

1

The Exact Solution of Travelling Salesman by Mixed Integer
Programming in Matlab

Jaromír Zahrádka1

Abstract. This contribution comes up with a specific solution of the travelling sales-
man problem. The driver of hauler has to deliver, using his truck, goods from the
depot to n customers. Each customer point of delivery is given by GPS coordinates.
The objective of the solution is to select the sequence of delivery points so that firstly
the travel distance and subsequently the total travel time are minimal. The driver visits
all delivery points and returns to the depot. In this contribution, one general solution
is presented using the bound-and-branche method and by using mixed integer linear
programming implemented in M-function. The created algorithm can be used in gen-
eral for any number n of customers.

Keywords: branch-and-bound, linear programming, Matlab, travelling salesman

JEL Classification: C64
AMS Classification: 68W04; 90C11, 05C20

1 The Travelling Salesman Problem
The travelling salesman problem (TSP) and its classical solutions are described e.g. in [1, 2, 4, 5]. Our solution
came from the use of integer programming which was published in [7]. In [3] is presented one implementation of
the TSP solution with Matlab programming.

1.1 Mathematical Formulation

The TSP can be defined as follows. Let 0 (,)G V E be a connected directed graph consisting of a set of 1n

nodes, seller depot (0i) and customer locations (1, ... ,i n), and a set E of non-negatively weighted arcs

between each pairs of corresponding nodes of the graph 0G . For easier reference, let 1, ... ,I n be the set of n

customers, and 0 0I I . The constant 0t means the time-moment when the dealer vehicle leaves the depot.

Each customer can be visited only once at any time greater than 0t . The order of the customers visited is not

limited, other than by the requirement that the duration of the seller's journey through all customers (terminated

by return to the depot) be as short as possible. For each customer i I let im be the assumed service time associ-

ated with the unloading of goods and dealing with the customer.
Let i jd be the length of the path from i - node to j - node for all 0,i j I . Therefore

0,i j i j I
dD

 is the non-

negative distance matrix. The matrix D can be, in general, an asymmetric one with zeros on the places of the main
diagonal, i.e. 0iid for each 0i I . It is necessary that the triangular inequalities be satisfied for distances among

nodes of graph 0G . Instead of the distance matrix D we will use, for our solution TSP, the time matrix

0,i j i j I

c

C . Each element i jc represents the pure travelling time of the seller from i node to j one. It is

assumed that if the average speed v of the vehicle among each two nodes is used, then the driving time i jc can

be expressed i j
i j

d
c

v
 . In this case the travel time i jc is proportional to the distance i jd . We assume that it is

given the moment 0t when the seller’s vehicle leaves the depot.

1 University of Pardubice, Department Mathematics and Physics, Studentská 95, 53210 Pardubice, jaromir.zahradka@upce.cz.

2

1.2 Mathematical Solution

The core of the practical TSP solution is to find the one cycle in the graph 0G which includes all nodes of the

graph and which gives the shortest total driving time. For this purpose, integer variables i jx for 0,i j I are

introduced, which can only take the values 0 or 1. The variables i jx are called binary variables. Value 1i jx

means that the arc from node i to j is included in the cycle and value 0i jx means that the corresponding arc

is not included. For systemic reason variables, i ix are used but all are fixed by the value zero, i.e. 0iix , for each

0i I . Variables i jx are elements of a matrix
0,i j i j I

x

X . The number of flow variables i jx is 21n .

In our work we use other specific non-integer variables it , for each i I . Each it indicates the moment when the

seller leaves the i ’s customer location. By using variables it , it is guaranteed that the solution will be correct with

all nodes during only one cycle in the graph 0G . The variables it are included as n elements of the vector

 1 2, , ... , nt t tt . The number of all flow variables is 21n n .

The solution of TSP is realized like the optimal solution of a mixed-integer linear programming problem:

 ,

, 0 1

1
min

n n

i j i j i
i j i

c x t
n u

X t

 subject to (1)

 0, ,i jx i j I are binary, {0,1}i jx (2)

 0 0 0 0() , ,i j j i j i j j jc u t c x t t u t c m i j I , i j (3)

 0 0 0 ,j j j jc x t t m j I (4)

0

01,i j
j I

x i I

(5)

0

01,i j
i I

x j I

(6)

 00,i ix i I (7)

 00 1, ,i jx i j I (8)

 0 0 ,j j jt c m t u j I (9)

In the expressed model (1) is minimized the linear optimization function

, 0 1

1n n

i j i j i
i j i

c x t
n u

 (10)

The main part
, 0

n

i j i j
i j

c x

 of the optimized function guarantees finding the cycle which takes the minimum

amount of time. Due to the assumed constant average speed v , the total travel length is also minimal. In the second

part
1

1n

i
i

t
n u

 of the optimized function (10) is used the value of the constant u , which is defined as follows:

0

0
1 0

max
n n

i i j
i I

i j

u t m c

 (11)

The value of u guarantees, with respect to the expected values of it , that the coefficients of flow variables it in

the optimized function (10) are so small that they do not change the optimal solution for flow variables i jx , while

the time variables it are minimized. The use of terms with flow variables it in the optimization function (10) is

necessary. If these are not included, a solution could be generated with some values of it greather than necessary.

Our model prefers, from two shortest cycles (with opposite directions), the one that gives a smaller sum of it .

3

Constraint (3) defines 1n n conditions between flow variables i jx and departure times it , jt , for ,i j I . In

the case 1i jx , the inequality (3) expresses the relationship 0 0j j j it t c m t u . Due to the large enough

value of u , the right side of inequality (3) can be only non-positive and the relationship is satisfied.

In the case 1i jx , the inequality (3) is reduced , ,i i j j jt c m t i j I . This expresses that the departure

time from the node j has to be greater than or equal to the sum of the departure time it (from node i), the travelling

time i jc (from node i to node j) and the service time jm in the node j . The created optimization process

ensures that, in the case of 1i jx , the condition (3) is satisfied only by the equation i i j j jt c m t .

The constraint (4) defines relations between flow variables 0 jx and jt , j I . In the case 0 0jx the inequality

expresses the relationship 0 ,j jt m t j I . Departure time from the node j is greater than or equal to the sum

of departure time 0t and service time jm . In the case 0 1jx the inequality (4) expresses the relationship

0 0 j j jt c m t . Departure time from the node j is greater than or equal to sum of departure time 0t from the

depot, travelling time 0 jc from depot to node j and service time jm .

Statements (5) and (6) declare 2(1)n equation constrains, which express that only one arc leads from each node

and only one arc leads to each node. Statement (7) declares that each 0iix .

The inequalities in (10) declare that the lower and upper bounds of variables i jx are 0 and 1. The inequalities in

(11) express the bounds of flow variables (departure times) jt , j I .

1.3 Transformation to Matlab

In the Matlab system the index 0 can not to be used, therefore all vector and matrix variables use the smallest index
number 1. The distance matrix is transferred to the Matlab environment as matrix D, with the row and column

indices i,j = 1,2, … ,n+1, where each component D(i,j) corresponds to the distance 1 1i jd of the nodes

1i and 1j . Similarly each component C(i,j) of the time matrix corresponds to the driving time 1 1i jc

from the node 1i to the 1j one.

Our created procedure for TSP solving in the Matlab code is included in the M-function SOLVER_TSP.m and it is
fully listed as an Appendix at the end of the article. The input variables are n - number of customers, D – distance
matrix, v – velocity of the vehicle, t0 – the moment when the seller leaves the depot, and m – row vector with
customer service duration times. The main output variable is the column vector X of flow variables, which is
obtained as an output of the optimization via the command intlinprog.

The mixed-integer linear programming problem is generally expressed by

()

min

.

T

X eq eq

b b

X intcon are integers

A X b
f X subject to

A X b

l X u

 (12)

The solver for this problem is the command X=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub) in Matlab
code (you can see it on the Appendix row No. 55). A more detailed explanation is in the User’s Guide [6].

For the solution of TSP via the intlinprog command, all flow variables are arranged in a column vector X with

 21n n components. First 21n flow variables are integer variables i jx , and each variable i jx , 0,i j I

is represented by Matlab flow variable X(i*(n+1)+j+1,1). The last n flow variables of X are the seller's depar-
ture times 1 2, , ... , nt t t , and each variable it , i I is represented by X((n+1)^2+i,1).

The objective function of the mixed-integer linear programming problem (12) is, in the Matlab code, expressed

like f’*X, where f is a column vector of coefficients with 2
1n n components. The first 2

1n

4

components are elements of the time matrix C so that f((i-1)*(n+1)+j,1)=C(i,j), i,j 1,2,..., 1n .

For the last n components of f we use the value
1

n u
 according to relation (10) (the Appendix, row No. 2).

The vector intcon in the command intlinprog specifies of flow variables, which are taken integers,

intcon = 1:(n+1)^2. They are first 2(1)n flow variables, i.e. variables i jx .

The constraints (3) and (4) give the system of 2n linear inequalities with 21n n variables. The matrix A of

system inequalities and the column vector b of right sides are created for any n in Matlab code statements on lines

No. 3 to 7 in the Appendix. The constraints (5), (6) and (7) give the system of 2n linear equalities with

 2
1n n variables. The matrix Aeq of system equalities and the column vector beq of right sides are created

for any n in the Matlab code statements on lines No. 8 to 13 in the Appendix.

The last two input variables of the intlinprog command (2) are the column vectors lb and ub of lower and
upper bounds of the flow variables. With respect to the relations (7), (8), (9) the components of vectors lb and ub
are filled by commands on lines No. 14 to 17 in the Appendix

By installation of input variables f, intcon, A, b, Aeq, beq, lb, ub in the command intlinprog, and
running it (the line No. 18), we get the optimal TSP solution, this is the vector of flow variables X. The values of

the first 21n variables (component of X), which have a value of 1, indicate the arcs that are part of the travel

cycle. The last n values of flow variables indicate times when the seller leaves individual customers.

The variables X(k,1), k 2
1, 2,..., 1n , which take the value 1, determine the arcs of the shortest cycle. The

commands from lines No. 20 to 24 allow the creation of a sequence of cycle nodes, i.e. the CYCLE vector. The first
item of the CYCLE vector is the number 0 – depot, and the other n items are the sequence of customer numbers,
and the last item is supplemented by the number 0 with regard to the fact that the seller returns to the depot.

The values of components of X(k,1), k 2 2 2
1 1, 1 2,..., 1n n n n are the seller’s departure times

from the customer k at the optimal cycle. The vector of the departure times t, the time tRet of the seller’s arrival
back to the depot, and the total duration of the seller's business trip AllWorkTime are calculated on lines No. 25,
26. On lines No. 27 to 31 is created the vector tArr of arrival times to the nodes and the total distance TotDist
traveled by the seller. The last item of the vector tArr means the time tRet when the seller returns to the depot.
The input variables for the M-function SOLVER_TSP and its execution have to be done using a startup M-script
that contains commands for drawing the output circle (Figure 1). The startup script is not listed in this article.

2 Illustrative Example
To illustrate the program we have created, we assume a seller and twelve customers. The GPS coordinates of the

seller’s depot are 0 14.068E (the eastern longitude) and 0 49.427N (the northern latitude). The GPS coordi-

nates iE , iN and the service times im of customers you can find in Table 1.

 Customer
i 1 2 3 4 5 6 7 8 9 10 11 12

iE (⁰) 14.436 14.174 14.026 14.955 14.431 14.962 14.762 14.007 14.680 14.706 14.645 14.552

iN (⁰) 49.221 49.452 49.017 49.266 49.358 49.090 49.168 49.094 49.161 49.202 49.274 49.024

im (min) 16 13 13 13 12 20 20 19 18 12 14 12

Table 1 The GPS coordinates and the service times of the customers

The distance between two customer locations (nodes) is taken as their orthonormal distance on the Earth sphere
multiplied by a factor of 1.25. The orthonormal distance is calculated with a sphere radius R = 6371 km (mean

radius of the Earth). All distances are included in the symmetric distance matrix D in Table 2.

By running the function SOLVER_TSP.m with the above chosen parameters, the optimal solution was found. The
shortest cycle is given with a node sequence 0-2-5-1-11-4-6-7-10-9-12-3-8-0 and is drawn in Figure 1. Due to the

5

symmetry of the matrix D , there is another solution that gives the same minimal travel distance and min. driving
time. This is the opposite directed cycle 0-8-3-12-9-10-7-6-4-11-1-5-2-0, but its sum of departure times is greather.

Table 2 The distance matrix D

Figure 1 The minimal length cycle of the seller around all customers

The calculated seller’s departure times
idept from customers, and arrival times

iarrt to customers are in Table 3.

The total travelled distance by the seller vehicle is 368.60 km and the total time of a seller’s trip is 9 h 10 min.

Times Depot Customers ranking in minimal cycle Depot

i 0 2 5 1 11 4 6 7 10 9 12 3 8 0

iarrt - 4:15 5:06 5:36 6:22 7:19 7:56 8:45 9:14 9:33 10:17 11:42 12:05 13:10

idept 4:00 4:28 5:18 5:52 6:36 7:32 8:16 9:05 9:26 9:51 10:29 11:55 12:24 -

Table 3 The arrive and depart times of the seller

3 Conclusion
This paper proposes a practical solution of the travelling salesman problem for any number n -customers in Matlab
code. The TSP is formulated as a mixed-integer linear programming problem with a new approach, which respects
the given matrix of distances and service duration times of customers, and the constant speed of the seller’s move-
ment. The solution lies in minimizing of the seller's trip duration that leads across all customers. The constant
speed of seller’s movement is assumed, therefore the total distance travelled is also the minimum. The created
objective function guarantees that the total travelled distance and the total travelled time of the seller are minimal.

The main result of this article is the creation of the M-function (Appendix) which allows to solve the TSP generally
for any number of n customers. The created M-script is practically usable on a common personal computer for up
to 30 customers. For 30 customers, the calculation takes less than 60 minutes, and for up to 20 customers, the
calculation takes less then 40 seconds. M-script was successfully tested for a maximum of 40 customers.

6

The optimal solution of travelling salesman problem ensures the shortest travel distance and shortest duration of
the business trip, and thus the best solution in terms of economic costs for the implementation of the business trip.

Acknowledgements
The paper was supported by institutional support of University of Pardubice.

References
[1] Bentley, J. J. (1992). Fast Algorithms for Geometric Travelling Salesman Problems. ORSA Journal on

Computing, (4) 4.
[2] Gavendra, G. at al. (2010). Travelling Salesman Problem. In Tech, Proceedings of the Theory and Applica-

tions. Rieka.
[3] Gradle, K. P. & Mulley, Y. U. (2015). Travelling Salesman with MATLAB programming. International

Journal of Advances in Applied Mathematics and Mechanics, (3) 2, 258-266.
[4] Gutin, G. & Punnen, A. P. (2007). The Travelling Salesman Problem and Its Variations. New York:

Springer Science+Business Media, LLC.
[5] Jonak, R., Smutný, Z., Simunek, M. & Dolezel, M. (2020). Rout and Travel Time Optimalization for Deliv-

ery and Utility Services. Acta Informatica Pragensia, (2) 9, 200-209.
[6] Math Works. Inc. (2020). Optimalization ToolboxTM. User´s Guide. Natick.
[7] Winston, W. L. (1994). Operations Research. Applications and Algorithms. Duxbury: Duxbury Press.

Appendix

 1: function [X, CYCLE, TotDist, AllWorkTime, tArr] = SOLVER_TSP(n, D, v, t0, m)
 2: C=D/60; CT=C'; u=t0+sum(max(CT))+sum(m(1:n)); f=[CT(:);ones(n,1)/u/n];
 3: p=(n+1)*(n+1); A=zeros(n^2,p+n); k=0;
 4: for i=1:n; for j=1:n; if i~=j; k=k+1;
 5: A(k,(n+1)*i+1+j)=C(i+1,j+1)+u-t0-C(1,j+1); A(k,p+i)=1; A(k,p+j)=-1;
 6: b(k,1)=u-t0-C(1,j+1)-m(j); end; end; end
 7: for i=1:n; k=k+1; A(k,1+i)=C(1,1+i); A(k,p+i)=-1; b(k,1)=t0-m(i);end
 8: Aeq=zeros(3*n+3,(n+1)^2+n);
 9: for i=1:n+1; for j=1:n+1; Aeq(i,(i-1)*(n+1)+j)=1; end
10: Aeq(i,(i-1)*(n+1)+i)=0; beq(i,1)=1; end
11: for i=1:n+; for j=1:n+1; Aeq(n+1+i,(j-1)*(n+1)+i)=1; end
12: Aeq(n+1+i,(i-1)*(n+1)+i)=0; beq(n+1+i,1)=1; end
13: for i=1:n+1; Aeq(2*n+2+i,(i-1)*(n+1)+i)=1; beq(2*n+2+i,1)=0; end
14: lb = zeros(p,1); for i=1:n; lb(p+i,1)=t0+C(1,1+i)+m(i); end
15: k=0; for i=1:n+1; for j=1:n+1; k=k+1;
16: if i==j; ub(k,1)=0; else ub(k,1)=1; end; end; end
17: for i=1:n; ub(p+i,1)=u; end; intcon = 1:p;
18: X = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub);
19: X(1:p)=round(X(1:p));
20: for i=2:n+1
21: if X(i)==1; CYCLE=0; Nok=2; CYCLE(Nok)=i-1; TEST=i; break; end; end
22: while TEST~=1; for j=1:n+1
23: if X((CYCLE(Nok))*(n+1)+j)==1; Nok=Nok+1; CYCLE(Nok)=j-1; TEST=j; break; end
24: end;end
25: for i=1:n; t(i)=X(p+i); end
26: tRet=t(CYCLE(end-1))+C(CYCLE(end-1)+1,1); AllWorkTime=tRet-t0;
27: tArr=[t0, t(CYCLE(2:end-1))-(m(CYCLE(2:end-1))), tRet],
28: tArr=hours(tArr), tArr.Format='hh:mm'; TotDist=0;
29: for i=1:(n+1); for j=1:(n+1)
30: if X((n+1)*(i-1)+j)==1; TotDist=TotDist+D(i,j); break; end
31: end; end

