
1

Reflective Nested Simulations Supporting Optimizations

within Sequential Railway Traffic Simulators

ROMAN DIVIŠ and ANTONÍN KAVIČKA, Faculty of Electrical Engineering and Informatics,

University of Pardubice, Pardubice, Czech Republic

This article describes and discusses railway-traffic simulators that use reflective nested simulations. Such
simulations support optimizations (decision-making) with a focus on the selection of the most suitable
solution where selected types of traffic problems are present.

This approach allows suspension of the ongoing main simulation at a given moment and, by using sup-
portive nested simulations (working with an appropriate lookahead), assessment of the different acceptable
solution variants for the problem encountered—that is, a what-if analysis is carried out. The variant that
provides the best predicted operational results (based on a specific criterion) is then selected for continuing
the suspended main simulation. The proposed procedures are associated, in particular, with the use of se-
quential simulators specifically developed for railway traffic simulations. Special attention is paid to parallel
computations of replications both of the main simulation and of supportive nested simulations.

The concept proposed, applicable to railway traffic modelling, has the following advantages. First, the solu-
tion variants for the existing traffic situation are analyzed with respect to the feasibility of direct monitoring
and evaluation of the natural traffic indicators or the appropriate (multi-criterial) function. The indicator val-
ues compare the results obtained from the variants being tested. Second, the supporting nested simulations,
which potentially use additional hierarchic nesting, can also include future occurrences of random effects
(such as train delay), thereby enabling us to realistically assess future traffic in stochastic conditions.

The guidelines presented (for exploiting nested simulations within application projects with time con-
straints) are illustrated on a simulation case study focusing on traffic assessment related to the track infras-
tructure of a passenger railway station. Nested simulations support decisions linked with dynamic assign-
ments of platform tracks to delayed trains.

The use of reflective nested simulations is appropriate particularly in situations in which a reasonable
number of admissible variants are to be analyzed within decision-making problem solution. This method is
applicable especially to the support of medium-term (tactical) and long-term (strategic) planning. Because
of rather high computational and time demands, nested simulations are not recommended for solving short-
term (operative) planning/control problems.

CCS Concepts: • Computing methodologies → Agent / discrete models;

Additional Key Words and Phrases: Railway traffic simulation, nested/recursive simulations, automated
decision-making support, parallel discrete event simulation

The research presented in this article was supported by the ERDF/ESF project Cooperation in Applied Research between
the University of Pardubice and companies in the Field of Positioning, Detection, and Simulation Technology for Transport
Systems (PosiTrans)—No. CZ.02.1.01/0.0/0.0/17_049/0008394.
Authors’ addresses: R. Diviš and A. Kavička, Faculty of Electrical Engineering and Informatics, University of Pardubice,
Studentska 95, 532 10, Pardubice, Czech Republic; emails: {Roman.Divis, Antonin.Kavicka}@upce.cz.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
1049-3301/2021/09-ART1
https://doi.org/10.1145/3467965

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

https://doi.org/10.1145/3467965
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3467965&domain=pdf&date_stamp=2021-09-27

1:2 R. Diviš and A. Kavička

ACM Reference format:

Roman Diviš and Antonín Kavička. 2021. Reflective Nested Simulations Supporting Optimizations within
Sequential Railway Traffic Simulators. ACM Trans. Model. Comput. Simul. 32, 1, Article 1 (September 2021),
34 pages.
https://doi.org/10.1145/3467965

1 INTRODUCTION

The use of computer simulation methods when analyzing railway system problems is convenient
in that it enables the properties and behavior of the system to be flexibly tested in different traf-
fic conditions. The objectives of studies examining railway traffic systems are linked with, for
instance, providing supports when setting up or optimizing timetables, assessment of the capac-
ity of railway lines and stations, testing alternative approaches to traffic control, and analysis of
the effects of train delays and other traffic disruptions. Computer simulation can be used to quite
efficiently test different timetables, technological processes, or different rail yard infrastructure
topologies. Examination in the reality domain would be extremely costly and time-consuming,
while computer simulations enable us to rapidly and efficiently examine the feasible variants of
the system analyzed without having to perform actual physical changes in the systems. Many well-
established simulation tools specializing in the examination of rail traffic are currently available.
The tools, some of which are mentioned below, are implemented as sequential simulators and are
typically run on PCs.

Simulation models mirroring railway traffic can use different degrees of abstraction depending
on the nature of examination to be performed. Models working on the microscopic level of detail
(microscopic simulators) enable each railway process (such as partial train shunting, the change
times of passengers between connecting trains, etc.) to be examined in detail. Such models include
detailed information on rail yard infrastructure, interlocking systems, control and technological
processes, trains and individual train cars, service staff, and sometimes the passengers. Microscopic
simulators are typically used to examine traffic in specific railway network segments, which may
include both railway lines and railway nodes [1–3].

Mesoscopic simulators [4, 5] typically use simplified models of technological processes and are
normally used for assessing the total throughput/capacities of the lines/stations and/or for examin-
ing the traffic quality (determined mainly by the train delay characteristics within the lines/stations
analyzed). Such simulators, however, do not abstract from the objects of the trains whose life cycles
are examined within the simulation experiments.

Macroscopic simulators [6], on the other hand, are typically focused on railway traffic in ge-
ographically wide areas: rather than the individual train entities, it is the changing coarse traffic
characteristics (such as the extent of line/station use, mean train speed in different line segments,
etc.) that are examined on a highly simplified infrastructure.

Railway traffic simulations can work both in the deterministic mode and in the stochastic mode.
The former is typically applied for primary examination of whether a timetable is or is not non-
conflict. Hence, the trains are assumed to run precisely according to the timetable (no delays are
applied) in the simulation. The goal is to determine whether the train motions adversely affect one
another (i.e., whether any train competition for the same part(s) of the track infrastructure results
in train delays). This deterministic investigation is typically followed by simulation examination
of the traffic with the inclusion of random effects, such as train delays or train/technical facility
failures/faults/defects. Stochastic simulations, in which the planned traffic is disturbed, include
conflict situations that must be addressed. The request by a delayed train for allocation of a part
of the track infrastructure (platform/line track, railway route, etc.) that is currently occupied by
another train is an example of a conflict.

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

https://doi.org/10.1145/3467965

Reflective Nested Simulations Supporting Optimizations 1:3

The way a conflict is resolved during a simulation experiment can be based on one of two dif-
ferent approaches. In the interactive approach, the simulation is suspended and how the conflict is
to be resolved is decided by the simulator user (expert). The simulation is then resumed using the
user’s method of conflict resolution. In the software support approach, the decision-making proce-
dure is computer aided, that is, the simulation model selects the solution automatically, without the
need to suspend the simulation calculation. An overview of the methods that are used to support
decision-making within railway traffic simulators is presented in the next section.

The objective of the R&D activities, the results of which are summarized here, was to design
and test a novel automated approach to support optimizations/decision-making concerning the
resolution of traffic conflicts within sequential rail-traffic simulations. The approach to the prob-
lem is based on the concept of hierarchically nested simulations. The method is first theoretically
described, a technique for parallel executing of nested simulations (pertaining to different traffic
variants on different hierarchic levels) is devised, and the guidelines for exploiting nested simula-
tions (within application projects) are demonstrated on a case study.

This research was motivated by efforts to extend the range of optimization methods applicable
within sequential rail traffic simulators. Such simulators are currently quite widely used in the
rail traffic application domain specifically to examine the available traffic (timetable) variants and
traffic infrastructure.

2 OVERVIEW OF DECISION SUPPORTS WITHIN RAILWAY-TRAFFIC SIMULATORS

Railway traffic simulators can address emerging traffic conflicts during simulation experiments by
applying different approaches/methods. The solution can be obtained either directly from the sim-
ulator user (interactive simulation mode) or it can emerge from automated computation based on
exact or heuristic methods of operations research (such as integer linear programming, multicrite-
rial evaluation of variants), soft computing methods (e.g., using artificial neural networks, fuzzy logic,
etc.), expert static priority planning, and so on. Another option is the use of what is called reflective
nested simulations, evaluating predictively the different solution variants for a given lookahead
(with respect to the moment of occurrence of the conflict).

2.1 User-Based Decision-making

If the automatic simulation process is suspended and switched to the interactive mode when a
conflict is encountered, it is the user who makes the decision regarding conflict resolution. This
solution is then used in the resumed automatic computation, which is suspended again when the
next conflict is encountered. This approach may be satisfactory for some experiments and can
then be applied in selected training simulator types that do not serve real-time training. Such
training simulators enable the users to be trained in various controller areas; they use running
simulations that are steered by the user solutions input to them. The product Villon is an example
of a commercial railway traffic simulator that can be used for this purpose [1].

If, however, time-consuming simulations with a large number of replications are required, the
number of conflict states increases considerably. In this case, simulation with interactive decision-
making would be slow and difficult for the user. Also, user decision-making is typically not optimal
in such situations and may result in a poorer quality of simulation results. Thus, it is more appro-
priate to use automated software-based decision-making support in such situations.

2.2 Static Priority Planning

Railway traffic conflicts typically emerge from train competition for resources (e.g., parts of the
track infrastructure, service staff, technical facilities, shunting engines, etc.). A conflict at a given

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:4 R. Diviš and A. Kavička

moment is typically represented by a request for allocation of a resource that is not available
at that moment. Railway traffic requires the existence of appropriate (static) traffic plans such
as timetables, railway station track occupation plans, or service staff working schedules based on
which traffic is organized. Conflicts emerge in situations in which none of the plans can be adhered
to and an alternative solution must be sought.

Static priority planning is a simple method of automated decision-making regarding conflicts,
which uses dedicated commercial software tools (OpenTrack [3], Villon [1]) for railway traffic sim-
ulations. A priority queue of feasible alternative solutions (regarding the allocation of resources)
is set up for each conflict type before launching the simulation. Allocation of a resource in ac-
cordance with the operational plan is normally the highest-priority solution. The highest-priority
usable solution is automatically selected when a conflict is encountered in the simulation. If none
of the solutions in the queue is feasible, the entity requesting allocation of the resource normally
waits until any of the alternative solutions is feasible.

The following are examples of priority queues: (i) list of alternative platform tracks for the dwell
of passenger trains arriving to the railway station from direction Di and departing in direction Dj;
and (ii) list of alternative tracks for transit freight trains arriving at the station from direction
Dk and departing in direction Dl. Priority queues should preferably be set up by railway traffic
experts who are able to competently decide which alternative solutions are applicable. In this
respect, no precisely specified optimization criterion is formally applied. Instead, this is based on
the expertise of the professional who assesses the extent of disturbance of the planned operation
for each alternative solution. It is noteworthy that preparation of the queues for extensive modelled
systems is a rather laborious task.

Still, priority planning based on expertly compiled priority queues does not enable detailed
automated evaluation in order to decide which solution is objectively better than the other ones
or what impacts the solutions may have on future traffic.

2.3 Expert Systems

Expert systems constitute a class of computer programs aimed at providing expert advice in line
with the expertise of professionals in the application domain in question. Expert systems are cat-
egorized into basic classes based on the types of use. Typical representatives include software
systems executing various diagnostics or planning tasks. Diagnostic expert systems serve to find
the diagnosis (solution) of a given problem. This system type can be applied not only in medicine
to identify a disease in a patient but also, for instance, in the transport area to solve traffic logistic
problems and other problems [7].

In contrast to conventional programs, the expertise of the expert systems is stored separately
from the data. The inference mechanism controlled by the expert system uses both the data and the
expertise to find the solution. The inference mechanism itself can be based on different principles
(e.g., evaluation of logic rules, fuzzy logic, artificial neural networks).

Expert systems are also used in the railway transport domain, where they provide a means for
operative traffic control and train movement and train interaction planning. Fay and Schnieder
[8] described the basic issues of railway traffic control and planning using expert systems and
presented an overview of existing expert systems used in this area. They also presented their
own proposal for an expert system using expertise and fuzzy logic. The system was improved as
described in [9], devising and describing a supporting control system based on fuzzy Petri nets.

ESTRAC-III is another example of an expert system based on rules and used for railway traffic
planning [10]. The output is a plan of changes that is applied to the existing graphic railway
timetable. The decision-making system also uses computer simulations to identify the impacts of
train delays and puts forth planned measures. The simulation is based on the “partial simulation”

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:5

concept in which interrelated events associated with the various stations are grouped together,
thereby dividing the simulated railway traffic system into partial subsystems [11].

The Sepia real-time expert system addresses a similar problem [12]. Unlike the system described
earlier, the decision-making mechanism of this system is based on searching through and modify-
ing the structure of the state graph.

The system for freight transport on the Daqin Line, China [13], which is based on fuzzy logic, is
an example of an expert system currently applicable to operative railway traffic control. An expert
system based on fuzzy Petri nets has been devised for addressing transport outage situations and
has been tested within a case study of the railway system in Taiwan [14].

Although these expert systems are usually designed for application in real environments, they
can also be used as a decision-making supporting tool in simulators [15]. Despite this, those expert
systems are not yet ready for use in general railway traffic simulators.

2.4 Methods of Operations Research and Soft Computing

Operations research is an extensive field of applied science encompassing a wide range of ex-
act and heuristic optimization methods, some of which may potentially be usable for automated
decision-making support within railway traffic simulators. Examples include mixed integer linear
programming methods [16, 17], multicriterial decision-making methods [18], graph theory meth-
ods [19], and the like.

Some soft computing methods/approaches are also potentially usable for obtaining solutions
regarding conflict states in traffic simulations. Artificial neural networks [20], fuzzy Petri nets [14]
and more can be applied in the decision-making components of the simulators.

These methods/approaches are typically tested within case studies but are normally not included
in commonly available commercial railway traffic simulators, largely because it is rather difficult
within the simulators to modify or parameterize the methods (particularly because of specification
of the required optimization criterion) in a user-friendly manner for addressing the given types of
conflicts.

2.5 Nested Simulations

Nested simulations, sometimes also referred to as recursive simulations, constitute another method
applicable to decision-making support in simulators.

Sequential Simulators

The concept of the reflective nested simulation (RNS) [21] consists of suspending the main sequential
simulation if a conflict (decision point) occurs, and cloning it into variants. The clones (supporting
RNS) are differently parameterized in order to test the various conflict resolution options (what-
if analysis) in the suspended main simulation. These recursive sequential simulations (actually
representing different lookaheads) are launched, stopped in a certain limited time and evaluated.
The variant that provides the best predicted results (according to a defined criterion) is then used
for continuation of the suspended main simulation.

RNS, which can find use in different application domains, has been investigated by a number of
scientists. E. Kindler, who published several papers devoted to this topic, focused on a theoretical
description of nested simulations [22], their categorization, related terminology [21], and practical
applications in various domains [23].

Gilmer and Sullivan examined the effectiveness of a large number of replications against what
is referred to as multitrajectory simulation [24]. This type of simulation is an alternative way to
examine the state space. The various simulations are branched when conflicts occur, and new

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:6 R. Diviš and A. Kavička

simulations emerge in order to test a considerable number of different alternatives of the course of
stochastic simulations. The authors concentrated mainly on the Eaglet military simulator, which
simulates the movement of the troops of two armies and their interactions. They also examined
the topic of RNS use for supporting the decision-making process [25].

Furthermore, nested simulations can be used to set up a scalable simulation. The nested sim-
ulation approach is used there for the calculation of transformations to pass from submodels on
a macroscopic level to submodels on a microscopic level [26]. A specific group of publications
describe the use of nested simulations (two-level simulations) for the needs of financial and risk
management [27].

Parallel Simulators

Many authors also studied the topic of cloning parallel discrete event simulations (PDES) [28–30].
In contrast to sequential simulations, PDES use parallel computations (on multiple computation
nodes) for the logical processes belonging to the simulating system in question. The cloning method
is used with respect to certain decision points for subsequent parallel testing of different evolution
variants of the simulation experiment. When using the cloning method, specific attention is paid to
the optimization of the computation process, especially in the context of the feasibility of (i) some
computations being shared by multiple parallel processes, (ii) eliminating (pruning) non-promising
computation branches, and (iii) saving snapshots of selected parts of the simulator’s state space
in an external memory on an ongoing basis for their later potential use (e.g., for rollbacks when
performing parallel and distributed simulations applying the optimistic synchronization method).

Specifically, the authors of [28] present the concept of virtual logical processes, enabling one to
avoid repetition of computations that are common to multiple clones, thereby helping improve the
overall effectiveness of the complex parallel computations of the simulation experiments.

The authors of [29] introduce the agent-based bottom-up cloning strategy (using an incremen-
tal cloning mechanism), in which cloning trees are heuristically generated. Such trees support the
identification of the potential existing in computation sharing among different clones with similar
parametrization, thereby promoting the efficiency of the parallel simulations. This strategy was
illustrated on the application of the computations to a sequential CPU platform, a multi-core CPU
platform with OpenMP enabled, and a GPU platform.

The approach introduced in [30] is based on the application of granular cloning. This concept
uses versioned objects that share their states for a certain period of the simulation until a spe-
cific state emerges. Then, they start to deviate from sharing and instead develop through state
trajectories specific for each version of the simulation scenarios. The scenarios are not a priori
explicitly specified in this approach, but a log must be maintained during the simulation in order
to preserve the dependence relationships among the objects. Granular cloning brings about sav-
ings in the computations, particularly where the state trajectories of the different scenarios are
similar.

The authors of [31] present the mechanism of a manager for preserving the logical process states
in distributed simulators (applying the optimistic synchronization method). This manager is referred
to as an Autonomic State Manager (ASM), which does not require the application programmer to
provide it with a serialization/deserialization module for taking snapshots of the logical process
states. This support is suitable for distributed simulation programmers—the ASM implements solu-
tions for both incremental and non-incremental log modes, from which a suitable variant is selected
depending on the development of the optimistic distributed simulation dynamics.

The focus of [32] is on the description of an original distributed middleware that enables PDES
applications, initially programmed for systems using shared memory, to calculate also on clusters

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:7

of (cloud) resources. This middleware uses a specific synchronization protocol that enables cross-
simulation object access through appropriate event handlers. Implementation solutions that were
experimentally verified exhibited fairly good computation effectiveness. This solution supports
very well the execution of PDES applications on clusters, partly relieving the developers of the
task of coding interactions between the partial models of the parallel/distributed simulator.

The authors of [33] focus on the issue of simulation cloning, in which the application of the
paired batches of clones is utilized. A relevant pair is composed of a basic batch and a corresponding
counterpart batch. The basic batch contains primary replications of the relevant simulation. The
counterpart batch utilizes random variables with induced negative correlation against the runs of
primary replications from the basic batch. The purpose of applying that approach is to achieve a
variance reduction in the statistical processing of the output data. Particular attention is paid to
determining the optimal number of clones that are initiated on the occurrence of decision points.
Relevant optimizations are based on maximizing the efficiency of the simulation. That efficiency is
defined to be the reciprocal of the product of the variance and computational costs per replication.
Due to the need to perform optimizations for each decision point, this approach is more suitable
for applications in which there are no massive random occurrences of decision points.

Augmentation of Sequential Simulators with RNS-Based Techniques

This article is mainly devoted to the possibilities of augmenting existing sequential simulators
with RNS-based support to the decision-making processes. The simulators are typically used for
experiments associated with large numbers of replications in order to get statistically significant
results. Based on the above facts, the following can be stated:

• The basic principle of RNS implementation is relatively simple, and the possibility of us-
ing the simulation engines from existing sequential simulators to run them is assumed. A
detailed description of nested simulations applied within sequential simulators and their ex-
ploitations within application projects with time constraints are presented in the sections
that follow.

• Approaches aimed to improve the effectiveness of computations (using PDES) are applicable
in the domain of sequential simulations to a limited extent because sequential simulators
consist of a single logical process and, hence, unlike parallel simulators, are not faced with
the challenge of applying complex solutions to storing the simulation states or of using
complex techniques of computation sharing among many different logical processes (from
distinct clones). Thus, the focus is mainly on appropriate solutions for parallel computations
of a potentially large number of replications.

3 CONFLICT RESOLUTION USING REFLECTIVE NESTED SIMULATIONS

As mentioned earlier, reflective nested simulations constitute one of the feasible approaches in
support of conflict resolution (e.g., in railway traffic simulators). The text that follows focuses both
on the technical aspects of the RNS and on the concept of RNS deployment in practical applications.

3.1 Primary Technique of RNS Utilized for What-If Analysis

Implementation of software support for automated conflict resolution (applying RNS) during sim-
ulation experiments can be based on the use of a standard simulation engine (implemented within
the sequential simulator being used) both for the main simulation and for the nested simulations.
Nevertheless, the original control procedure [34] is used for the integrated computation that in-
cludes nested simulations.

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:8 R. Diviš and A. Kavička

Before introducing the computation concept, let us describe and explain some symbols, param-
eters, functions, and software components (specified in Table 1) whose setting/implementation
affects the evolution of the simulation experiments.

The main part of the control algorithm related to the r-th replication of the main simulation
using RNS (i.e., maxLevel > 0) is as follows:

ALGORITHM 1: Control of the r-th Replication

Control of the r-th replication representing the main simulation
01 The conflict counter is initialized: i← 1.
02 The execution of the r-th replication of the main simulation (dS0,0,r) is launched.
03 dS0,0,r computation is run until the nearest (i-th) conflict is encountered at moment ti of

the simulation time, at which the simulation is suspended.
04 VariantsGen(i) is used to propose n alternative variants for resolution of the i-th conflict,

where n ≤ MaxVariants.
05 The state space of dS0,0,r is cloned and for each resolution variant of the current (i-th)

conflict, the corresponding nested replications (dSi,j,k, j = 1. . . n, k = 1. . . nestReplCount) are
initialized.

06 The nested replications are completely calculated: dSi,j,k , j = 1. . . n, k = 1. . . nestReplCount.
The computation of each replication is terminated when the terminating condition
stopCond is met for it.

07 The results for the n different variants of the i-th conflict resolution are evaluated. The
evaluation of each j-th variant (j = 1. . . n) is based on a statistical evaluation of the results

of its k replications (k = 1. . . nestReplCount). Subsequently, that variant of resolution of the
i-th conflict that provided the best result in terms of the function CrOptim(j) is selected for
continuation of dS0,0,r.

08 The conflict counter is updated: i← i + 1.
09 Return to step 03.

This algorithm is illustrated in Figure 1(b), with a schematic picture of the hierarchically ordered
set 1H3(1S0,0,r) consisting of 22 completely computed replications:

1H3 (1S0,0,r) = {1S0,0,r }∪{1Si, j,k |i = 1; j = 1 . . . 3; k = 1 . . . 3}
∪{1Si, j,k | i = 5, 7; j = 1 . . . 2; k = 1 . . . 3}.

The highest (zeroth) hierarchic level is represented by the r-th replication of the main simulation
(1S0,0,r); the first level contains the nested simulations (maxLevel = 1).

The conflicts 1C1, 1C5, 1C7 ∈ Confl(1S0,0,r) that occurred during the main simulation are resolved
by using RNS. Three replications (nestReplCount = 3) are launched for each conflict resolution
variant in the hierarchy analyzed. No additional nested simulations are applied for the conflicts
from the nested simulations: 1C2, 1C3 ∈ Confl(1S1,1,1), 1C4 ∈ Confl(1S1,3,3), 1C6 ∈ Confl(1S5,1,3) and
1C8 ∈ Confl(1S7,2,3). Instead, they are addressed by applying some different approach (e.g., by using
priority lists).

Figure 1(a) demonstrates the specific case of the hierarchy 0H0(0S0,0,r) consisting of a single
replication of the main simulation (maxLevel = 0) with these conflicts: °C1, °C2 ∈ Confl(0S0,0,r).
RNS are not used to resolve such conflicts.

The algorithm discussed can be detailed in that the nested simulations can also resolve their
conflicts recursively by using additional supporting nested simulations, as will be described later.

The problem on its own consists of identifying variants that should be tested for each con-
flict. The solution of this problem (implemented within the VariantsGen generator) cannot be

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:9

Table 1 Specifications of Symbols Related to the Control Algorithm 1

Symbols Specifications

mainReplCount
Parameter specifying the number of main simulation replications
(referred to simply as main replications).

nestReplCount
Parameter specifying the number of nested simulation replications
(referred to simply as nested replications) executed for each resolution
variant related to a relevant conflict.

stopCond

Parameter defining the terminating condition for the nested replication
run; the condition may include either a specific moment of the simulation
time (i.e., the lookahead duration) or the occurrence of a specific
status/event.

maxVariants
Parameter determining the maximum permitted number of resolution
variants tested for each conflict (but not the actual number of variants
tested for a given specific conflict).

maxLevel

Parameter determining the maximum permitted number of nesting levels
for a specific RNS with respect to the main simulation. If a conflict occurs
in a nested replication, it can be resolved either by using nested
simulations, too, or by using a different approach to the conflict
resolution issue. In other words, the maxLevel parameter setting defines
the maximum level to which the recursive simulation may be performed.

VariantsGen(i)
Software generator that will provide variants for the i-th conflict that will
then be tested via nested simulations.

CrOptim(j)
Function evaluating the j-th conflict resolution variant based on a
relevant optimization criterion.

dSi,j,k

Symbol for a simulation experiment replication. For a nested simulation,
this is the k-th replication for the j-th variant of resolution of the i-th
conflict, where k ∈ 〈1. . . nestReplCount〉, j ∈ 〈1. . . n 〉,
n ≤ maxVariants, i ∈ N+ (the set of positive integers) and d corresponds to
the nestReplCount parameter setting. If this is the k-th replication of the
main (“non-nested”) simulation, then k ∈ 〈1. . . mainReplCount〉, j = 0,
i = 0. The d (depth) value corresponds to the maxLevel parameter setting
(i.e., replication dSi,j,k belongs to an RNS-based simulating system
applying a maximum of d levels of nesting).

dHb (dS0,0,r)

Symbol for a hierarchically ordered set of replications. The hierarchically
highest (zeroth) level contains the r-th replication of the main simulation
dS0,0,r (element-root), the lower levels contain replications of the
nested/recursive simulations (with respect to dS0,0,r). The d (depth) and
b (batch) values correspond to the maxLevel and nestReplCount parameter
settings. If the r-th replication of the main simulation dS0,0,r does not use
nested simulations, then the symbol for the set is 0H0 (dS0,0,r)
and 0H0 (dS0,0,r) = { dS0,0,r }, r ∈ 〈1. . . mainReplCount〉.

dCi (Vj)
Symbol for the i-th conflict within a replication X ∈ dHb(dS0,0,r) for a
given r. After the conflict has been encountered, the calculation of
replication X continues with its j-th solution variant (Vj).

Confl(dSi,j,k)
Symbol for a linearly ordered set of conflicts that occurred within
replication dSi,j,k . The order reflects the timestamps of the conflicts.

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:10 R. Diviš and A. Kavička

Fig. 1. Hierarchically ordered sets of completely computed replications: 0H0(0S0,0,r) and 1H3(1S0,0,r).

generalized appreciably because it always depends on the conflicting situation type and on the
variant selection method, which in its outcome may be associated with solving a nontrivial
problem.

Only such nested simulations are admissible in railway traffic simulators as are associated with
technically and technologically permissible conflict resolution variants. Permissible variants take
into account (i) the specific rail infrastructure topology tested, (ii) the interlocking system type
used, and (iii) the traffic regulations covering the traffic examined.

3.2 Condition for Terminating Nested Simulations

The stopCond parameter generally defines the condition, the fulfillment of which will cause a
nested replication to be terminated. This condition may be associated with the occurrence of a
specific state in the simulation—a termination state—or may define a specific instant of the simu-
lation time when the simulation is terminated. This instant is normally derived from a parameter
specifying the Lookahead Duration and, hence, denoted LD. The lookahead duration is the simu-
lation period available to the nested replication for executing its predictive computation.

Thus, if the stopCond parameter is related to the lookahead duration and, at the same time, the
parameter maxLevel > 1, it must be specified how the lookahead duration is applied at lower levels
of nesting. Generally, 3 basic strategies can be used:

• Constant lookahead durations
• Hierarchically reduced lookahead durations
• A combination of both

The first two strategies are described in detail next. They can be combined if appropriate for the
specific problem being addressed. Sometimes, the combination of the lookahead duration and a

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:11

Table 2. Hierarchically Reduced LD for Selected Replications in Figure 5

Replication
ID

Conflict ID
Conflict
occurrence time

Lookahead duration
Applied to
replications

3S0,0,r
3C1 09:00 a.m.

Primary lookahead
LD (3C1) = 30 minutes
(1st level of nesting)

3S1,1,1 | 3S1,1,2 | 3S1,1,3
3S1,2,1 | 3S1,2,2 | 3S1,2,3
3S1,3,1 | 3S1,3,2 | 3S1,3,3

3S1,1,1
3C2 09:05 a.m.

Secondary lookahead
LD (3C2) = 25 minutes
(2nd level of nesting)

3S2,1,1 | 3S2,1,2 | 3S2,1,3
3S2,2,1 | 3S2,2,2 | 3S2,2,3

3S2,2,3
3C3 09:20 a.m.

Tertiary lookahead
LD (3C3) = 10 minutes
(3rd level of nesting)

3S3,1,1 | 3S3,1,2 | 3S3,1,3
3S3,2,1 | 3S3,2,2 | 3S3,2,3
3S3,3,1 | 3S3,3,2 | 3S3,3,3
3S3,4,1 | 3S3,4,2 | 3S3,4,3

3S3,3,1
3C4 09:22 a.m. No lookahead −

3S3,3,1
3C5 09:28 a.m. No lookahead −

3S1,1,1
3C6 09:25 a.m.

Secondary lookahead
LD (3C6) = 5 minutes
(2nd level of nesting)

3S6,1,1 | 3S6,1,2 | 3S6,1,3
3S6,2,1 | 3S6,2,2 | 3S6,2,3
3S6,3,1 | 3S6,3,2 | 3S6,3,3

Legend

LD (dCi) − Lookahead durations for replications inspecting resolutions related to dCi

specific termination state may also be feasible, for instance, by applying one strategy at the first
nesting level and the other strategy at the lower nesting levels.

Constant lookahead durations

The constant lookahead duration strategy uses a simple approach in which a single, a priori–defined
lookahead duration is assigned to all replications of nested simulations, irrespective of the level
of nesting or any other parameter. As a consequence, the predictive simulations at lower levels of
nesting examine a more remote future than the hierarchically superior simulations.

Hierarchically Reduced Lookahead Durations

This strategy uses the following procedure. If a conflict that should also be addressed by using RNS
occurs during the computation of a nested replication, the lookahead duration for a simulation at
a lower hierarchy level is reduced by the fraction that has already been “spent” at the previous
hierarchy levels. Thus, this approach uses hierarchically reduced lookahead durations, and its ap-
plication can be demonstrated on the example of replications selected from the set 3H3(3S0,0,r)
shown in Figure 5. The lookahead duration that is set for replications at the first level of nesting
is referred to as the primary lookahead duration. A conflict 3C1 occurred within replication 3S0,0,r

of the main simulation (at the hierarchy level 0) at the 09:00 hours of the simulation time. This
triggers nested simulations at the first level of nesting (verifying the solution variants V1, V2, and
V3), for which the primary lookahead duration has been set at 30 minutes. The assigned looka-
head durations for selected replications of nested simulations related to the primary investigation
of the conflict (3C1) resolution are listed in Table 2. The table shows that the secondary lookahead
durations for the replications at the second level of nesting are 25 minutes when resolving the
conflict 3C2 and 5 minutes when resolving the conflict 3C6. The tertiary lookahead duration at the
third level of nesting (when resolving the conflict 3C3) is 10 minutes. All replications of the nested
simulations listed in Table 2 run till 09:30 hours of the simulation time. Nested simulations are

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:12 R. Diviš and A. Kavička

Fig. 2. Illustration of (a) hierarchically reduced lookaheads and (b) constant lookaheads.

not used to resolve conflicts encountered in replications at the lowest hierarchy levels (e.g., 3C4 or
3C5). An alternative decision-making support method is used instead.

For a graphic comparison of the consequences of these strategies, selected replications (based
on Table 2) representing the 1st, 2nd and 3rd levels of nesting are shown in Figure 2, whose top
part (a) illustrates hierarchically reduced lookahead durations while the bottom part (b) illustrates
constant lookahead durations.

3.3 Parallel Computations Related to Sequential Simulators Applying RNS

For nested simulations, the separate and extensive problem is associated with the method of their
computation, which is a complex computing job. The complexity of this problem is primarily af-
fected by the following factors:

• Number of conflicts (within both the main simulation and the nested simulations), which
are resolved through testing of the variants by using predictive nested simulations.

• Number of variants tested during the conflict resolution job.
• Number of replications of the nested simulations made for each variant tested.
• Lookahead duration (or the terminating condition) applied in the nested simulations.
• Number of main simulation replications.

The occurrence of conflicts within the nested simulations can be associated with recursive
execution of additional nested simulations, which brings about exponential growth of the number
of launched simulation runs. The recursive propagation of the simulation can be limited through
the above-mentioned maxLevel parameter. Conflict resolution in nested simulations working on
the lowest permitted nesting level is based on the application of a “non-simulation” deterministic
approach (e.g., by using priority lists, artificial neural networks, multicriterial decision-making
methods, etc.).

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:13

Fig. 3. Dynamic tree reflecting the current state of the computation regarding 3H3(3S0,0,r) shown in Figure 5.

Technical implementation of a nested simulation can benefit from the fact that the nested repli-
cations (working on the same nesting level) run autonomously without affecting one another.
Hence, it is technically feasible, through appropriate implementation, to support multisimulations,
that is, parallel processing of independent simulations/replications. Appropriate hardware means
are supposed to be utilized for this.

The evolution of one main replication (dS0,0,r) within which RNS are applied in support of
decision-making can be presented by using the dynamic rooted tree Y t(dS0,0,r). For any specific
real-time instant t (t∈〈 ts, tf), where ts is the time replication, dS0,0,r is started and tf is the time in
which this replication is completed, it holds that the tree contains (i) a node-root mirroring replica-
tion dS0,0,r and (ii) potentially additional nodes corresponding to all started and not yet completely
computed replications of nested simulations from the set dHb (dS0,0,r), where the parameters d and
b are fixed.

When starting computation of new nested replications (at a real-time instant t, t∈〈 ts, tf 〉), ap-
propriate new leaves must be put into the tree Y t(dS0,0,r). The inserted leaf is a descendant of
the parent node that initiated the new replication. Once the computation of each replication—
corresponding to the node-leaf in the tree Y t(dS0,0,r) at the real time t (t∈〈 ts, tf 〉)—is completed, the
leaf is removed from the tree. All replications corresponding to nodes-leaves of the tree Y t(dS0,0,r),
t∈〈 ts, tf 〉, are mutually independent and potentially can be computed in parallel.

By way of illustration, one of the possible configurations of the tree Y τ (3S0,0,r) is shown in
Figure 3. This tree mirrors (for a real-time instant τ) the possible development of the computation
of the set of replications 3H3(3S0,0,r), illustrated graphically in Figure 5. All of the 32 replications
pertaining to the leaves of Y τ (3S0,0,r) are computed in parallel (the computation of 5 replications
is currently suspended because the conflicts are being resolved by using RNS).

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:14 R. Diviš and A. Kavička

The evolution of a complete simulation experiment, which entails a given number of main repli-
cations (dS0,0,r , r= 1. . . mainReplCount), can be represented by means of a dynamic forest. This forest
always includes dynamic rooted trees reflecting the started and not yet completed main replications.
All main replications are independent and potentially can be computed in parallel.

Multisimulations within a computer node can be performed by using more than one process or
more than one thread, whereby the various physical or virtual CPU cores can be used for more
efficient parallel processing of the simulations. Another option for performing simulation consists
of distributing the computations to several computer nodes, typically interconnected by a com-
puter network or through the Internet. As a prerequisite for multisimulations, the simulator must
support:

• Saving the current status of the replication
• Modification of the saved status for preparations for launching the appropriate conflict res-

olution variant
• Serialization of the saved status to a data file

When saving (cloning) the status of a sequential simulation, the simulation process itself must be
suspended in order to ensure a consistent status of the simulation during the cloning procedure. A
complete instantaneous copy of the entire simulation state space is then created. The cloning can
be accomplished in the simulator by using various techniques, for example, by using a component
providing memory management (related to a simulator’s state space) or by mapping the state
variables using metadata.

The simulator MesoRail [35] (used in the case study described in Section 5) saves the status in
the variables (attributes) of the simulation objects (agents). Each state variable includes annotation
(metadata) determining the state variable identifier, method of its serialization/deserialization, and
additional auxiliary information. Each object is also capable of creating a clone, which implicitly
shares the unchanging state variables (whose values do not change during the simulation process).

The data files created must be suitably transferred to the various processes/computation nodes.
For instance, the following can be used depending on the computation method applied:

• Shared memory for computations within a computation node
• Shared file repository or communication via network sockets for distributed computations

The need for communication between or synchronization of the nested simulations does not arise
during the computation itself. When a replication of a nested simulation is over, information on
the results must be transferred to the higher-level replication. To sum up, the following holds for
any sequential simulator applying RNS:

• Any individual replication (of a main simulation or a nested simulation) is executed through
sequential computation.

• If a conflict is encountered during a replication and is addressed via RNS, the replication
is suspended and additional nested replications at a lower hierarchy level are initiated (by
using cloning) and potentially started immediately.

• All main simulation replications can be computed in parallel.
• Mutually independent replications of nested simulations (under the same main replication

dS0,0,r) can also be computed in parallel. Such replications can be identified—at a given
real-time instant t—as leaves of the dynamic rooted tree Y t(dS0,0,r), which is a model of
the computation development.

Algorithm 1 can be additionally detailed with respect to the parallelization of the replication
computations. The pseudocode of Algorithm 2 represents the control program for the parallel

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:15

Table 3. Specifications of Symbols Related to the Control Algorithm 2

Symbols Specifications

MainSimulation()
Main program launching the parallel computation of the main
simulation replications.

RunRepl(i,j,k,L)
Recursive subprogram launching replication dSi,j,k working on the
L-th level of nesting.

Initialize(i,j,k,L)
Subprogram for initialization of replication dSi,j,k working on the
L-th level of nesting.

SaveResult(i,j,k,L)
Subprogram for saving the results of replication dSi,j,k working on
the L-th level of nesting. The results include replication evaluation
according to the relevant optimization criterion.

MultirunVariant(i,j,L)
Subprogram for the parallel computation of replications dSi,j,k

(k = 1. . . nestReplCount) belonging to the j-th variant of resolution of
the i-th conflict.

Simulate()
Basic routine of the simulation engine implementing the life cycle
of the replication run.

SelectOptim(i)
Function selecting the optimum variant from among the simulated
variants for resolution of the i-th conflict (each variant is evaluated
by using the function CrOptim).

EstimOptim(i)
Function estimating (by the “non-simulating” deterministic
approach) the optimum resolution of the i-th conflict.

FinishPoint(),
ConflictPoint()

Boolean functions deciding whether a conflict occurred in the
running replication/whether the condition for termination of the
replication is met (based on the parameter stopCond).

ContinueVariant(i,j)
Subprogram setting parameters for continuation of the run of a
replication (following occurrence of the i-th conflict) for the
conditions of the j-th resolution variant.

conflictID Global variable (conflict counter).
currConflict,
bestVariant, k, r, v

Auxiliary variables.

computations related to sequential simulators applying RNS. It uses some of the symbols listed in
Table 1 and introduces additional symbols as defined in Table 3.

The keywords “parbegin” and “parend” are used in the pseudocode. Computations of the subpro-
grams whose calls are encapsulated through those keywords are made in parallel (if the appropriate
computation means are available).

Examples of completed runs of Algorithm 2 with different settings of the parameter maxLevel
are graphically outlined in Figures 4 and 5. The symbols are as in Figure 1.

3.4 Possibilities of Sharing Computations

From the viewpoint of one arbitrary set of replications dHb(dS0,0,r), the RNS method (applied to the
resolution of conflicts) effectively uses/shares computations among selected replications. When
a replication X ∈ dHb(dS0,0,r) is suspended at an instant t of the simulation time because of the
occurrence of a conflict (decision point), replication X is cloned for triggering the predictive nested
simulations. Those nested simulations always implicitly share the results of existing computations

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:16 R. Diviš and A. Kavička

of replications that are hierarchically superior to replication X. This principle can be illustrated
on the example of a currently running computation (graphically shown in Figure 3) as follows:
replications 3S8,1,1 , 3S8,1,2 , 3S8,1,3 , 3S8,2,1 , 3S8,2,2, and 3S8,2,3 share a portion of the computation of the
replication 3S7,1,1. The last-mentioned replication follows up the computation of replication 3S1,3,3 ,
which uses the existing results of the replication 3S0,0,r.

Other options to improve the effectiveness of computations of replications from multiple sets
dHb(dS0,0,r), r = 1. . . mainReplCount (where the parameters d and b are fixed) are rather limited
both as regards sharing of parts of their computations and as regards elimination (pruning) of
some non-promising nested simulations. This is so because all replications of both the main

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:17

Table 4. Sharing Computations by Replications from 1H3(1S0,0,r) and 2H3(2S0,0,r)

Basic scenario
Sc0203

Depth-extended scenario
Sc0303

Common computationReplications from the set
1H3(1S0,0,r)

Matching replications from
the set 2H3(2S0,0,r)

1S0,0,r
2S0,0,r until conflict 1C1 (1C1 =

2C1)
1S1,1,2 | 1S1,1,3
1S1,2,1 | 1S1,2,2 | 1S1,2,3
1S1,3,1 | 1S1,3,2

2S1,1,2 | 2S1,1,3
2S1,2,1 | 2S1,2,2 | 2S1,2,3
2S1,3,1 | 2S1,3,2

complete replications

1S1,1,1
2S1,1,1 until conflict 1C2 (1C2 =

2C2)
1S1,3,3

2S1,3,3 until conflict 1C4 (1C4 =
2C4)

simulation and the nested simulations have differently set the seeds of their pseudorandom number
generators responsible for producing the occurrences of random phenomena during the simula-
tions. This means that the evolutions of all replications are principally different and the results
obtained from all of them must be taken into account in the computation of the statistical traffic
indicators reflecting the appropriate optimization criterion.

The possibility of sharing parts of computations can potentially be used as well for selected
replications computed within different scenarios of a simulation experiment. This concept can be
applied with success, for example, to what is called depth-extended scenarios. If a scenario ScA is
looked upon as a basic scenario, then a scenario ScB is a depth-extended scenario to ScA if:

• the scenarios differ in the value of the maxLevel parameter, specifically
maxLevelScB > maxLevelScA;

• the same procedure is applied to the two scenarios when setting different pseudorandom
number generator seeds before starting to use them within newly initiated replications
(of both the main simulation and the nested simulations), in other words, two matching
replications in the different scenarios have identically set the seeds;

• all the remaining parameter values are identical in the two scenarios.

Computation sharing among depth-extended scenarios can be illustrated on the demonstra-
tion sets 1H3(1S0,0,r), 2H3(2S0,0,r), and 3H3(3S0,0,r), which are related to the r-th replications
of main simulations belonging to the scenarios Sc0103, Sc0203, and Sc0303 (maxLevelSc0103 = 1,
maxLevelSc0203 = 2 and maxLevelSc0303 = 3). The sets are depicted graphically in Figures 1(b), 4, and
5, respectively. If a complete computation is first made according to the basic scenario Sc0103 that is
associated with the computation of replications from the set 1H3 (1S0,0,r), this computation can be
extended. When the depth-extended scenarios Sc0203 and Sc0303 associated with the computation
of replications from the sets 2H3(2S0,0,r) and 3H3(3S0,0,r) are being computed, selected computa-
tions from the basic scenarios potentially can be shared. This selected computation sharing can
be demonstrated in the example (see Table 4) in which replications from 2H3(2S0,0,r) use parts of
computations of replications from 1H3(1S0,0,r).

The testing exercise for the different methods of implementation of nested simulations included
testing of computations related to the depth-extended scenarios (with the aim to optimize selected
computations). The computation experiments were aimed to test selected scenarios of the case
study described in Section 5. Data obtained from simulation testing experiments [36] revealed
that this procedure does not improve appreciably the effectiveness of the computations based on
the use of RNS, and it was not applied within the case study described later. The main reasons why
the above procedure was not recommended are as follows:

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:18 R. Diviš and A. Kavička

Fig. 4. Hierarchically ordered set of completely computed replications: 2H3(2S0,0,r).

Fig. 5. Hierarchically ordered set of completely computed replications: 3H3(3S0,0,r).

• High demands put on the memory for saving (although temporarily) a rather high number
of simulator states

• Rather high time demands due to the frequent loading of the simulator states.
• Relatively low computational time savings against the computation within which the above

procedure is not applied

Nevertheless, the applicability of the concept of depth-extended scenarios can always be re-
examined during the modelling of other systems in order to determine whether marked com-
putation time savings can be achieved.

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:19

4 GUIDELINES FOR EXPLOITING NESTED SIMULATIONS WITHIN APPLICATION

PROJECTS

The main goal of the recommended guidelines described later is to apply the best possible config-
uration of automated support to optimization/decision-making by using RNS for a defined time
limit that is available for processing a simulation study/project. The main task is to select good
solutions/decisions when conflict situations are encountered. The solutions to resolve conflict sit-
uations (by using RNS) should match those that would (optimally) be adopted by experienced
dispatchers.

Efficient use of the computing resources available for the simulations using the RNS approach
is a next goal. Once the first phase of the recommended procedure is over, the computer resources
(computer cluster, a high-performance PC, etc.) are divided into logical processing units—LPUs—
each LPU being assigned for complete computation of one replication of the main simulation.
This principle of static assignment of the computing resources is aimed to support the execution
of parallel computations of multiple main replications. This approach can be applied on a single
computer, on a computer cluster, or in a cloud environment. Moreover, no specific properties of
computing resources or the presence of specific software or a particular tool for planning processes
are generally required.

Work on a simulation project/study is always associated with the analysis of the output indica-
tors emerging from the main replications within the set M (M = { dS0,0,r | r = 1. . . mainReplCount}).
Before executing a simulation using RNS, a number of input parameters (i.e., the RNS configura-
tion) must be set. Some of the parameters (stopCond, mainReplCount) must be set for the complete
simulation study; other parameters are derived based on the time available for performing the
whole simulation study (totalTimeLimit) and on the hardware available for the computations of
the replications.

The following proposed procedure is divided into 3 phases (illustrated in Figure 6): the initial,
probing phase includes rapid (rough) assessment of the computational complexity (and hardware
requirements for the simulations) for various RNS configurations. Based on the result of this
phase, the computer tools are divided into LPUs. This division into LPUs is applied within the
2 subsequent phases for parallel computations of multiple main replications. In the second, pilot
phase, pilot computations are executed for selected simulation experiment scenarios analyzing
the quality of the resulting solution and the demands put by the scenarios on the computing re-
sources. The final phase includes completion of computations belonging to the selected (“winner”)
scenarios from the pilot phase in order to obtain statistically significant results (characterizing
the operation examined).

The procedure is used to examine one specific version of the system investigated. Where the
simulation study tests multiple system versions, the procedure must be performed repeatedly.
From the practical aspect, a time limit must be set for the examination/optimization of one system
version (versionTimeLimit). The total study/project time limit (totalTimeLimit) can be uniformly
divided into stages, each devoted to the examination of one system version (within the project)
unless reasons exist why the versions can be expected to vary in time requirements. The phases
of the proposed procedure are described in the following sections.

4.1 Probing Phase

The preparatory probing phase includes a small number of differently parameterized simulation
experiments (with a small number of main replications) performed to obtain a basic presumption
of the computational and disk space demands of future complex computations. The experiments
use an appropriate lookahead time (or multiple lookahead times) for the RNS, taking into account

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:20 R. Diviš and A. Kavička

Fig. 6. Procedure of RNS-based investigation reflecting a particular version of the system examined.

the nature of the system being examined. Maximum limits can be set in this phase both for the
computation time of one main replication (replMaxLimit) and for the total duration of this phase
(probingMaxLimit).

The depth-extended scenario presented in Section 3.4 can be potentially employed during se-
lected experiments, thereby achieving computing time savings.

The probing process forms the basis for a draft concept of the technical solution of parallel
calculations on the computer system available. This draft concept reflects the requirements for
(i) the highest possible parallelization of the computations within the simulation experiment and
(ii) an adequate memory space needed for the computations. In this way, the available computing
resources (computer cluster, multicore PC, etc.) are divided into LPUs. Each LPU has available
system tools adequate for simulation of one main replication. It is assumed that each LPU addresses
parallelization of the computations of nested replications (e.g., by using multithreading) under the
umbrella of a given main replication.

Where feasible, this technical solution is then applied within the entire experimental stage (i.e.,
during the simulation testing of all of the system versions examined).

4.2 Pilot Phase

The pilot phase focuses on the execution of a fraction of the main replications for all scenarios
planned for executions. The scenarios (RNS configurations) differ specifically in (i) the numbers of
nesting levels (set through the maxLevel parameter) and (ii) the numbers of replications executed
within nested simulations (set through the nestReplCount parameter).

The executions of main replications (the tasks) are planned by using the FCFS (First Come First
Served) approach always to the first free LPU.

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:21

In order to specify selected scenarios, the computation of which should be completed within the
final phase, it is necessary to evaluate the appropriate traffic indicator values (criterial function val-
ues). In addition, the expected computational (time) demands associated with the completion of the
computation of the required number of main replications (mainReplCount) for each investigated
scenario must be estimated. A coarse estimate of the total duration (estimTN) of the future final ex-
periment computation (consisting of N main replications and applying parallel computations on
m LPUs) is calculated by extrapolation based on the durations of the various main replications of
the appropriate pilot experiment. The pilot experiments use n replications of the main simulations
(N � n). For each experiment, the durations of the computations of its main replications are ob-
tained. They are used to calculate the mean duration of one main replication (meantn), including the
95% confidence interval. The duration estimate for one replication is calculated as replt = uppertn +
costt, where uppertn is the upper endpoint of the confidence interval (regarding meantn) and costt rep-
resents overhead time needed by the planner for (i) starting up a new process, or new replication;
(ii) harvesting the process results; (iii) terminating the process; and (iv) the planning process itself.
The calculation of the (pessimistic) estimate can be formalized as:

est imTN =
N × r epl t

m
+ r epl t (1)

Maximum time limits can be set in this phase both for the computation time of one main replication
(pilotReplMaxLimit) and for the total duration of this phase (pilotMaxLimit).

4.3 Final Phase

First, the final phase serves to evaluate the estimates from the preceding phase and to select suitable
simulation scenarios for completing their computations. Then, selected scenarios are completely
computed and their outcomes are used for traffic evaluation of the tested version of the system
examined.

If the initially proposed technical solution of parallel computations does not work well for some
versions of the system (e.g., because of inadequate memory capacity), the probing experiments
must be repeated. Based on the results, a different approach to the parallelization must be selected.

5 CASE STUDY

This case study is built on the contractual research project entitled “A New Methodology of Rail-
way Station Capacity Assessment,” in which the authors of the present article were engaged. The
project was developed by the Faculty of Electrical Engineering and Informatics, University of Par-
dubice, for the Czech governmental agency SŽDC (Rail Infrastructure Administration) between
2014 and 2016.

The case study analyzed railway traffic through a minor passenger station (Zdice, Czech Re-
public), for a specific timetable. The simulation experiments used an optimization approach based
on minimization of a certain operational railway traffic indicator (the total train delay increment)
with regard to the defined system.

The optimization is achieved through computer simulation incorporating decision-making sup-
port regarding conflict resolution by using reflective nested simulations [34]. The conflict type
examined was related to the requests for allocation of a specific station track for a given time
window coming from more than one (potentially delayed) train.

The simulating system utilized within the case study is composed of three subsystems.

(a) The infrastructure subsystem (the layout of which is shown in Figure 7) was formed within
the frame of an associated editor (called TrackEd). That subsystem realistically mirrors the

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:22 R. Diviš and A. Kavička

Table 5. Selected Characteristics of the Trains

Train type

Engines
count/

wagons
count

Train
length

Train line
Intervals
between

trains

Probab.of
delay

occurrence
(Bernoulli)

Mean delay
(Exponential)

Express 1/7 202 m East→ Central→West 30 min 0.50 420 s

Express 1/7 202 m West→ Central→ East 30 min 0.50 420 s

Regio 2/4 158 m East→ Central→West 10 min 0.33 270 s

Regio 2/4 158 m West→ Central→ East 10 min 0.33 270 s

Regio 1/2 79 m East→ Central→ South 30 min 0.33 270 s

Regio 1/2 79 m South→ Central→ East 30 min 0.33 270 s

Cargo 1/22 336 m East→West 60 min 0.50 1800 s

Cargo 1/22 336 m West→ East 60 min 0.50 1800 s

slope and curve parameters of each track in the appropriate data layer and includes the
following structures:
◦ The track layout of the station, referred to in the case study as Central. Two platforms

in particular are used for passenger trains: Platform 2 (with the adjacent tracks #1 and
#3) and Platform 3 (with the adjacent tracks #2 and #4). Either platform is 300 m long.

◦ Rail lines to the neighboring boundary stations referred to as South, West, and East. The
line to the South station is a single-track line; the lines to the West and East stations
are two-track lines. The total distance between the West and East boundary stations is
20 km.

◦ Simplified track layouts of the South, West, and East boundary stations.

(b) Passenger trains predominate in the traffic subsystem, although freight trains also con-
tribute. The timetable (set up by an SŽDC railway expert) is also defined, characterizing
traffic during the rush hours of 08:00 to 10:00 a.m. (Figure 8) and encompassing 46 trains
in total. Matching the traffic timetable, a static station track occupation plan is available
for the Central station, primarily stating which station tracks should be allocated to spe-
cific trains (see Figure 8). Ideally, tracks #1, #2, and #3 should be allocated to the trains. Six
station tracks are available for alternative allocations in case the plan cannot be adhered
to in some traffic situations. Tracks #6 and #8 are primarily intended for alternative alloca-
tion to freight trains while the platform tracks #1, #2, #3, and #4 are intended for variant
allocation to passenger trains. The trains entering the system are burdened by random
delays, the characteristics of which were specified by SŽDC experts (note that the vast
majority of the experiments used stochastic simulations). Sets of acceptable alternative
train routes (passing via different station tracks) within the Central station infrastructure
were defined for each train to enable trains to be routed through different trajectories in
different traffic situations. Two types of trains for passenger transport were distinguished:
passenger trains (for regional transport) and express trains (for long-distance transport).
The basic train characteristics are listed in Table 5.

(c) Focus in the control procedure subsystem is mainly on decision-making support in the
resolution of conflicts relating to the allocation of station tracks to the trains entering the
station. Two approaches are available for this:
◦ Nested simulations, primarily testing all the currently acceptable variants of station

track allocation to an arriving train. In addition, simulated is also the variant in which
the arriving train will “only” wait until the track initially determined for it in the static

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:23

Table 6. Priority Lists with Alternatives of Station Track Allocation to Trains

Train

line

Train

type

Count of

trains
Train ID

Train line route Static priority lists

From To (station tracks)

the station
(line track)

the station
(line track) 1. 2. 3. 4.

R1 Express 5 750, 752, . . . , 758 East (E2) West (W2) #2 #4 #1 #3

R2 Express 5 751, 753, . . . , 759 West (W1) East (E1) #1 #3 #2 #4

Os1 Regio 12 7800, 7802, . . . , 7822 East (E2) West (W2) #2 #4 #1 #3

Os2 Regio 12 7801, 7803, . . . , 7821 West (W1) East (E1) #1 #3 #2 #4

Os3 Regio 4 7900, 7902, . . . , 7906 East (E2) South (S1) #2 #4 #1 #3

Os4 Regio 4 7901, 7903, . . . , 7907 South (S1) East (E1) #3 #1 #2 #4

Pn1 Cargo 2 60000, 60002 East (E2) West (W2) #2 #4 #6 #8

Pn2 Cargo 2 60001, 60003 West (W1) East (E1) #1 #2 #6 #8

Fig. 7. Track layout overview reflecting an area of the simulated system.

track occupation plan is made free. The variant that provides the best result (obtained
by using the CrOptim function) is selected for resolving the conflict.

◦ Static priority lists, containing all of the generally acceptable variants of station track
allocation to specific arriving trains. The lists are sorted by element/variant priorities,
the priority of a variant being the higher it is, the more convenient it is from the traffic
aspect. The highest-priority variant matches the solution that complies with the station
track occupation plan. The lists for the case study were prepared in line with the expert
recommendation. The feasible variant that has the highest priority was selected from
the list for each arriving train.

Nested simulations were primarily used for resolving these conflicts, whereas priority lists were
used to select the solutions for conflicts occurring only in the last permitted level of nesting (de-
fined by the maxLevel parameter). A sample of priority lists set up for station track allocation in
the Central station is shown in Table 6. The track labelling is shown in Figure 7. Note that the
priority lists are used in two ways in this case study:

• Selection of one most suitable (“non-simulation”) currently feasible conflict resolution is
applied in the replications on the lowest hierarchy level. In such situations, the priority
lists are the only decision-making supporting tools.

• In the remaining replications, the selection of all currently feasible solutions is performed
above the priority lists. The solutions so selected are then tested within replications of
nested simulations. The selection is the task of the software variant generator VariantsGen,
mentioned in Table 1. Nested simulations are applied in support of decision-making.

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:24 R. Diviš and A. Kavička

Fig. 8. Graphic timetable and track occupation plan for morning rush hour.

5.1 Basic Information on the Simulation Experiments

As regards the completed simulation experiments aimed at testing the railway traffic character-
istics in the Central passenger station (applying the defined timetable), let us sum up the basic
information on the simulating system built within the MesoRail tool.

• The simulation experiments mirror the traffic during the morning rush hour (08:00-10:00
a.m.) in the Central passenger station. In the timetable used (Figure 8), the simulating system
is entered first by trains in the West and East boundary stations (at 07:53 a.m.) and is left as
the last by the train in East boundary station (at 10:08 a.m.).

• A deterministic simulation experiment was performed for initial testing of the ideal appli-
cation of the timetable, with the traffic free from any train delay burden. The experiment
gave evidence that the timetable was conflict free.

• In stochastic simulations, the trains enter the system according to the timetable, with ran-
dom delays generated for them. The decision as to whether a specific train is delayed or not
is taken based on a generator of pseudorandom numbers obeying Bernoulli probability dis-
tribution (the values of the parameter are listed in Table 5). If a train is identified as delayed,
a delay time is assigned to it. The delay times are generated based on the exponential prob-
ability distribution (the mean values are listed in Table 5). The random delay assignment
to the trains follows the principles laid down in SŽDC Directive SM124 – Railway Capacity
Assessment (Směrnice SŽDC SM124 – Zjišťování kapacity dráhy). No random effects other
than the delays were applied in the simulation experiments.

• Each main replication is divided into 2 computation phases applying the same timetable as
outlined earlier. The replication is started with a warming up period during which no data
are collected for statistical processing. Instead, the system is filled with the potentially de-
layed trains. This stage is immediately followed by the main tracking period encompassing
data collection for a post-simulation evaluation of the operational characteristics.

• Alternative station tracks and associated alternative line routes are allocated to the arriving
trains when a conflict arises. Each train is associated with one primary route (containing the
appropriate station track in line with the static track occupation plan) and three alternative
routes using other station tracks (defined in the priority lists, shown in Table 6).

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:25

• A total of 100 replications of each main simulation (mainReplCount = 100) were accom-
plished in order to obtain an adequate range of simulation output data for statistical
processing.

• One version of the system, with one specific timetable and one track layout, was investi-
gated for this case study. This case study was processed by applying the methodical guide-
lines described in Section 4.

• The maximum working (real) time available for examinations (except the probing phase) as-
sociated with one version of the system during the addressing of a real project was postu-
lated to be 200 hours. This is the time during which the appropriate simulation experiments
must be completed and evaluated. It does not include activities required for setting up, veri-
fying, and validating the target simulating system. The maximum time reserved for the pilot
simulations was set at 100 hours (pilotMaxLimit) and another maximum of 100 hours was
planned for simulations related to selected final experiments (finalMaxLimit). In addition,
the maximum time reserved for the probing phase was set to 50 hours (probingMaxLimit).
This means that the maximum time determined for the exploration of the given system
version is 250 hours (versionTimeLimit).

• An overhead time costt= 1 minute was applied in the case study for evaluating the processing
time estimates of the final experiments described next. This time was deliberately overes-
timated somewhat against the true values because the intent was to use rather pessimistic
values of the overhead time in the estimates mentioned earlier.

• The RNS applications used the strategy of hierarchically reduced lookahead duration, with
the primary lookahead duration being invariably set at 30 minutes (a period that realistically
mirrors the operating lookahead of the dispatchers in actual rail traffic).

5.2 Characteristics of Decision-making Supports within MesoRail Tool

The value of the Sum of Weighted Delay Increments (SWDI) indicator encompassing all of the trains
included (46 trains) is evaluated for each replication for optimization purposes. The delay incre-
ment of a train is represented by the difference between the delays at the input into and output
from the simulating system. As mentioned earlier, train inputs and outputs occur always in the
boundary stations (East, West, or South). Each train is connected with a weight reflecting its im-
portance in the traffic. The weights were selected as follows in accordance with the SŽDC Directive
SM124: wExpress = 1.8, wRegio = 1.0, and wCargo = 0.2. When the life cycle of a train is over, the result-
ing increment is multiplied by the weight and the product is input to the SWDI computation. The
case with the lowest SWDI value is rated best when comparing the different courses of traffic.

The traffic character for a simulation experiment E can be expressed through the statistical
indicator meanSWDI, which is typically utilized as a railway infrastructure capacity index in con-
nection with the use of simulation methods (SŽDC Directive SM124). Its value is calculated as the
arithmetic mean of the SWDI-values of the replications belonging to the experiment E and is ob-
tained through the function CrOptim. The 95% confidence interval is also calculated for the mean.
The half-width of this interval can be expressed either as the absolute value (denoted as halfWidth)
or by its relative value (referred to as relatHalfWidth), which is the ratio of the absolute value to
the corresponding mean value:

relatHal fW idth =
hal fW idth

meanSWDI
(2)

The meanSWDI indicator is used to evaluate different conflict resolution variants; the vari-
ant/experiment possessing the lowest meanSWDI value is selected as optimal. This indicator is
also used for the evaluation of the primary experiments consisting of main replications.

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:26 R. Diviš and A. Kavička

The statistical indicator meanRelatHalfWidth can be used for global evaluation of the attained
precisions of the meanSWDI values (from multiple conflict resolution variants). This indicator is
the mean of the relatHalfWidth values of all of the conflict resolution variants considered.

Note: Nested simulations are not used in simulation experiments for which maxLevel = 0: con-
flict resolution within the main replications are based on the sole use of the priority planning
method.

5.3 Comparative Simulating System Developed in Villon Simulation Tool

To enable the results of certain computations within a mesoscopic simulating system (executed
in the MesoRail tool) to be evaluated, a matching simulating system working on the microscopic
level of detail was created within the Villon software tool. The system included the same track
infrastructure, the same timetable, and the same input train delay generation strategy as MesoRail.
Conflict resolution in Villon is based solely on priority planning using the same priority list as are
those shown in Table 6.

Villon is routinely used to process simulation studies for big railway companies and has been
successfully validated by the SŽDC with respect to the (i) train runtimes, (ii) train run tachograms,
(iii) models of technological traffic processes, and (iv) performance of the interlocking systems.

Although either simulator works on its own level of detail, it appeared convenient to assess
the movements of trains in MesoRail by coarse comparison with the corresponding movements in
Villon.

Deterministic simulations using the specified timetable (Figure 8) were first performed in both
simulation tools. The train runtimes were recorded for all trains during the simulations. The rel-
ative difference (relDiff) of the train runtimes was calculated for a comparison. The relDiff value
for a specific train is calculated as the ratio of the absolute value of the difference between the
train’s runtimes in the MesoRail and Villon tools, respectively, to the lower of the two runtimes:
relDiff = (|TMeso− TVillon| / min(TMeso , TVillon)) × 100 [%]. The maximum relative difference for one
train was 0.6 % and the mean relative difference for all of the trains simulated was 0.3%. Since the
relative differences did not exceed the a priori determined boundary limit of 5%, it was concluded
that the mesoscopic model in the MesoRail simulator works on the required level of precision. A
comparison of the results collected from the stochastic simulations follows.

5.4 Computer Cluster Features

The computations of all simulation experiments within the case study were performed on a com-
puter cluster having available a data repository (96 TB disk memory divided into 24 HDDs) and 4
computer nodes. Each node was equipped with (i) four Intel XEON 12-core processors, the Hyper-
Threading (HT) technology enabling parallel execution of 96 threads; (ii) 384 GB RAM; and (iii)
an SSD disc (with 1TB capacity) for the operating system. The cluster is interconnected via a 10
GB Ethernet network, serving for communication with the repository and mutually between the
nodes. The CentOS Linux 7 operating system was run on the cluster.

5.5 Probing Phase

Selected probing experiments applying the RNS approach were first performed within the probing
phase for the initial identification of the computational characteristics of the nested simulations.
A number of different experiment configurations with different extents of nesting (maxLevel ≤ 3)
were applied and different numbers of nested replications (nestReplCount ≤ 20) were used. The
mean memory demand per main replication was found to be about 32 GB, although requirements

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:27

Table 7. Pilot Experiments Applying 16 Replications of the Main Simulations

Simulated period: 8 to 10 a.m. (morning peak traffic) Number of LPUs: 16

Primary lookahead duration for the nested simulations: 30 minutes

1 2 3 4 5 6 7 8 9 10

max
Level

nest
Repl

Count

main
Repl

Count

mean SWDI±
halfWidth

(main)

mean Relat
Half Width

(nest.)

mean RNS
ConflCount

mean
ReplCount

meant16 ±
halfWidth

(main)

realT16
(main)

estimT84
(main)

[−] [−] [−] [min] [−] [−] [−] [h] [h] [h]

Sc0000p 0 0 16 32.5 ± 7.0 − 0 1 0.10 ± 0.00 0.1 0.7

Sc0103p 1 3 16 26.3 ± 6.5 0.13 13 84 0.43 ± 0.06 0.7 3.2

Sc0105p 1 5 16 26.2 ± 6.5 0.08 12 138 0.47 ± 0.08 0.8 3.5

Sc0107p 1 7 16 26.2 ± 6.6 0.06 12 193 0.63 ± 0.11 1.1 4.7

Sc0110p 1 10 16 26.2 ± 6.5 0.05 12 276 0.84 ± 0.14 1.3 6.2

Sc0120p 1 20 16 26.2 ± 6.5 0.03 12 554 1.83 ± 0.26 3.1 13.2

Sc0203p 2 3 16 26.2 ± 6.5 0.08 224 1401 2.72 ± 0.75 5.2 21.8

Sc0205p 2 5 16 26.1 ± 6.6 0.05 363 3854 7.38 ± 2.51 20.7 62.0

Sc0207p 2 7 16 − − − − _ 23.0 * −
Sc0210p 2 10 16 − − − − _ −** −
Sc0220p 2 20 16 − − − − _ −** −

Sc0303p 3 3 16 − − − − _ 23.0 * −
Sc0305p 3 5 16 − − − − _ _** −

Σ 79.0

*The computations (related to 16 main replications) were not completed within 23 hours of the real-time (assump-
tion: estimT84 > 70 hours).
**The computations were not initiated (their durations were anticipated to be longer than the durations of the previous
experiments applying the same values of the maxLevel parameter and the lower values of the nestReplCount parameter).

for allocation of up to 46 GB were also encountered in selected main replications. The total time
consumed for completing the probing phase was 50 hours.

To enhance the efficiency of the computing operations, the computer cluster was divided (based
on findings from the probing experiments) into LPUs. Each unit had available system tools ade-
quate for the simulation of one main replication. Taking into account the peak demand for memory
(46 GB per main replication) and the anticipated use of complex RNS configurations, 96 GB mem-
ory capacity was reserved for each main replication. To satisfy this requirement, the cluster was
divided into 16 LPUs. Thus, each LPU had available 96 GB memory and one physical CPU (24
threads using HT technology). Hence, up to 16 main replications could be run in parallel on a
cluster and each main replication can utilize 24 threads for parallel runs of the relevant nested
simulations.

It holds for the computations associated with one specific final simulation experiment that
each LPU is associated with one specific computation task represented by the set of replica-
tions dHb (dS0,0,r), where the parameters r, d, and b are fixed (r ∈ 〈 1. . . 100 〉, d ∈ {0,1,2,3}, b ∈
{0,3,5,7,10,20}). This means that one computation task is represented by the computation of one
main replication, including all of its hierarchically subordinated nested replications.

5.6 Pilot Phase

A total of 13 candidate scenarios were proposed for testing in this phase: one scenario (Sc0000p)
was planned without the use of nested simulations and 12 scenarios were planned to use RNS

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:28 R. Diviš and A. Kavička

(Table 7). The structure of the scenario identifiers was ScXXYYp, where XX expressed the settings
of the parameter maxLevel and YY reflects the value of the parameter nestReplCount.

Based on the logical division of the cluster into 16 LPU explained earlier, it was postulated for
the pilot phase that the scenarios should include 16 replications of the main simulations (mainRe-
plCount = 16).

Rough estimates of the time needed to complete the computation of the scenarios in the final
phase, estimTN, were obtained by using Equation (1). Thus, the following settings are used in this
study: n = 16, N = 84, m = 16, costt = 1 min. The meant16 and estimT84 values for the different scenarios
are listed in Table 7.

Before setting the pilotMaxLimit parameter, its impacts on the future final computations had
to be considered. In this context, the maximum duration in real time (tentatively denoted maxT84)
admissible for future completion of the 84 main replications for each scenario in the subsequent
final phase had to be set. Taking into account the 100 hours reserved for the whole final phase, the
above time was set at maxT84 = 70 hours in the case study. This setting was driven by the require-
ment to enable potential execution of a maximum of one appreciably time-consuming simulation
experiment following the appropriate scenario in the final phase. If the “maximalist” calculation is
performed in reality, the remaining time of the final phase is potentially used for shorter RNS-based
experiments and for the computation of one scenario in which RNS are not applied.

For the determination of the pilotMaxLimit parameter, the estimation of the real time required
for the completion of the 84 replications (estimT84) of the final scenario can be alternatively ex-
pressed as a function depending on the estimate of the duration of the appropriate pilot compu-
tation (estimT16) executing 16 replications. If the time replt is the same in the general calculation of
the two estimates, then the function can be expressed from Equation (1) as:

est imT84 = 3.125 × est imT16 (3)

Since estimT84 ≤ maxT84 (maxT84 = 70 hours), Equation (3) can be rearranged to obtain the pilot
calculation duration estimate as follows: estimT16 ≤ (0.32 × maxT84) = 22.4 hours. In this context,
the pilotMaxLimit parameter was set at 23 hours.

Table 7 lists the processed results of the pilot experiments. Columns 1 and 2 include the max-
imum permitted numbers of levels of nesting (maxLevel parameter) and the numbers of nested
replications applied to the testing of the conflict resolution variants (nestReplCount parameter).
Column 4 lists the main simulation results: the meanSWDI indicator values, including the half-
widths of the 95% confidence intervals (halfWidth). The calculation of the data in this column was
based on the processing of the data from the main replications. Column 5 displays data of the
meanRelatHalfWidth indicator, which is the outcome of the processing of data obtained from all
nested replications for the appropriate scenarios. The data document the mean relative precision
of determination of the meanSWDI indicator (obtained from the nested simulations) for different
scenarios, particularly for different settings of the nestReplCount parameter.

The next two columns represent the mean numbers of conflicts that were addressed via
RNS (meanRNSConflCount) and the mean numbers of replications (meanReplCount) for the sets
dHb(dS0,0,r), where r = 1. . . 16 and the superscript d and subscript b for each scenario match the
values in columns 1 and 2. Scenario Sc0205p can serve as an example where the sets 2H5(2S0,0,r),
r = 1. . . 16 contained an average of 3854 replications and 363 conflicts addressed via RNS.

Column 8 contains information on the mean duration of one main replication (meant16), including
the half-widths of the 95% confidence intervals. The last two columns display information on the
observed global periods of the real time (realT16) required to perform the pilot experiments and on
the estimates of the expected total periods of the real time (estimT84) required to complete the final
experiments (84 replications).

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:29

The results in Table 7 document that the pilot experiment computations were fully completed
for 8 scenarios while for 2 scenarios the computations were prematurely terminated because the
time allocated had been spent before completing the experiments. For 3 proposed scenarios, the
computations were not even initiated with regard to the fact that the preceding scenarios with the
same number of levels of nesting (maxLevel) and a lower number of nested replications (nestRe-
plCount) had been too time-consuming. The total time required for completing the pilot phase was
79 hours.

The results demonstrate that the use of scenarios applying 3 levels of nesting is unfeasible be-
cause the computation lasts too long, exceeding the specified time frame.

Table 9 includes the results of the completed simulation experiments using those scenarios
for which the pilot computations had been prematurely terminated when applying the rules de-
scribed. Such computations would not be made in a real project and are presented here by way of
illustration.

5.7 Final Phase

Once the pilot experiments were over, the scenarios Sc0120p and Sc0205p were selected for comple-
tion. The meanSWDI indicator values, which are calculated from the data of the main replications,
were nearly identical (including the halfWidth values) for all of the completed pilot experiments
that applied RNS. Therefore, lower values of the meanRelatHalfWidth indicator (mirroring the re-
sults of computations of the nested simulations examining the conflict resolution variants) were
given preference when selecting the above-mentioned scenarios, and the estimated final experi-
ment completion times (estimT84) were taken into consideration. The scenario Sc0000p was com-
pleted because this offered the opportunity to compare the results between the scenarios applying
RNS and scenarios in which the nested simulations approach is not applied.

The meanSWDI indicator value was around 25 minutes for the scenarios Sc0120 and Sc0205 using
RNS and approximately 33 minutes for the scenario (Sc0000) in which nested simulations are not
used (Table 8). Seen from this perspective, the application of RNS for decision-making support
provided up to 25% better results compared with simulations in which no RNS were used, applying
only static priority lists for conflict resolution.

By way of illustration, Table 8 also includes the results of scenarios that were not selected for
completion after the pilot phase but were not classed as unsuitable with respect to the duration of
the final calculations. The results would not be completed in a real project.

Sixty-nine hours were spent on the final experiments (Sc0000, Sc0120 and Sc0205), preceded by
76 hours of pilot experiment calculations and 50 hours of probing experiments. Thus, the total
time of 250 hours was not exceeded.

If a time frame different from the initial 200 hours is postulated for testing one version of the
system, then different scenarios for testing in the pilot phase must be devised based on the new
specific time frame. Subsequently, a different criterion must be applied to the selection of the
scenarios to be used for execution completion in the final phase. For instance, if the time frame
is significantly shorter than the 200 hours, then the final phase will apparently use a scenario
(scenarios) applying no more than one level of nesting (i.e., the setting would be maxLevel = 1).

5.8 Evaluation of the Results

Beyond the framework of the final phase, the results of the experiments described here were
assessed by comparison with those of the simulations in the well-established Villon simulator.
As mentioned in Section 4.3, the simulating system configuration was identical to that in the
MesoRail tool. Priority lists were used for decision support in the stochastic simulations. The

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:30 R. Diviš and A. Kavička

Table 8. Results of the Complete Experiments Applying 100 Main Replications

Simulated period: 8 to 10 a.m. (morning peak traffic) Number of LPUs: 16

Primary lookahead duration for nested simulations: 30 minutes

1 2 3 4 5 6 7 8 9 10

max
Level

nest
Repl

Count

main
Repl

Count

mean SWDI
± halfWidth

(main)

mean Relat
Half Width

(nest.)

mean RNS
ConflCount

mean
ReplCount

realT84
(main) estimT84

(main)

realT16
(main)

[−] [−] [−] [min] [−] [−] [−] [h] [h] [h]

Sc0000 0 0 100 32.6 ± 3.2 − 0 1 0.7 0.7 0.1

Sc0120 1 20 100 25.2 ± 2.5 0.03 13 567 11.9 13.2 3.1

Sc0205 2 5 100 24.6 ± 2.5 0.05 386 4120 56.5 62.0 20.7

Σ 69.1

Sc0103 1 3 100 25.4 ± 2.6 0.13 13 84 2.7 3.2 0.7

Sc0105 1 5 100 25.2 ± 2.5 0.08 13 140 3.2 3.5 0.8

Sc0107 1 7 100 25.2 ± 2.5 0.06 13 197 4.1 4.7 1.1

Sc0110 1 10 100 25.3 ± 2.6 0.05 13 283 6.2 6.2 1.3

Sc0203 2 3 100 24.9 ± 2.6 0.08 236 1504 24.2 21.8 5.2

Table 9. Illustration of the “Non-promising” Experiments from Table 7

Simulated period: 8 to 10 a.m. (morning peak traffic) Number of LPUs: 16

Primary lookahead duration for the nested simulations: 30 minutes

1 2 3 4 5 6 7 8 9 10

m
L

n
R
C

m
R
C

mean SWDI
± halfWidth

(main)

mean Relat
Half Width

(nest.)

mean RNS
ConflCount

mean Repl
Count

meant16 ±
halfWidth

(main)

realT16
(main)

estimT84
(main)

[−] [−] [−] [min] [−] [−] [−] [h] [h] [h]

Sc0207p 2 7 16 26.1 ± 6.6 0.04 490 7214 17.9 ± 10.1 80.0 174.9

Sc0210p 2 10 16 26.0 ± 6.6 0.03 704 14791 34.6 ± 13.1 91.8 216.2

Sc0220p 2 20 16 26.0 ± 6.6 0.02 1394 59085 185.0 ± 68.3 560.6 1583.4

Sc0303p 3 3 16 26.2 ± 6.6 0.06 2881 18010 31.8 ± 20.1 127.2 324.4

Sc0305p 3 5 16 26.0 ± 6.6 0.04 7315 74670 185.6 ± 116.8 741.8 1890.1

meanSWDI ± halfWidth indicator obtained after 100 replications was 32.1 ± 3.7 minutes. The dif-
ference in the meanSWDI indicator between this computation and the computation for the scenario
Sc0000 in the MesoRail tool was lower than 2%, demonstrating a very good precision of the Meso-
Rail computations. A comparison with the results of the scenarios Sc0120 and Sc0205 gives evidence
of superiority of the optimization approach in MesoRail (applying RNS), providing a value of the
meanSWDI indicator roughly 22% better than the model that was set up in Villon.

These facts give evidence that it is worthwhile to make efforts to additionally improve the mod-
elling capabilities of railway traffic simulators, for example, by using the RNS concept as a decision-
making support.

Therefore, where the throughput/capacity of the infrastructure of a passenger railway station is
examined, the RNS approach can be used advantageously in simulations testing diverse versions

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

Reflective Nested Simulations Supporting Optimizations 1:31

of the system analyzed. Based on the results of simulations of various traffic versions, the versions
can be compared and sorted by the operational characteristics obtained.

6 CONCLUSIONS

Sequential railway traffic simulations currently constitute a routine approach to the examination
and optimization of existing as well as planned railway systems. In this context, considerable at-
tention is paid to the development of novel approaches and methods contributing to quality im-
provements of the modelling options and optimization techniques for the applicable simulators.

The method of reflective nested simulations is one of the feasible optimization approaches to
automated decision-making support in the domain of operational problems arising during traffic
simulations. The case study presented here used nested simulations in support of decision-making
associated with the resolution of conflicts regarding the allocation of platform tracks in a passenger
railway station. The use of this method appeared to be successful: the nested simulations concept
proved to have a better optimization potential than the static priority planning approach routinely
used in existing simulators.

The new theoretical and practical results of the R&D activities described in this article include
the following:

• Framework guidelines for the use of nested simulations within application projects where spe-
cific time limitations for their executions exist. In this approach, the life cycle of the exper-
imental stage of examination of one system version is divided into two principal phases.
The pilot phase includes computation of relative low numbers of main replications for the
diverse simulation experiment scenarios. Once the time demands of the computations are
known, the durations of the final computations (i.e., computations encompassing the full
planned number of main replications) are estimated by using expertise in the technical so-
lution of the computation parallelization issue (regarding sequential simulators applying
RNS). The estimates are used, in conjunction with the applicable criterion, to select suitable
scenarios for the final phase.

• The specific control algorithm that synchronizes the parallel executions of independent repli-
cations related to sequential simulators applying RNS. The algorithm utilizes a model of a
dynamic rooted tree whose leaves reflect all (sequential) replications that can be computed
in parallel.

• Hierarchically reduced lookahead durations used within nested simulations. This lookahead
concept is very suitable for application in the rail traffic domain, where it quite naturally
reflects the traffic forecasting information that is available to the dispatchers.

• Technical solution for implementation of the parallel computations on a computer cluster or
another computing system, which can be realized through LPUs. Such units make paral-
lel computations of the main replications. The parallel computations of nested replications
belonging to one main replication and associated with the testing of different solution vari-
ants for the operational problems addressed are always performed on one processing unit
by applying the multi-thread approach.

• MesoRail software, a tool designed for railway traffic simulations on a mesoscopic level of
detail. This tool was used for the implementation of the conceptual approaches and for
supporting computations on computer clusters and on PCs.

Like in the MesoRail tool, the nested simulations method can be incorporated into existing
well-established (commercial) simulation tools, which must be additionally modified for the

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

1:32 R. Diviš and A. Kavička

implementation of the experiments on computer clusters. This expansion of the tools is one of
the ways to improve their optimization capabilities.

If the nested simulations method is implemented on a PC, then the main replications are com-
puted sequentially. The computation time for one main replication can approach that on a cluster
within one logical processing unit (depending on the CPU type in the PC and on the number of
computing threads available for the computations of the nested replications). The main advantage
of the computer cluster (when using the parallelization method described here) is the possibility
of using computations that run N main replications in parallel, which results in a roughly N-fold
acceleration of the computation process compared with a conventional one-processor PC.

The application of reflective nested simulations is beneficial particularly when a not too large
number of acceptable variants must be considered in solving a decision-making problem. The
method is generally applicable mainly in support of medium-term (tactical) and long-term (strate-
gic) planning of not only railway traffic but also of other system types, the analysis of which uses
simulators working on the microscopic, mesoscopic, or macroscopic level of detail. Nested simu-
lations are not recommended for support of short-term (operative) planning or control because of
the high demands put on the computational capabilities and excessive time demands.

Given the high computation demands of the reflective nested simulations, the focus can be on
a deep analysis of the options available for reducing the requirements for memory capacity and
computation time of simulations in question. Specifically, main efforts are expected to be aimed at
reductions of the hierarchically ordered sets of nested replications. The reductions are supposed
to be based (i) on substitution solutions for selected conflicts (using “non-simulation” methods
requiring less demanding computations) and (ii) on the elimination of whole selected replications
that have been identified as non-promising by the heuristic approach. The aim is to find approaches
that will result in a reduction of the computational demands and will be associated with a favorable
relation between the acceleration of the nested simulations and any overall lower of quality of
result. However, it is theorized that these approaches will not be generally applicable but that they
will meet the needs of a particular system.

REFERENCES

[1] N. Adamko and V. Klima. 2008. Optimisation of railway terminal design and operations using Villon generic simula-
tion model. Transport 23, 4 (2008), 335–340. https://doi.org/10.3846/1648-4142.2008.23.335-340

[2] J.-P. Bendfeldt, U. Mohr, L. Muller, and A. RailSys. 2000. System to plan future railway needs. WIT Transactions on
Built Environment 50 (2000), 249–255. https://doi.org/10.2495/CR000241

[3] A. Nash and D. Huerlimann. 2004. Railroad simulation using opentrack. WIT Trans. Built Environ 74 (2004). https:
//doi.org/10.2495/CR040051

[4] M. Zhong, Y. Yue, and D. Li. 2019. Analyzing and evaluating infrastructure capacity of railway passenger station by
mesoscopic simulation method. In 2018 International Conference on Intelligent Rail Transportation, ICIRT 2018, Institute
of Electrical and Electronics Engineers Inc., Singapore, 1–5. DOI:https://doi.org/10.1109/ICIRT.2018.8641593

[5] M. Marinov and J. Viegas. 2011. A mesoscopic simulation modelling methodology for analyzing and evaluating freight
train operations in a rail network. Simulation Modelling Practice and Theory 19, 1 (2011), 516–539. Retrieved November
12, 2019 from www.arpnjournals.com.

[6] NEMO—Netz-Evaluations-Modell bei den ÖBB | Eurailpress Archiv, (n.d.). Retrieved November 12, 2019 from https:
//eurailpress-archiv.de/SingleView.aspx?lng=en&show=16622.

[7] C. F. Tan, L. S. Wahidin, S. N. Khalil, N. Tamaldin, J. Hu, G. W. and M. Rauterberg. 2019. The application of expert
system: A review of research and applications. Journal of Engineering and Applied Sciences 11, 4 (2016), 2448–2453.
Retrieved November 12, 2019 from www.arpnjournals.com.

[8] Alexander Fay and E. Schnieder. 1999. Knowledge-Based Decision Support System for Real-Time Train Traffic Con-
trol. In: N. H. M. Wilson (Ed.), Computer-Aided Transit Scheduling. Springer, Berlin, 347–370.

[9] A. Fay. 2000. Fuzzy knowledge-based system for railway traffic control. Engineering Application of Artificial Intelli-
gence 13, 6 (2000), 719–729. https://doi.org/10.1016/S0952-1976(00)00027-0

[10] K. Komaya and T. Fukuda. 1990. ESTRAC-III: An expert system for train traffic control in disturbed situations. In
IFAC Proceedings 23, 2 (1990), 147–153. https://doi.org/10.1016/S1474-6670(17)52664-6

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

https://doi.org/10.3846/1648-4142.2008.23.335-340
https://doi.org/10.2495/CR000241
https://doi.org/10.2495/CR040051
https://doi.org/10.2495/CR040051
https://doi.org/10.1109/ICIRT.2018.8641593
www.arpnjournals.com
https://eurailpress-archiv.de/SingleView.aspx?lng=en&show=16622
https://eurailpress-archiv.de/SingleView.aspx?lng=en&show=16622
www.arpnjournals.com
https://doi.org/10.1016/S0952-1976(00)00027-0
https://doi.org/10.1016/S1474-6670(17)52664-6

Reflective Nested Simulations Supporting Optimizations 1:33

[11] K. Komaya. 1991. A new simulation method and its application to knowledge-based systems for railway scheduling.
In Proceedings of the 1991 ASME/IEEE Joint Conference on Rail. IEEE, 59–66. https://doi.org/10.1109/rrcon.1991.160928

[12] Y. Larroche, R. Moulin, and D. Gauyacq. 1994. Sepia: A real-time expert system that automates train route manage-
ment. In IFAC Proceedings 27, 12 (1994), 977–982. https://doi.org/10.1016/S1474-6670(17)47601-4

[13] W. Deng, H. Zhao, and H. He. 2018. Research on heavy haul railway dispatching system based on fuzzy expert system.
In DEStech Transactions on Computer Science and Engineering CCNT (August 2018), 317–323. https://doi.org/10.12783/
dtcse/ccnt2018/24719

[14] Y.-H. Cheng and L.-A. Yang. 2009. A fuzzy petri nets approach for railway traffic control in case of abnormality:
Evidence from Taiwan railway system. Expert Systems with Applications 36, 4 (2009), 8040–8048. https://doi.org/10.
1016/J.ESWA.2008.10.070

[15] C. R. Standridge and D. Steward. 2000. Using expert systems for simulation modeling of patient scheduling. Simulation
75, 3 (2000), 148–156. https://doi.org/10.1177/003754970007500303

[16] L. Bai, T. Bourdeaud’huy, B. Rabenasolo, and E. Castelain. 2014. A mixed-integer linear program for routing and
scheduling trains through a railway station. In Proceedings of the 3rd International Conference on Operations Re-
search and Enterprise Systems. SCITEPRESS—Science and Technology Publications, 445–452. https://doi.org/10.5220/
0004863104450452

[17] P. Chakroborty and D. Vikram. 2008. Optimum assignment of trains to platforms under partial schedule compliance.
Transportation Research Part B Methodological 42, 2 (2008), 169–184. https://doi.org/10.1016/j.trb.2007.07.003

[18] A. Azadeh, S. F. Ghaderi, and H. Izadbakhsh. 2008. Integration of DEA and AHP with computer simulation for railway
system improvement and optimization. Applied Mathematics and Computation 195, 2 (2008), 775–785. https://doi.org/
10.1016/j.amc.2007.05.023

[19] D. De Luca Cardillo and N. Mione. 2017. k L-list λ colouring of graphs. European Journal of Operational Research 106,
1 (1998), 160–164. https://doi.org/10.1016/S0377-2217(98)00299-9

[20] M. Bažant and A. Kavička. 2009. Artificial neural network as a support of platform track assignment within simulation
models reflecting passenger railway stations. Proceedings of the Institution of Mechnical Engineers, Part F: Journal of
Rail and Rapid Transit 223, 5 (2009), 505–515. https://doi.org/10.1243/09544097JRRT268

[21] I. Krivý and E. Kindler. 2006. Terminology of nested simulation models. In International Conference on Computer
Systems and Technologies (CompSysTech’06). IIIA.5-1–IIIA.5-6.

[22] E. Kindler. 2010. Nested models implemented in nested theories. In Proceedings of the 12th WSEAS International Con-
ference on Automatic Control, Modelling and Simulation 2010, 150–159.

[23] E. Kindler. 2006. Nesting simulating agents in SIMULA. In 20th European Conference on Modelling and Simulation,
European Council for Modeling and Simulation, Bonn. 526–531. DOI:https://doi.org/10.7148/2006-0526

[24] J. B. Gilmer and F. J. Sullivan. 1999. Multitrajectory simulation performance for varying scenario sizes [combat simu-
lation]. In Winter Simulation Conference Proceedings. Phoenix, AZ, IEEE, 1137–1146. https://doi.org/10.1109/wsc.1999.
816832

[25] J. B. Gilmer and F. J. Sullivan. 2000. Recursive simulation to aid models of decisionmaking. In Proceedings of the Winter
Simulation Conference. IEEE, Orlando, FL, USA, 958–963. DOI:https://doi.org/10.1109/wsc.2000.899898

[26] B. Bonté, R. Duboz, G. Quesnel, and J.-P. Müller. 2009. Recursive simulation and experimental frame for multiscale
simulation. In Proceedings of the 2009 Summer Computer Simulation Conference, Society for Modeling & Simulation
International, Istanbul, Turkey. 164–172. DOI:https://doi.org/10.13140/2.1.3364.3521

[27] M. B. Gordy and S. Juneja. 2010. Nested simulation in portfolio risk measurement. Management Science 56, 10 (2010),
1833–1848. https://doi.org/10.1287/mnsc.1100.1213

[28] M. Hybinette and R. M. Fujimoto. 2001. Cloning parallel simulations. ACM Transactions on Modeling and Computer
Simulation 11, 4 (2001), 378–407. https://doi.org/10.1145/508366.508370

[29] X. Li, W. Cai, and S. J. Turner. 2017. Cloning agent-based simulation. ACM Transactions on Modeling and Computer
Simulation 27, 2 (2017), 1–24. https://doi.org/10.1145/3013529

[30] P. Pecher, J. Crittenden, Z. Lu, and R. Fujimoto. 2018. Granular cloning: Intra-object parallelism in ensemble studies.
In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’18).
ACM, 165–176. https://doi.org/10.1145/3200921.3200927

[31] A. Pellegrini, R. Vitali, and F. Quaglia. 2015. Autonomic state management for optimistic simulation platforms. IEEE
Transactions on Parallel Distributed Systems 26, 6 (2015), 1560–1569. https://doi.org/10.1109/TPDS.2014.2323967

[32] M. Principe, T. Tocci, P. Di Sanzo, F. Quaglia, and A. Pellegrini. 2020. A distributed shared memory middleware for
speculative parallel discrete event simulation. ACM Transactions on Modeling and Computer Simulation 30, 2 (2020).
https://doi.org/10.1145/3373335

[33] J. S. Lee, S. Andradóttir, and R. M. Fujimoto. 2017. Simulation cloning with induced negative correlation. Journal of
Simulation 11, 4 (2017), 391–406. https://doi.org/10.1057/s41273-016-0028-7

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

https://doi.org/10.1109/rrcon.1991.160928
https://doi.org/10.1016/S1474-6670(17)47601-4
https://doi.org/10.12783/dtcse/ccnt2018/24719
https://doi.org/10.12783/dtcse/ccnt2018/24719
https://doi.org/10.1016/J.ESWA.2008.10.070
https://doi.org/10.1016/J.ESWA.2008.10.070
https://doi.org/10.1177/003754970007500303
https://doi.org/10.5220/0004863104450452
https://doi.org/10.5220/0004863104450452
https://doi.org/10.1016/j.trb.2007.07.003
https://doi.org/10.1016/j.amc.2007.05.023
https://doi.org/10.1016/j.amc.2007.05.023
https://doi.org/10.1016/S0377-2217(98)00299-9
https://doi.org/10.1243/09544097JRRT268
https://doi.org/10.7148/2006-0526
https://doi.org/10.1109/wsc.1999.816832
https://doi.org/10.1109/wsc.1999.816832
https://doi.org/10.1109/wsc.2000.899898
https://doi.org/10.13140/2.1.3364.3521
https://doi.org/10.1287/mnsc.1100.1213
https://doi.org/10.1145/508366.508370
https://doi.org/10.1145/3013529
https://doi.org/10.1145/3200921.3200927
https://doi.org/10.1109/TPDS.2014.2323967
https://doi.org/10.1145/3373335
https://doi.org/10.1057/s41273-016-0028-7

1:34 R. Diviš and A. Kavička

[34] R. Diviš and A. Kavička. 2016. The method of nested simulations supporting decision-making process within a meso-
scopic railway simulator. In 28th European Modeling and Simulation Symposium (EMSS’16), Dime University of Genoa,
Larnaca, Cyprus. 100–106.

[35] R. Diviš and A. Kavička. 2015. Design and development of a mesoscopic simulator specialized in investigating capac-
ities of railway nodes. In 27th European Modeling and Simulation Symposium (EMSS’15), Dime University of Genoa,
Bergeggi, Italy. 52–57.

[36] R. Diviš and A. Kavička. 2019. Computational optimizations of nested simulations utilized for decision-making sup-
port. In 31st European Modeling and Simulation Symposium (EMSS’19), Dime University of Genoa, Lisbon, Portugal.
80–89.

Received February 2020; revised February 2021; accepted May 2021

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 1. Publication date: September 2021.

