_train.state.values.reshape (-1,1))
8 # Remove the original categorical column
9 for col , ohe in zip([’proto ’, ’service ’, ’state ’], [ohe_proto ,

ohe_service , ohe_state]):
10 x = ohe.transform(x_train[col]. values.reshape (-1,1))
11 tmp_df = pd.DataFrame(x.todense (), columns =[col+’_’+i for i in ohe.

categories_ [0]])
12 x_train = pd.concat ([x_train.drop(col , axis =1), tmp_df], axis =1)
13 #Note: Use the same process for test data
14 # Making the train data sparse matrix
15 x_train_csr = csr_matrix(x_train.values)
16 col = x_train.columns
17 # Creating sparse dataframe with x_train sparse matrix
18 x_train = pd.DataFrame.sparse.from_spmatrix(x_train_csr , columns=col)

Listing A.7: One hot encoding

A.2 Models Setup Code

A.2.1 Classical and Ensemble Model Configuration

1 %%time
2 # reference: https ://www.kaggle.com/code/waltermaffy/fruit -

classification -pca -svm -knn -decision -tree
3 start = time.time()
4 decision_tree =DecisionTreeClassifier ()
5 model_DT = decision_tree.fit(x_train ,y_train)
6 end_train = time.time()
7 # prediction
8 y_pred_DT = model_DT.predict(x_test)
9 end_predict = time.time()

Listing A.8: Decision Tree

1 %%time
2 # reference: https :// www.datacamp.com/tutorial/adaboost -classifier -

python
3 # Create adaboost classifer object

64 Appendix A. Python Source Code

4 start = time.time()
5 ada_boost = AdaBoostClassifier(n_estimators =50,
6 learning_rate =1, random_state =0)
7 # Train Adaboost Classifer
8 model_adaBoost = ada_boost.fit(x_train ,y_train)
9 end_train = time.time()

10 #Predict the response for test dataset
11 y_pred_adaBoost = model_adaBoost.predict(x_test)
12 end_predict = time.time()

Listing A.9: AdaBoost

1 %%time
2 start = time.time()
3 from sklearn.ensemble import RandomForestClassifier
4 # Create Random Forest classifier object
5 model_rfc = RandomForestClassifier(n_estimators =100, random_state =0)
6 # Train the model using the training sets
7 model_rfc.fit(x_train , y_train)
8 end_train = time.time()
9 # prediction

10 y_pred_rfc = model_rfc.predict(x_test)
11 end_predict = time.time()

Listing A.10: Random Forest

1 %%time
2 start = time.time()
3 from sklearn.linear_model import LogisticRegression
4 #Fitmodel
5 model_logReg = LogisticRegression(random_state =0).fit(x_train ,y_train)
6 end_train = time.time()
7 # prediction
8 y_pred_logReg=model_logReg.predict(x_test)
9 end_predict = time.time()

Listing A.11: Logistic Regression

1 # Import necessary libraries for Gaussian Naive Bayes algorithm
2 from sklearn.naive_bayes import GaussianNB
3 %%time
4 start = time.time()
5 # Create Naive Bayes classifier object
6 model_gnb = GaussianNB ()
7 # Train the model using the training sets
8 model_gnb.fit(x_train_gnb , y_train_gnb)
9 end_train = time.time()

10 # prediction
11 y_pred_gnb = model_gnb.predict(x_test_gnb)

A.2. Models Setup Code 65

12 end_predict = time.time()

Listing A.12: Gussian Naive Bayes

1 # Calculate the accuracy of the predictions , # Precision , # recall
score and f1 score

2 accuracy_DT = accuracy_score(y_test , y_pred_DT)
3 precision_DT= precision_score(y_test , y_pred_DT , average=’weighted ’)
4 recall_DT= recall_score(y_test ,y_pred_DT ,average=’weighted ’)
5 f1s_DT = f1_score(y_test , y_pred_DT ,average=’weighted ’)
6 #Note; this code only for the decision tree , repeat it for others

Listing A.13: Model evaluation metrics function

A.2.2 Deep Neural Network Model Configuration

1 %%time
2 from sklearn.neural_network import MLPClassifier
3 start = time.time()
4 model = MLPClassifier(hidden_layer_sizes = (20,10,),
5 activation=’relu’,
6 solver=’adam’,
7 batch_size =1024,
8 verbose =0).fit(x_train ,y_train)
9 end_train = time.time()

10 y_predictions = model.predict(x_test) # These are the predictions from
the test data.

11 end_predict = time.time()

Listing A.14: Multilayer perceptron With two hidden layer with scikit-learn

1 #Import libraries that will allow you to use keras
2 from tensorflow.keras.models import Sequential
3 from tensorflow.keras.layers import Dense , LSTM , GRU
4 from keras import metrics
5

6 # https :// datascience.stackexchange.com/questions /45165/
7 # how -to -get -accuracy -f1 -precision -and -recall -for -a-keras -model
8 from keras import backend as K
9 def recall(y_true , y_pred):

10 true_positives = K.sum(K.round(K.clip(y_true * y_pred , 0, 1)))
11 possible_positives = K.sum(K.round(K.clip(y_true , 0, 1)))
12 recall = true_positives / (possible_positives + K.epsilon ())
13 return recall
14 def precision(y_true , y_pred):
15 true_positives = K.sum(K.round(K.clip(y_true * y_pred , 0, 1)))
16 predicted_positives = K.sum(K.round(K.clip(y_pred , 0, 1)))
17 precision = true_positives / (predicted_positives + K.epsilon ())

66 Appendix A. Python Source Code

18 return precision
19 def f1_scores(y_true , y_pred):
20 p = precision(y_true , y_pred)
21 r = recall(y_true , y_pred)
22 return 2*((p*r)/(p+r+K.epsilon ()))
23

24 #Build the feed -forward neural network model (2 layers with 20,10
neurons)

25 from keras.optimizers import Adam
26 input_shape = x_train.shape [1]
27 def build_model_mk ():
28 model_mk = Sequential ()
29 model_mk.add(Dense(units =20, input_dim=input_shape , activation=’

relu’))
30 model_mk.add(Dense(units =10, activation=’relu’))
31 model_mk.add(Dense(units=1, activation=’sigmoid ’)) #for binary

classification
32 #Compile the model
33 model_mk.compile(loss=’binary_crossentropy ’,optimizer=’adam’,
34 metrics =[’accuracy ’,f1_scores ,precision , recall]
35)
36 return model_mk
37 #institate the model
38 model_mk = build_model_mk ()
39 #fit the model
40 startM = time.time()
41 history_mk=model_mk.fit(x_train , y_train , epochs =150, batch_size =1024,

verbose =2)
42 end_trainM = time.time()

Listing A.15: Multilayer perception using two hidden layer with Keras

1 #The GRU input layer must be 3D.
2 #The meaning of the 3 input dimensions are: samples , time steps , and

features.
3 #reshape input data
4 X_train_array_GRU = array(x_train) #array has been declared in the

previous cell
5 print(len(X_train_array_GRU))
6 X_train_reshaped_GRU = X_train_array_GRU.reshape(X_train_array_GRU.

shape[0],1, input_shape)
7 #reshape output data
8 X_test_array_GRU= array(x_test)
9 X_test_reshaped_GRU = X_test_array_GRU.reshape(X_test_array_GRU.shape

[0],1, input_shape)
10 #Build the neural network model
11 def build_model_GRU ():
12 model_GRU = Sequential ()

A.2. Models Setup Code 67

13 model_GRU.add(GRU(units=20, return_sequences=True ,input_shape =(1,
input_shape)))

14 model_GRU.add(GRU(units=10, return_sequences=True))
15 model_GRU.add(Dense(units=1, activation=’sigmoid ’)) #for binary

classification
16 # Compile the model
17 model_GRU.compile(loss=’binary_crossentropy ’,optimizer=’adam’,
18 metrics =[’accuracy ’,f1_scores ,precision , recall]
19)
20 return model_GRU
21 #model.compile(loss=’binary_crossentropy ’, optimizer=’adam ’, metrics=[’

accuracy ’,recall_m , precision_m , f1_m]
22 #institate the model
23 model_GRU = build_model_GRU ()
24 startG = time.time()
25 #Fit the model on the dataset
26 history_GRU =model_GRU.fit(X_train_reshaped_GRU , y_train , epochs =150,

batch_size =1024, verbose =2)
27 end_trainG = time.time()
28 # Evaluate the model on the test data using "evaluate"
29 startPG = time.time()
30 loss_GRU , accuracy_GRU , f1_scores_GRU , precision_GRU , recall_GRU =

model_GRU.evaluate(X_test_reshaped_GRU , y_test)
31 end_predictG = time.time()

Listing A.16: GRU using two hidden Layers

1 #The LSTM input layer must be 3D.
2 #The meaning of the 3 input dimensions are: samples , time steps , and

features.
3 #reshape input data
4 X_train_array_LSTM = array(x_train) #array has been declared in the

previous cell
5 print(len(X_train_array_LSTM))
6 X_train_reshaped_LSTM = X_train_array_LSTM.reshape(X_train_array_LSTM.

shape[0],1, input_shape)
7 #reshape output data
8 X_test_array_LSTM= array(x_test)
9 X_test_reshaped_LSTM = X_test_array_LSTM.reshape(X_test_array_LSTM.

shape[0],1, input_shape)
10 # input_shape = X_train.shape [1]
11 def build_model_LSTM ():
12 model_LSTM = Sequential ()
13 model_LSTM.add(LSTM(units=20, return_sequences=True ,input_shape =(1,

input_shape)))
14 model_LSTM.add(LSTM(units=10, return_sequences=True))
15 model_LSTM.add(Dense(units=1, activation=’sigmoid ’)) #for binary

classification

68 Appendix A. Python Source Code

16 #Compile the model
17 model_LSTM.compile(loss= ’binary_crossentropy ’,optimizer=’adam’,
18 metrics =[’accuracy ’,f1_scores ,precision , recall]
19)
20 return model_LSTM
21 #institate the model
22 model_LSTM = build_model_LSTM ()
23 #fit the model
24 startL = time.time()
25 history_LSTM=model_LSTM.fit(X_train_reshaped_LSTM , y_train , epochs =150,

batch_size =1024, verbose =2)
26 end_trainL = time.time()
27 #Evaluate the neural network
28 startPL = time.time()
29 loss_LSTM , accuracy_LSTM , f1_scores_LSTM , precision_LSTM , recall_LSTM =

model_LSTM.evaluate(X_test_reshaped_LSTM , y_test)
30 # loss , accuracy , f1s , precision , recall = model.evaluate(

X_test_reshaped , y_test)
31 end_predictL = time.time()

Listing A.17: LSTM using two hidden Layers

1 %%time
2 startPG =time.time()
3 predictions_GRU = model_GR.predict(X_test_reshaped_GRU).ravel()
4 endTimePG =time.time()
5 GRU_pre_time= endTimePG -startPG
6 print(GRU_pre_time)

Listing A.18: Time to predict compuation

1 # confusion matrix
2 GRU_TN , GRU_FP , GRU_FN , GRU_TP = confusion_matrix(y_test ,

predictions_GR).ravel()
3 # false positive rate
4 GRU_fpr = GRU_FP / (GRU_FP + GRU_TN)
5 print("False positive rate:",GRU_fpr)
6 ## Print Result
7 # Note: Apply this process for the remaining model
8 print("Accuracy: "+ "{:.3%}".format(accuracy_GRU))
9 print("Recall: "+ "{:.3%}".format(recall_GRU))

10 print("Precision: "+ "{:.3%}".format(precision_GRU))
11 print("F1 -Score: "+ "{:.3%}".format(f1_scores_GRU))
12 print("time to train: "+ "{:.3f}".format(end_trainG -startG)+" s")
13 print("time to predict: "+"{:.3f}".format(GRU_pre_time)+" s")
14 print("total: "+"{:.2f}".format(end_trainG -startG + GRU_pre_time)+" s"

)

Listing A.19: False positive rate calculation and Print result

A.2. Models Setup Code 69

A.2.3 Correlation Heatmap for UNSW-NB15 and CICIDS2017 Dataset

Figures A.1 and A.2 show the correlation of our dataset features.

Figure A.1: UNSW-NB15 dataset features correlation heatmap

Listing A.20: For test

A.2.4 Deep Neural Network Model Performance Evaluation Using UNSW-
NB15

The figures A.3,A.4, A.8, A.6, and A.5 show the graphical representation of the deep neural
network models’ results with different configuration setups of MPL, LSTM, and GRU.

70 Appendix A. Python Source Code

Figure A.2: CICIDS2017 dataset features correlation heatmap

Figure A.3: Acuracy of MLP, MLP (Keras), LSTM and GRU on UNSW-NB15

A.2. Models Setup Code 71

Figure A.4: Recall of MLP, MLP (Keras), LSTM and GRU on UNSW-NB15

Figure A.5: Precision of MLP,MLP(Keras), LSTM and GRU on UNSW-NB15

72 Appendix A. Python Source Code

Figure A.6: F1-Score of MLP, MLP (Keras), LSTM and GRU on UNSW-NB15

Figure A.7: Model Training Time of MLP, MLP (Keras), LSTM and GRU on UNSW-NB15

A.2. Models Setup Code 73

Figure A.8: Model Train Test Validation of LSTM on UNSW-NB15

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Introduction
	1.2 Statement of The Problem
	1.3 Objective
	1.3.1 General Objective
	1.3.2 Specific Objectives

	1.4 Scope of The Thesis
	1.5 Contribution
	1.6 Research Methodology
	1.6.1 Literature Review
	1.6.2 Data Collection
	1.6.3 IoT Attack Detection System Design and Implementation
	1.6.4 Result Evaluation and Discussion

	1.7 Thesis Outline

	2 Theoretical Background
	2.1 IoT Cyberattacks in Smart Cities
	2.2 IoT-based Smart City Architecture
	2.3 IoT applications in Smart Cities
	2.4 Cyberattack in IoT
	2.4.1 Cyber Attack Issues

	3 Review of Literature
	3.1 Standard Machine Learning-Based IoT Device Attack Detection in Smart Cities
	3.2 Deep Learning Model-Based IoT Device Attack Detection in Smart Cities

	4 Architecture of the Proposed IoT Cyber Attack Detection System
	4.1 Model for Detection of IoT Cyber Attacks in Smart Cities
	4.1.1 Deep Learning Methods
	4.1.1.1 Long Short-Term Memory
	4.1.1.2 Gated Recurrent Units
	4.1.1.3 Multi-Layer Perceptron

	4.1.2 Random Forest Classifier
	4.1.3 Logistic Regression
	4.1.4 Naive Bayes Algorithm
	4.1.5 AdaBoost
	4.1.6 Decision Tree

	4.2 Data Collection and Preprocessing
	4.2.1 Dataset Description
	4.2.2 Data Preprocessing
	4.2.2.1 UNSW-NB15 Dataset Preprocessing
	4.2.2.2 CICISD 2017 Dataset Preprocessing

	5 Evaluation and Discussion of Results
	5.1 Expermental Parameters and Environmental Setup
	5.1.1 Simulation Environment Setup
	5.1.2 Model Parameter Configuration

	5.2 Result Evaluation Metrics
	5.3 Results of Modeling
	5.3.1 Classical and Ensemble ML Model Attack Classification
	5.3.1.1 Classical and Ensemble ML Model Attack Classification Using CICIDS2017 Dataset
	5.3.1.2 Classical and Ensemble ML Models Attack Classification Using UNSW-NB15 Dataset

	5.3.2 Deep Neural Network Model Attack Classification
	5.3.2.1 Deep Neural Network Model Evaluation Using CICIDS2017 Dataset
	5.3.2.2 Deep Neural Network Model Evaluation Using UNSW-NB15 Dataset
	5.3.2.3 Performance Comparison with Earlier Research

	5.3.3 Individual Attack Classification
	5.3.3.1 Conventional and Deep Neural Network Model for Individual Attack Classification Using CICIDS2017
	5.3.3.2 Deep Neural Model Performance on Individual Attack Categories Using UNSW-NB15

	6 Conclusion and Future Recommendation
	References
	Appendices
	A Python Source Code
	A.1 Data Preprocessing Sample Code Fragment
	A.2 Models Setup Code
	A.2.1 Classical and Ensemble Model Configuration
	A.2.2 Deep Neural Network Model Configuration
	A.2.3 Correlation Heatmap for UNSW-NB15 and CICIDS2017 Dataset
	A.2.4 Deep Neural Network Model Performance Evaluation Using UNSW-NB15

