The Survey of Object-Oriented Software
Programming Language from a Heterogeneous
Cluster Programming Viewpoint

Tomas Brandejsky * and Vaclav Hrbek

Faculty of Electrical Engineering and Informatics, University of Pardubice,
Studentska 95, 53210 Pardubice, Czech Republic
tomas.brandejsky@upce.cz
http://www.upce.cz

Abstract. In this paper, the problem of programming language selec-
tion is presented from the position of large cluster with heterogeneous ac-
celerators programming in the situations when it is need to apply object-
oriented programming like in the case of heterogeneous multi-agent sim-
ulations or large data modelling using memetic algorithms. This work
was inspired by experience with the Chapel language obtained during
complicated conversion of hybrid evolutionary algorithm GPAes from a
single node OpenMP C++ implementation onto HPC cluster with nodes
equipped by both CPU and GPGPU.

The paper consists of discussion of many approaches to parallel program-
ming including not only traditional ways such as OpenMP, MPI and
Cuda and their combinations, but also modern extensions of C/C++ as
OpenACC, Silk and CYCL. Emerging languages as Chapel and Julia are
discussed too. The work concludes with an evaluation of the real state of
parallel object-oriented programming on heterogeneous node HPC clus-
ters.

Keywords: Object-Oriented Programming, C++, OpenMP, MPI, SICL,
Chapel, Julia, Parallel Programming, HPC cluster, Heterogeneous Sys-
tem, Memetic Algorithm

1 Introduction

The total processor computing power continually increases, while the increase
in single thread performance of the processor is slowing down. For many years,
their development detract from power increase by increase of parallelism, be-
cause increase of processor frequency is coupled with quadratic increase of power
consumption. In previous decades, many kinds of parallelism were established,
especially

- pipelining

- superscalar (running more independent instruction in the same cycle, to-
gether with out-of-order execution)

* Corresponding author

2 Lecture Notes in Computer Science: Authors’ Instructions

- simd (e.g. vector instructions)

- etc.

With the incoming new hybrid architectures combining multi-thread many
core CPUs with accelerators, it is more and more significant to parallelize ex-
isting code. While in some cases, this way is relatively easy (e.g. some kinds
of numerical calculations), in others it can be difficult and hard to automate.
Problems frequently occur on clusters, heterogeneous architectures, non uniform
memory architecture systems, etc.

1.1 Background of the Publication

Within the frame of memetic algorithm research, the aim to implement GPAes
[1] algorithm on heterogeneous computing cluster was formulated. On the one
side, new computing accelerators like General-Purpose Graphic Processing Units
(GPGPUs) from Intel, Nvidia and AMD), Field-Programmable Gate Arrays
(FPGAs) and also vector processors as NEC Aurora are available now. On
other side, memetic algorithms need a lot of computing power. E.g., follow-
ing Flinn’s taxonomy of processors [2], CPUs are now of Multiple Instruction
Multiple Data (MIMD) architecture, but GPGPUs has Single Instruction Multi-
ple Data (SIMD) one. Thus, a suitable programming language supporting many
kinds of HW and allowing high programming productivity was searched.

Cluster or even HPC implementations of hybrid and memetic algorithms are
essential for their computing complexity in the case of non-trivial training data
size. The memetic algorithm GPAes consists of two parts - Genetic Program-
ming Algorithm [3] and optimizer which can be represented e.g. by evolutionary
strategy [4]. It is easier to process GPA on the CPU, while GPGPUs are better
for optimization tasks. We can remember the pioneering works of Longdon. He
used GPGPUs for fitness evaluation of structures produced by GPA and imple-
mented two different approaches. The first was based on generating of source
code for all evaluated individuals, its compilation and running on the GPGPU;
the second was based on the interpret implementation [6]. The work [7] distin-
guishes 3 different approaches to implementation of GPA on GPGPUs from the
viewpoint of computing kernel management. These discussions are oriented to
standard GPA implementations on GPGPUs, not to memetic algorithms adding
optimization of parameters (constants) of each individual in each population by
multiple instances of nested optimizer. The implementation of many instances
of nested optimizer increase the need for use of object-oriented programming (or
difficult code and coding without it).

The complex structure of memetic algorithms and concluding computing
complexity are the main reason for search of the way how to implement them
on heterogeneous clusters containing not only CPUs, but also computing accel-
erators like GPGPUs.

The memetic GPAes algorithm implementation uses the following data struc-
tures common for both GPA and ES part. In the case of heterogeneous implemen-
tations they must be present on both sides and synchronized. These structures
are object arrays (representing array of optimizers or array of head nodes of trees

Title Suppressed Due to Excessive Length 3

representing individuals); tree structures of objects representing individuals and
standard arrays containing fitness values and magnitudes of individual parame-
ters (constants). If the interpret it used, there is also a need to store programs
representing individuals as their alternative representations are processed by the
interpret.

2 Hybrid Cluster Programming State of the Art

Together with the increase of accessible computing power, the improvement of
many computationally extremely expensive parts of science, and applications are
evolving nowadays, especially multi-physics simulations, to which implementa-
tions are now available tools suitable. Models described by extremely large sets
of Ordinary Differential Equations (ODE) find application in military, nuclear
science and also in industry. But, it is the question, how many new comput-
ing paradigms are prepared for the implementation of models based on models
other than on solving of large sets of differential equations. For example, these
alternative models are represented by Artificial Intelligence (AI) models which
are not based on Artificial Neural Networks (ANNs), agent-oriented simulation
models, etc., as well as the area of data analytic (if it is not based on application
of ANNs or statistic models).

Nowadays, we can observe intensive development of many different program-
ming approaches and tools to simplify and thus speed up parallel program devel-
opment for newly incoming heterogeneous computing systems, for increasing of
programmers work efficiency in their programming. As heterogeneous comput-
ing systems are mainly labeled the computing clusters where standard compute
nodes with CPU and local memory (thus Non-Uniform Memory Architecture
systems) are extended by another computing accelerators, most frequently GPG-
PUs with separate local memory or FPGAs.

Data analytic and Al commonly may benefit from evolutionary algorithm
application and especially from the memetic algorithm capability to provide fine
symbolic regression. Also here, the problem is their computing expensiveness (the
computing complexity of these algorithms) asking the need for implementation
on large computing systems.

In the past, two basic architectures of parallel program design have expanded
in the past. The Message Passing Interface (MPI) is especially suitable for clus-
ters composed of nodes interconnected by a data network; but it is capable
to manage parallel programs on multi-core and multi-processor nodes too. The
other one, OpenMP (Open Multi Processing) is suitable for symmetric multi-
processor systems (and multi- or many- core processors) working with common
shared memory. It allows one of the easiest programming but is constrained to
a single node. In the past few years, clusters composed of hybrid nodes have
begun to occur. These nodes do not contain only CPUs, but also computing ac-
celerators specialized to some class of computing (typically vector ones), which
contain it own separated memory like GPGPUs. These accelerators are highly

4 Lecture Notes in Computer Science: Authors’ Instructions

efficient in some classes of tasks, like numerical solving systems of equations, but
their programming brings different concepts.

2.1 MPI

MPI is now in version 4.0. Originally it was based on (NUMA) distributed mem-
ory model; since the version 3 it introduces another approach to hybrid program-
ming that uses the new MPI Shared Memory (SHM) model, see [12] and [13]
introducing new basic principles.

For limited support of accelerator programming in the previous versions of
OpenMP and lack of this support in MPI together with MPI programming
difficulty and efficiency problems on multi-core processors, programmers still
use complicated combinations MPI + CUDA, MPI + OpenMP, or even MPI +
OpenMP + CUDA, MPI 4+ OpenACC. The languages/techniques CUDA and
OpenACC will be discussed below.

2.2 OpenMP

OpenMP is based on for-join model and parallelization of cycles, but the OpenMP
standard 4.0 and later versions, have introduced pragmas for C, C++, and FOR-
TRAN programming languages to offload work on general purpose GPUs. It is
possible to find information about the usage of OpenMP and GPU programming
in the OpenMP specifications [8]. The following papers [9], [10], [11] explain the
usage of GPU offloading pragmas. Problem of this application is in it’s strong
similarity to CUDA and OpenAcc because accelerator programming in OpenMP
is also based on defining of compute kernels, parallelization of cycles. This style
is similar to the frequently used combination OpenMP+CUDA. Worse is the
need to solve consistency of data in CPU and GPGPU memories manually.

2.3 OpenACC

OpenACC is an alternative to CUDA. OpenACC was defined by a broader con-
sortium than CUDA, but its influence is significant and also OpenACC is based
on C/C++ language and computer kernels, but it is a little higher level and
hides some implementation details. It is available on both NVidia and AMD
GPGPUs. The application limits are similar to CUDA.

2.4 CUDA

CUDA (Compute Unified Device Architecture) means both HW architecture and
programming style. It was developed by NVidia company. The original support
for Fortran and C was extended to C++ and OpenACC. Now, many program-
ming languages and specialized tools support programming of CUDA devices.
The main problem of CUDA programming is given by its origin in graphic de-
vices. GPGPUs are strongly parallel; their HW architecture is complicated. They

Title Suppressed Due to Excessive Length 5

contain many different memories (local, global, texture ones etc.). And CUDA
does not hide this HW structure to support highly efficient programming. CUDA
also allows description of host code (code running on a host system, e.g. PC),
but does not go far and does not allow to describe parallel computing on cluster
level. It is possible to describe programs running on more graphic devices within
the single node, but limitation to single node remains.

Simply talking, while a modern CPU is a multi-core/multi-thread processor,
GPGPU is vector one - there are many threads, but they process the same
instructions (in CUDA within so-called block). The basic programming concept
in CUDA is kernel function. These functions are executed in parallel as block of
threads. On CPU there is equivalent on some processors in the form of vector
instructions. The use of vector (also called multimedia) instructions sometimes
brings hardly predictable compute time on standard CPUs, as it will be discussed
later.

CUDA as well as OpenMP, OpenACC, etc. offers concept of compute kernels
to simplify pluralization of cycles. This fact limits its application in areas where
pure multi-threading is required. Because GPGPU has its own memory, its use
brings the need to solve data transfers between CPU’s and GPGPU’s RAM.
Even if the newest versions of CUDA and NVidia’s GPGPU allow direct access
to host computer memory, this access is significantly slower than working with
the device one. CUDA also allows to process complex structures, but it does not
solve their synchronization between host and device memories implicitly. They
must be organized by a programmer. This fact increases code complexity (and
thus the probability of error occurrence). OOP on CUDA-like HW is possible
since 2020, while on the host it was allowed since CUDA origin, see [14], [15].

The remaining problem of OOP code on both host and CUDA accelerator is
the need of two instances of object - the first on the host and the second on the
device not only for the existence of two different memory spaces (this problem
can be solved by unified memory), but also for different addresses of virtual
methods for host and device. Their dual existence is caused by different machine
code for CPU and GPGPU. See also [16]. In the case of memetic algorithm
implementation it is need to distribute not only a data with static structure, but
also trees (graphs) of objects - instances of classes, which may on the different
subsystems (e.g. CPUs versus GPGPUs) different code, thus different pointers
from virtual method tables, etc.

As it is mentioned above, standard Intel and AMD processors also offer vector
instructions. It is possible to compile code using them, e.g. the option -fopenmp-
simd of the GNU C++ compiler. When this possibility was tested on GPAes
code, the resulting code was significantly slower, but such a result was expectable.
Compiler options influence the whole code, but GPAes consist of two parts.
While for es optimizer the vector instructions can bring advance, for operations
with tree-like representation of genes in GPA part, the vector processing brings
decrease of execution speed. The use of GNU C++ with option -fopenmp-simd
brings also compatibility problems that not all functionalities of OpenMP library

6 Lecture Notes in Computer Science: Authors’ Instructions

are in that moment available. For example, there is not available omp_get_wtime
function to measure run time.

It is possible to conclude that ”classic” methods of heterogeneous SW devel-
opment represented by combinations of MPI, OpenMP, CUDA, and eventually
OpenACC discussed above, are constrained by the need of non-homogeneous pro-
gramming model (e.g., the use of combinations MPI+CUDA, OpenMP+MPI+4Cuda
etc.). This style of programming is difficult for a combination of diverse program-
ming paradigms, but it is frequently used on large (and heterogeneous) clusters
now.

3 Modern Languages and Derivatives of C/C++

In the last years these problems have caused formulations of new concepts of par-
allel software development occur and they stand at the origin of new extensions
of standard languages (C++, Java) or even new languages (Chapel, Julia).

Cilk, Cilk ++ and Cilk Plus were developed as general purpose languages for
concurrent /multi-threaded parallel programming on MIT Laboratory For Com-
puter Science. They are based on standard structured (procedural) programming
and the basic parallel concept is similarly like in OpenMP fork—join. They ex-
tend C/C ++ by three constructs cilk_spawn, cilk_sync and cilk_for (definition of
parallel thread, result synchronization and parallel loop). But these extensions
to C/C++ does not offer direct support of accelerators.

3.1 Sycl

C/C++ language-based extension (or rather abstraction layer) Sycl, whose stan-
dard is developed by Kronos group (now in the version Sycl2020) exists in many
implementations including Intel oneAPI DPC++. It also uses compute kernel
model (like CUDA), but it solves memory sharing using accessors objects. This
model allows to write versatile code capable to run on the wide spectrum of
HW, but also this code is not pure original C/C++. Sycl is not a part of GNU
compiler collection, but on the pages [17] it is possible to find free accessible im-
plementation of oneAPT DPC++ by Intel including Sycl. This implementation is
based on LLVM free compiler architecture. Official support of NVidia and AMD
GPGPUs is not, but it is possible using hipSYCL [18].

The Intel oneAPI DPC++ also contains OpenMP and especially MPI. This
fact only concludes, that neither Sycl is capable to describe parallelism on the
level of heterogeneous clusters; it is limited to single heterogeneous node pro-
gramming.

Also, Sycl will require the similar effort like previously described combina-
tions based on CUDA or OpenACC, because Sycl also requires manual solving
of complex structure consistence.

After this review of Cycl there was remaining interesting group of new lan-
guages consisting of Chapel, X10, and Julia.

Title Suppressed Due to Excessive Length 7

3.2 Chapel and X10

Because in this year the information about development of NVidia and AMD
GPGPUs support in programming language Chapel [19] were publicized, this
language become the main candidate for hybrid cluster implementation of GPAes
code. At this moment, this support is still under construction, but it’s hopeful
for the future.

This language was formed within the above cited project supported by Darpa.
In this project also the second language origins. X10 proposed by IBM. While
Chapel was really a new language, X10 is Java-based. X10 is a programming
language being developed by IBM at the Thomas J. Watson Research Center
as part of above mentioned the Productive, Easy-to-use, Reliable Computing
System (PERCS) project funded by DARPA’s High Productivity Computing
Systems (HPCS) program. X10 project in this moment seems to be stopped;
the last upgrade was in 2019-01-07 [20]. Both languages (Chapel and X10) are
from the so-called PGAS languages family. PGAS is an acronym for Partitioned
Global Array Space [21]. Now there can be observed effort to include into this
model also heterogeneous systems - clusters with nodes consisting of combination
of CPUs and accelerators, as on the newest (and the most powerful) supercom-
puters.

3.3 Chapel - practical experience

With the work on the transformation of GPAes project into the Chapel language,
strong problems were found. These problems are not in the support of cluster
computing, but in the actual state of OOP implementation incompatible to C++
one. Even if the language supports OOP, there is no possibility to use generic
objects (polymorphism), especially arrays of generic objects and structures with
more complex relations between them; it means structures referencing generic
class objects. This unexpected step was done for inconsistency in the automatic
garbage collector work. Without this ability accessible in other OOP languages,
it is not possible at this moment to implement effective work with array of genes
in the GPA algorithm and thus no memetic algorithm with nested optimizer, as
GPAes. This problem in the Chapel language at this moment also affects such
data structure implementations, as the implementation of stack, or join list.

This current state of Chapel implementation, non-looking to promising im-
plementation of GPGPU support (based on compute kernels as in CUDA, e.g.)
does not allow to use Chapel for reasoned purpose.

3.4 Julia

The Julia language was reasoned for its ability to describe parallel programs
using OOP and functional programming. Practical problem is given by fact, that
Julia uses Java Virtual Machine (JVM) as e.g. X10 and thus at this moment
cannot work on GPGPUs, because instruction set of GPGPUs does not allow
its work.

8 Lecture Notes in Computer Science: Authors’ Instructions
4 Conclusion

Presented paper points to the fact that if the solved problem tends to imple-
mentation of graph (or tree) of objects, forest of objects, array of graphs, etc.,
till now, there is no applicable progress in programming languages suitable to
hybrid cluster programming. The situation still is not improving the standard
approach based on combinations MPI+CUDA or MPI+OpenMP+CUDA used
for many years with the known difficulties.

There are other approaches to solving the problem of hybrid single node pro-
gramming as OpenACC or Sycl, but their use on clusters requires simultaneous
application of MPI. On the opposite, there are languages optimized for problems
where data are too big to fit to single node, to be processed on multiple nodes
as Chapel or Julia, but there are another problems of accelerator programming
(on heterogeneous nodes), and in the case of Chapel there are also still unsolved
problems with OOP implementation.

Acknowledgments. The work was supported from ERDF/ESF ” Cooperation
in Applied Research between the University of Pardubice and companies, in
the Field of Positioning, Detection and Simulation Technology for Transport
Systems (PosiTrans)” (No. CZ.02.1.01/0.0/0.0/17_049/0008394).

5 The References Section

References

1. Brandejsky, T., Zelinka, I.: Specific Bahaviour of GPA-ES Evolutionary System Ob-
served in Deterministic Chaos Regression. In: Zelinka, 1., et al., (eds.) Nostradamus:
Modern Methods of Prediction, Modeling and Analysis of Nonlinear Systems, pp.
73-81, Springer, Heidelberg (2013), pp. 73-81. Advances in Intelligent Systems and
Computing. ISSN 2194-5357. ISBN 978-3-642-33226-5.

2. Flynn, M. J.: Some Computer Organizations and Their Effectiveness. IEEE Trans-
actions on Computers. C-21 (9): pp. 948-960 (1972). d0i:10.1109/TC.1972.5009071.

3. Koza, J. R.. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, (1992)

4. Beyer, H.-G.,Schwefel, H.-P.: Evolution strategies - A comprehensive introduction,
Natural Computing, (2002).

5. Langdon, W. B.: A Many Threaded CUDA Interpreter for Genetic Programming.
EuroGP (2010).

6. Langdon, W. B.: Graphics processing units and genetic programming: an overview.
Soft Computing 15, pp. 1657-1669, (2011).

7. Jinhan Kim, Junhwi Kim, Shin Yoo: GPGPGPU: Evaluation of Parallelisation of
Genetic Programming using GPGPU. Korea Advanced Institute of Science and
Technology, Republic of Korea

8. OpenMP compilers and tools, https://www.openmp.org/resources/
openmp-compilers-tools/

Title Suppressed Due to Excessive Length 9

9. Hayashi, A., Shirako J., Tiotto, E. Ho, R., Sarkar, V.: Performance evaluation of
OpenMP’s target construct on GPUs - exploring compiler optimisations. Int. J.
High Perform. Comput. Netw., 13, pp. 54-69, (2019).

10. CUDA C Best Practices Guide, https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html

11. OpenMP on GPUs First experiences and best practices, https://docs.nvidia.
com/cuda/cuda-c-best-practices-guide/index.html

12. Brinskiy, M., Lubin, M.: An-introduction-to-MPI, https://
www.intel.com/content/dam/develop/external/us/en/documents/
an-introduction-to-mpi-3-597891.pdf

13. Intro to Parallel Programming https://princetonuniversity.github.io/
PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf

14. CUDA C Programming Guide, https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html\#c-cplusplus-language-support

15. Park, T.-J.: CUDA-based Object Oriented Programming Techniques for Efficient
Parallel Visualization of 3D Content. June 2012Journal of Digital Contents Society
13(2). DOL: 10.9728/dcs.2012.13.2.169

16. How to use class in CUDA C, https://forums.developer.nvidia.com/t/
how-to-use-class-in-cuda-c/61761/2

17. Intel Compilers, https://github.com/intel/11lvm

18. HipSYCL, https://github.com/illuhad/hipSYCL

19. Chapel language, https://chapel-lang.org/

20. X10 language, http://x10-1lang.org

21. Almasi, G.: PGAS (Partitioned Global Address Space) Languages. In: Padua, D.
(ed.): Encyclopedia of Parallel Computing, Springer US, Boston, MA, 1539-1545,
(2011). ISBN: 978-0-387-09766-4

