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ABSTRACT This paper describes a new cyclic algorithm for minimization of signal sidelobes and crosstalk
in multiple-input multiple-output (MIMO) radar. The designed algorithm, called SWAP by the authors,
is suitable mainly for long-range radars, such as ground-based surveillance, approach, or weather radar. The
minimization of energy or amplitude of side lobes, and crosstalk were used as the optimization criteria. The
effect of theDoppler shift is also included in the optimization. Although the optimized signals do notmaintain
a strictly constant envelope, the peak-to-average power ratio (PAR) can be maintained below 1.7. This value
is acceptable, especially for radars with modern transmitters based on GaN HEMTs. The algorithm allows
for any arbitrary choice of elements weights, enabling the optimization of calculations for a wide range of
applications. This paper also presents the results of algorithm testing under various conditions. The designed
algorithm makes it possible to suppress the side lobes and crosstalk by up to 20 dB more than the matched
filters. These results were achieved at the cost of a slight deterioration in signal-to-noise ratio (SNR) loss (less
than 1 dB) and an increase in PAR (up to 2). The resolution of weak close targets is also slightly deteriorated.
The algorithm converged quickly, and already after ten or 20 iterations, the results changed only minimally.

INDEX TERMS Crosstalk, Doppler effect, iterative optimization, matched filter, MIMO radar, peak to
average power ratio, quadratic programming, side lobe, signal to noise ratio.

I. INTRODUCTION
MIMO radars, with a number of transmitted signals and
receivers, provide additional degrees of freedom in the design
of modern systems with adaptable properties, particularly
in area coverage. For example, using M transmitters and R
receivers, up to (M × R) independent measurements from
a single object can be used for processing. This is used
to enhance the detection quality, increase the accuracy of
its location, speed up the information update, and improve
interesting object recognition (e.g., the suppression of uncon-
scious reflections and other interference). Two types of
MIMO radar systems are typically distinguished: distributed
and collocated systems. The distance between the antennas
of collocated systems is usually of the order of only a few
wavelengths, whereas in distributed systems, the distances
between the antennas are much greater than the system space
resolution. In this study, we deal with signals and filters
designed mainly for systems with collocated antennas. How-
ever, some results can be used even for distributed systems.

Recently, considerable attention has been paid to the opti-
mization of signal modulation and compression (separation)
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filters for MIMO radars. A large number of these publica-
tions, as demonstrated in [1]–[9], deal with the signals of
a constant envelope and matched filters that automatically
guarantee the maximum compression gain, that is, the min-
imum SNR loss. The constant envelope constraint allows us
to optimize transmitter efficiency by utilizing the maximum
available transmitter power. Under these conditions, only the
phases of the transmitted signals were optimized. Computa-
tionally efficient sophisticated algorithms have been devel-
oped for signal design, optimizing the minimum integrated
side lobe level (ISL) criterion under various constraints as
shown in [4] and [7]–[9]. (Here, also crosstalk is assumed
under the term ‘‘side lobes’’.) The ISL criterion is beneficial
mainly for relatively homogeneous clutter such as rain, fog,
or a calm sea surface. In the case of clutter with high reflection
dynamics, such as in an urban area or heavily undulating
terrain, signals showing a minimum peak side lobe (PSL)
are better suited. Therefore, in addition to the minimum ISL
criterion, this study addresses also PSL minimization.

In addition, the a priori choice of matched filters and
strict requirements of a constant signal envelope signifi-
cantly limit the side lobe and crosstalk suppression. However,
many authors have shown that significantly better side-lobe
suppression (up to hundreds of dB) can be achieved by
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selecting only a limited range of side lobes for optimization,
for example, by using WeCAN, AISO, IAG and related algo-
rithms, as demonstrated in [5] and [10]–[15]. The remaining
(i.e., not-selected) side lobes show only a poor suppression.
Such signals are particularly useful for long-pulse and CW
radars. Furthermore in these systems the penetration of the
transmitted signals into the receiver frequently limits the
maximum radar range and a perfect side-lobe suppression,
even at bounded time lags, can help overcome this limitation.

On the other hand, in long range radars with short pulses a
good suppression of all sidelobes and crosstalk is necessary.
From the practice of SISO and SIMO radars it is known,
that using mismatched filters, can significantly improve side
lobe suppression according to [16]–[18]. Thus the procedure
of mismatched filter design, which can be solved directly,
became the basis of the simultaneous optimization of the
signals and filters presented in this article. Using the com-
mutative property of convolution, an algorithm is created that
alternately optimize coefficients of the separation filters and
samples of the complex envelopes of the transmitted signals.
However, this procedure cannot ensure neither zero SNR loss
nor a strictly constant signal amplitude.

The requirement of a constant envelope of the transmitted
signals is important for the transmitter efficiency and max-
imum utilization of the available power. These qualities are
closely related to the PAR of a transmitted signal. To avoid
nonlinear distortion of the transmitted signal, which leads to
degradation of the radar resolution and signal side lobes, it is
appropriate to set the mean transmitted power significantly
belowPsat/PAR, wherePsat is the saturated transmitter power.
The excellent linearity of modern power amplifiers based
on GaN transistors and new results in digital predistortion
linearizers [19]–[25] make it possible to approach or even
exceed the Psat/PAR value. This allowed us to loosen the
strict constant signal envelope requirements, which facilitated
further suppression of the sidelobes and crosstalk by up
to 20 dB.

In this study, we addressed the optimization of filters and
signals for ground-based long-range MIMO radars. For these
radars, the pulse length is typically significantly shorter than
the longest return time of the reflected signals. Therefore, it is
important that the time-side lobes are sufficiently suppressed
at all lags from the main lobe. Furthermore, ground clutter
frequently consists of reflections from isolated objects with a
highRCS (Radar Cross Section) that significantly exceeds the
RCS of the desired targets. Therefore, in addition to the min-
imum ISL criterion, the minimum PSL criterion is applied.
However, a reduction in the compression efficiency of the
filters by 0.5 – 1 dB, or a partial deterioration of the resolution
of weak close targets is not critical in such an environment.
Eventually, in a better clutter situation, a matched filter with a
narrower peak but higher sidelobes can be used. An important
feature of these radars is the use of the Doppler effect to
distinguish targets moving at different speeds. Therefore, the
requirements for high-quality processing of Doppler-shifted
signals in a sufficient frequency range were also included.

Radars of this type use MIMO technology mainly to speed
up radar information updates over large areas. Multiple trans-
mitted signals allow the radar to simultaneously performmul-
tiple tasks. Therefore, the number of transmitted signals is not
large, and usually range only from two to ten. The individual
signals are narrowband, and their bandwidths are generally
significantly smaller than the bandwidths available for these
services. Thus, it is possible to use frequency diversifica-
tion for signal separation, which further facilitates crosstalk
suppression.

For this purpose, a simple cyclic approximation algorithm
was developed, which enabled to design transmitted signal
modulation and separation/compression filters achieving sig-
nificantly better suppression of the side lobes and crosstalk at
the expense of a slight relaxation in the SNR loss and PAR.
Both the ISL and PSL minimization criteria were used with
constraints on the signal power, filter gain, PAR, and SNR
loss.

The organization of this article is as follows:
In Section 2, the system under consideration is briefly

described and the quantities and basic relations used in
this study are presented. The minimization criteria and
ISL and PSL metrics are also introduced. Proceeding from
well-known basic expressions, we integrate the Doppler
effect and sample weights in these metrics and transform
the relations to the form, which is convenient for deriving
the optimization algorithm. In Section 3, a new cyclic algo-
rithm, SWAP, is introduced along with the expressions of
the relevant metrics that are suitable for the execution of
this algorithm. Section 4 presents the results of testing the
algorithm under selected conditions.

II. MATHEMATICAL DESCRIPTION
A. PROBLEM FORMULATION
We consider a MIMO radar using M transmitted signals
sm (i) = xm (i) exp(jω0t), where ω0 is the carrier frequency.
Each antenna emits pulses of length τ = N.TS, where N
is the number of samples of the signal complex envelope
{xm (i)}

N ,M
i=1,m=1, and TS is the sampling period. The complex

envelopes of the frequency-diversified signals are given by
the expression xm (i) = exp[j8(i) + j2π fmiTs]. Phase 8(i)
represents LFM or NLFM modulation, fm is the central fre-
quency (subcarrier) of the complex envelope of themth signal
fm = [m − 1 − (M − 1)/2]κB, where κ > 1 is a dimension-
less parameter that determines the distance between adjacent
subcarriers, and B is the bandwidth of each signal.

Compression and separation filters
{
qµ (k)

}K ,M
k=1,µ=1 com-

press pulses, and separate signals of individual transmitters
(where K is the filter order). To facilitate the comparison
of the following results, we chose the number of signal
samples N to be equal to the number of uncorrelated noise
samples in the pulse length interval τ : N = BW.τ , where
BW is the bandwidth of the entire set of signals. From the
samples of complex envelopes of the received signals xm (i)
and the filter coefficients qµ (k)we create column vectors xm
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and qµ, such that

xm =
[
xm (1) , . . . , xm (i) , . . . , xm (N )

]T
,

m = 1, 2, . . . ,M , (1)

qµ =
[
qµ (1) , . . . , qµ (k) , . . . , qµ (K )

]T
,

µ = 1, 2, . . . ,M . (2)

The signals at the filter outputs are linear combinations of
convolutions

zmµ = xm ∗ qµ =


zmµ (1− K )

...

zmµ (N − 1)

 ,
zmµ (n) =

n+K∑
k=1

x (n+ K + 1− k) .q (k), (3)

where n = 1 − K , . . . , 0, . . . ,N − 1; if n > N , the signal
samples are xm (n) = 0.
If matched filters are used, the convolutions zmµ are equal

to the corresponding cross-correlation functions. For an eas-
ier comparison with matched filters, we chose the filter order
K to be equal to the number of signal samples in our further
calculations. That means K = N .

If we create a Toeplitz matrix 3 from complex envelope
vectors xm and a matrixQ from the filter vectors qµ. Then, all
convolutions in (3) can be rewritten in matrix form as follows:

Z =


z11 · · · z1M
...

...
...

...

zM1 · · · zMM

 = 3.Q

= 3.


q1(1) · · · qM (1)
...

...
...

...

q1(K ) · · · qM (K )

 , (4)

where

3 =



31
32
...
...

3M

 ,

3m =



xm (1) 0 . . . 0

xm (2) xm (1)
. . .

...
... xm (2)

. . . 0

xm (N )
...

. . . xm (1)

0 xm (N )
. . . xm (2)

...
. . .

. . .
...

0 . . . 0 xm (N )


(5)

B. BASIC OPTIMIZATION CRITERIA
The aim is to design signals and filters, that is, elements of
vectors xm and qµ so, that themixture of all received signals is
divided by filters into channels according to individual trans-
mitters, and simultaneously, the pulses are compressed into
the main lobe. This means that all elements of the convolution
matrix, Z, for which m 6= µ, must be as small as possible
because there is crosstalk between individual signals. The
same is true for the elements of the side lobes, that is, for
convolutions with m = µ and n 6= 0.
To prepare a simultaneous optimization procedure for fil-

ters and signals, we start with the well-known simple rela-
tions for the ISL and PSL metrics, assuming neither sample
weights nor Doppler effect. We then rearrange these expres-
sions to better suit the optimization of the filters. In the next
paragraph, the Doppler effect and weights are added to both
the metrics.

1) MINIMUM ISL CRITERION
Suppression of energy in the signal side lobes and crosstalk
at the outputs of the compression filters are ensured by mini-
mizing the expression

ISL =
N−1∑

n=1−N ,n6=0

[
M∑
m=1

|zmm (n)|2
]

+

N−1∑
n=−N+1

M∑
µ=1

M∑
m=1,m6=µ

∣∣zmµ (n)∣∣2 , (6)

subjected to normalization conditions xTm·qm ≡

zmm (0) = C , where C is a chosen positive constant. Using
matrices 3 and Q defined above, we can easily convert (6)
into a more compact form:

ISL = ‖3.Q− CJ‖2 , (7)

where ‖.‖ is the Frobenius norm and

J =


j11 · · · jM1
...

...
...

...

jM1 · · · jMM

 , jµ =


j1µ
...
...

jMµ

 ,

jmµ =



0
...

δmµ
...

0

 , δmm = 1, δmµ = 0 for m 6= µ. (8)

If we apply ISL minimization only to the filter coefficients,
it is better to use another equivalent form of metric (7).

ISL =
M∑
µ=1

∥∥3 · qµ − Cjµ∥∥2 . (9)

As the matrix3 does not depend on the filter coefficients, but
only on the signal samples, minimization can be performed
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for each qµ independently. The problem can then be solved
analytically [26], and the optimized coefficients of the indi-
vidual filters can be expressed as follows:

qµ = arg
{
min
qµ

∥∥3.qµ − Cjµ∥∥2} (10)

2) MINIMUM PSL CRITERION
This criterion requires that the maximum amplitudes of the
side lobes and crosstalk be minimized. Considering the nor-
malization condition xTm·qm ≡ zmm (0) = C , the metric PSL
for this criterion can be written in the form:

PSL = max
{
max
m,n6=0

{|zmm (n)|} , max
n,m,µ6=m

∣∣zmµ (n)∣∣}
= ‖3.Q− CJ‖∞ , (11)

where ‖.‖∞ is the maximum matrix norm.
Again, the PSL can be written in a modified form, which

is advantageous for the subsequent procedure.

PSL = ‖3.Q− CJ‖∞
= max

µ

∥∥3.qµ − Cjµ∥∥∞ . (12)

If only the optimization of filter coefficients is assumed,
the minimization breaks down to the minimization of met-
rics

∥∥3.qµ − Cjµ∥∥∞ for individual filters separately, which
can be solved by convex programming methods quadrati-
cally constrained quadrature programming (QCQP), as was
demonstrated in [26] and [27].

qµ = arg
{
min
qµ

∥∥3.qµ − Cjµ∥∥∞} . (13)

As alreadymentioned, for long-range radars, where the return
time of the signalTD is much longer than the transmitted pulse
length τ , TD � τ , linear, and nonlinear frequency-modulated
signals (LFM and NLFM) are often used, mainly because
these modulations tolerate the Doppler frequency shift of the
received signals well. Through the frequency diversification
of such signals, a set of FD LFM and FD NLFM signals
can be created for these types of radars. (In our demonstra-
tions, we used nonlinear frequency modulation with a Taylor-
shaped spectrum). Even with the application of matched
filters, the suppression of side lobes and crosstalk of these
signals, [10], [15], are significantly better than those calcu-
lated using the CAN algorithm or similar methods.

Fig. 1 shows the output waveforms of the mismatched
compression and separation filters in the system with
M = 4 transmitted signals, calculated according to the ISL
and PSL criteria, applied only to the filter coefficients. The
subfigures in each row show responses of one filter to the
four transmitted signals. In the columns the signal outputs of
the individual filters fed by the same transmitted signal are
displayed.

For comparison, the output from the matched filters was
also provided. It can be seen, that by abandoning the require-
ment of matched filters, the side lobes and crosstalk at the
filter outputs can be further suppressed by about 10 dB.

C. INCLUSION OF THE DOPPLER EFFECT AND WEIGHTING
The previous procedure made it possible to determine the
elements of the compression filters such that the filter outputs
were improved compared with the matched filters (Fig. 1).
However, it was not possible to include signals affected by the
Doppler shift during optimization. In multiple publications,
the Doppler effect is integrated into optimization simply by
adding the signal responses affected by the Doppler shift to
the minimized metrics (e.g., [13]–[15]), and we use the same
method. To derive the SWAP algorithm procedure, we intro-
duce the following notation.
The Doppler effect changes the signal complex envelope

samples to x(l)m (i) = xm (i) exp[j (i− 1) ωDl ts], containing a
Doppler frequency shift, ωDl .
The product ωDl ts = ωDl/BW is the phase incre-

ment between the adjacent samples of the signal with the
lth Doppler frequency shift. In the matrix form, the Doppler
shift can be expressed by modifying the signal vector (1)

x(l)m = El · xm =
[
x(l)m (1) . . . .x(l)m (N )

]T
,

l = 0, 1, 2, . . . ,L − 1, (14)

where

El = diag
[
1 . . . ej(i−1)ωDl ts . . . ej(N−1)ωDl ts

]
.

In several publications, sample weighting is used only for
the selection of minimized and non-minimized samples
(e.g., WeCAN and related algorithms), with no chance of
selecting any specific combinations of signals, filters, and
Doppler frequencies [3], [5], [11], [13]. This is relevant
because the introduction of fully optional weights signifi-
cantly complicates computation. In contrast, we use different
weights for all individual side lobes and crosstalk as a benefit.

Modifications of the above-derived metric expressions,
including weights and Doppler effect, are shown separately
for the ISL and PSL metrics.

1) MINIMUM ISL CRITERION
By introducing weights into the ISL metric, Eq. (6) can be
converted into the following form:

ISL =
N−1∑

n=1−N ,n6=0

[
M∑
m=1

|wmm (n) zmm (n)|2
]

+

N−1∑
n=−N+1

M∑
µ=1

M∑
m=1,m6=µ

∣∣wmµ (n) zmµ (n)∣∣2 . (15)

The inclusion of signals with selected Doppler frequency
shifts ωDl , requires further addition of the respective filter
outputs to ISL metric (15). Written in a more effective form,
it finally yields

ISLD =
L−1∑
l=0

N−1∑
n=−N+1

M∑
µ=1

M∑
m=1

[∣∣∣w(l)mµ (n) z(l)mµ (n)∣∣∣2
− δ (n)

[
w(l)mm (0)

]2
δ
mµ
C2
]
, (16)
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FIGURE 1. Responses of matched filter (green) and mismatched filters optimized by the both ISL (blue) and PSL (black) criteria for FD LFM signals,
M = 4 and N = 500.

where z(l)mµ (n) is the nth sample of the convolution, z(l)mµ =
x(l)m ∗ qµ, and wmµ (n) ∈ 〈0, 1〉 are the weights of the
individual side lobes and crosstalk, respectively.

The ISL metric is only a specific case of the ISLD metric
at L = 1. Therefore, we no longer consider the ISL metric
separately.

For further description, the matrix form of Eq. (16) is more
advantageous. To do this, we express the convolution z(l)mµ
using the Toeplitz matrices 3(l)

m for each frequency ωDl and
introduce the weight matrices

W(l)
mµ = diag

[
w(l)mµ (−N ) , . . . ,w

(l)
mµ (N )

]
(17)

z(l)mµ = x(l)m ∗ qµ = 3
(l)
m qµ, (18)

where

3(l)
m =



x(l)m (1) 0 0 0

x(l)m (2) x(l)m (1) 0 0

x(l)m (3) x(l)m (2)
. . . 0

...
...

. . . 0

x(l)m (N ) x(l)m (N − 1) · · · x(l)m (1)

0 x(l)m (N ) · · · x(l)m (2)
... 0 0

...

0 · · · · · · x(l)m (N )



.

Now we introduce matrices 3̆m composed of products
W(l)

mµ.3
(l)
m and vectors j̃µ.

3̆µ =



W(0)
1µ3

(0)
1

W(0)
2µ3

(0)
2

...

W(0)
Mµ3

(0)
M

W(1)
1µ3

(1)
1

...

W(1)
Mµ3

(1)
M

...

W(L)
Mµ3

(L)
M



, j̆µ =



j(0)1µ

j(0)2µ
...

j(0)Mµ
j(1)1µ
...

j(1)Mµ
...

j(L)Mµ



,

j(l)mµ (n) = δµm.δ0n. (19)

It is easy to determine that relation (9) for ISL is replaced by
(20) for the new metric ISLD, incorporating sample weights
and Doppler-affected signals:

ISLD =
M∑
µ=1

∥∥∥3̆µ · qµ − C J̆µ∥∥∥2. (20)

The choice of weight vector elements w(l)
mµ allows us to adapt

the optimization to a wide range of conditions. For example,
whenw(l)

mµ (n) = 1, all side lobes and crosstalk are minimized
except for the central samples of the output signals for n= 0 at
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m = µ, which are bound by the normalization conditions
xTm·qm ≡ zmm (0) = C . If we choose C = N, matched filters,
and constant signal modules, then this criterion becomes
identical to the criteria used in [1]–[3] when optimizing sig-
nals using the CAN methods.

However, this more general introduction of weights allows
us to significantly increase the side lobes and crosstalk sup-
pression, or to simplify calculations at the cost of only mini-
mal deterioration of the other parameters.

In addition, it was found that the crosstalk (m 6= µ)
deterioration caused by the Doppler effect was insignificant.
Thus, the complexity of the calculations can be significantly
reduced by excluding these samples from the minimization
by choosing w(l)mµ = 0 for m 6= µ and l > 0.

2) MINIMUM PSL CRITERION
The inclusion of the signals affected by the Doppler shift
in PSL optimization can be performed in a manner similar
to the ISL criterion. By including weights in this expres-
sion and considering the normalization conditions xTm·qm ≡
z(0)mm (0) = C , the PSL metric is transformed into the follow-
ing form:

PSLD =
∥∥∥3̆µ · qµ − C J̆µ∥∥∥

∞

= max
µ

∥∥∥3̆µ · qµ − C J̆µ∥∥∥
∞

. (21)

In case, if we apply optimization only to the filter coefficients,
we can minimize metric (21) separately for each filter, as in
the case of minimum ISL criterion

qµ = arg
{
min
qµ

∥∥∥3̆µ.qµ − C J̆µ∥∥∥
∞

}
. (22)

This task can be solved using the QCQP methods, [26], [27].
When optimizing the filters, weights of the samples near

the maximum of the main lobe were used. For frequency-
diversified (FD) signals, the total bandwidth BW of the entire
set of signals {xm}Mm=1 is larger than the bandwidth B of a
single signal.

BW = [(M − 1)κ + 1]B, κ > 1. (23)

The sampling period Ts is determined by the bandwidth BW
of the entire signal set, Ts ≤ 1/BW, whereas the width of
the main lobe Tc corresponds to the bandwidth of one signal
Tc ≈ 2/B. Therefore, when optimizing the parameters, it is
desirable to omit at least as many samples P (around the
maximum of the main lobe) as corresponds to the bandwidth
of signal B.

P ≥
Tc
Ts
− 1 = 2

BW
B
. (24)

For example, in the examples presented in this paper, we used
M = 4, κ = 1.3, and P≥ 9. The lower limit of P corresponds
to the bandwidth of the single signal. Skipping a larger num-
ber of samples partially deteriorated the detection of weaker
targets. In our experience with optimization, dropping up
to 15 samples does not essentially degrade this parameter

but rather significantly improves the side lobes and crosstalk
suppression. Fig. 2 shows the dependence of SNR loss on
the number of omitted samples. We see that the SNR loss is
optimal at P from 8 to 11 samples for all displayed methods
except of that of using minISL and NLFM initial modulation.
The latter exhibits a broad minimum at P around 15. Further-
more, it can be stated that the SNR loss minima are very low
except of that achieved by the minimum PSL method with
LFM modulation.

FIGURE 2. Dependence of the SNR loss of the mismatched filters on the
number of omitted samples around the main lobe peak.

In Fig. 3, we can observe the effect of the Doppler shift on
side-lobe suppression. We see that if the Doppler effect is not
assumed in the optimization, the side-lobe level deteriorates
by 5 – 10 dB compared to the filters optimized for the Doppler
shift.

III. SWAP ALGORITHM
A. ALGORITHM DESCRIPTION
To minimize both metrics, even for signal optimization,
we modify the relations for the ISL and PSL metrics using
the fact that the convolution is a commutative operation.

Then we can write the elements zmµ of the matrix Z in two
ways

zmµ = xm ∗ qµ = qµ ∗ xm. (25)

This formal arrangement leads to an analogous extension
of the convolution expressed in (4) using the new Toeplitz
matrix5 compiled from the vectors of filter coefficients qµ,
similar to the arrangement of the matrix 3 created from the
vectors xm

Z ≡


z11 · · · zM1

...
...

z1M · · · zMM



= 3.Q = 3.


q1 (1) · · · qM (1)
...

...

q1 (N ) · · · qM (N )

 , (26)
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FIGURE 3. Comparison of outputs of mismatched filters, optimized by the
minimum ISL criteria including Doppler effect (black line) and without the
Doppler effect (blue line). FD LFM signals with the Doppler shift of 5 kHz.

S ≡


z11 · · · z1M
...

...

zM1 · · · zMM



= 5.X = 5.


x1 (1) · · · xM (1)
...

...

...
...

x1 (N ) · · · xM (N )

 , (27)

where

5 =



51

52

...

...

5M


;

5µ =



qµ (1) 0 . . . 0

qµ (2) qµ (1)
. . .

...

... qµ (2)
. . . 0

qµ (N )
...

. . . qµ (1)

0 qµ (N )
. . . qµ (2)

...
. . .

. . .
...

0 . . . 0 qµ (N )


.

It is obvious that both metrics (7) and (12) can also be written
symmetrically using matrix5 as follows:

ISL = ‖3.Q− CJ‖2 = ‖5.X− CJ‖2 , (28)

PSL = ‖3.Q− CJ‖∞ = ‖5.X− CJ‖∞ . (29)

In case we want to include the Doppler shift effect in
both metrics, we must modify the matrices 5µ in (27)
into the form of 5(l)

µ = 5µ · El . Then, by including

the sample weights w(l)
mµ (n) we can create the following

matrices and vectors:

5̆m =



W(0)
m15

(0)
1

W(0)
m25

(0)
2

...

W(0)
mM5

(0)
M

W(1)
m15

(1)
1

...

W(1)
mM5

(1)
M

...

W(L)
mM5

(L)
M



, j̆m =



j(0)1m

j(0)2m
...

j(0)Mm
j(1)1m
...

j(1)Mm
...

j(L)Mm



;

j(l)mµ (n) = δµm.δ0n. (30)

Metrics (28) and (29) could then be transformed in

ISLD =
M∑
µ=1

∥∥∥3̆µ · qµ − C J̃µ∥∥∥2
=

M∑
m=1

∥∥∥5̆m · xm − C J̆m
∥∥∥2 (31)

PSLD = max
µ

∥∥∥3̆µ · qµ − C J̆µ∥∥∥
∞

= max
m

∥∥∥5̆m · xm − C J̆m
∥∥∥
∞

(32)

This seemingly formal arrangement allows the achievement
of a further significant improvement in the side-lobe sup-
pression by an iterative procedure. This is because the strict
requirement for a complex envelope amplitude was waived.
Owing to the good linearity of current high-power amplifiers,
the requirement for PAR can be slightly relaxed, asmentioned
in the introduction. Then, the optimization of the metrics
expressed by matrices 5̆m (29) and (30) can be used to
calculate new signal vectors from the already determined
filter coefficients.
For the minimum ISL criterion, we first obtain the filter

coefficients qµ by minimizing (31), as follows:

qµ = arg
{
min
qµ

∥∥∥3̆µ · qµ − C J̃µ∥∥∥2} (33)

In the next step, we used the second expression (31) to obtain
the new signal vectors:

xm = arg
{
min
xm

∥∥∥5̆m · xm − C J̆m
∥∥∥2} (34)

The entire procedure can be repeated until the side-lobe sup-
pression reaches the required level and the SNR loss and PAR
values are within an acceptable interval.
The same procedure can be performed for the minimum

PSL criterion. We calculated the optimized filters for the
selected signals xm:

qµ = arg
{
min
qµ

∥∥∥3̆µ · qµ − C J̆µ∥∥∥
∞

}
, (35)
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FIGURE 4. Side lobes and crosstalk suppression using SWAP algorithm for signal and filter optimization in the case of four FD LFM signals (in
columns). Each row stands for one filter. The ISL optimization criterion is used. The green line represents the matched filter, the blue line represents
the mismatched filter, the black line represents the mismatched filter after 60 exchanges.

TABLE 1. The SWAP algorithm.

and then the optimized signals for these filters

xm = arg
{
min
xm

∥∥∥5̆m · xm − C J̆m
∥∥∥
∞

}
. (36)

The described procedure, which we call the SWAP algorithm,
can be generalized into the steps listed in Table 1. However,
it should be noted that the SWAP algorithm does not retain a
constant signal envelope.

Fig. 4 and 5 present illustrations of the side lobes and
crosstalk suppression using the SWAP algorithm.

In Fig. 4, the results of the four FD LFM signals (in
columns) when the minimum ISL criterion is used are shown.
In this diagram, each row includes the output from the same
filter. We can see that the side lobes and crosstalk are sup-
pressed even more (by 20 dB) compared to the matched filter
using 60 exchanges (swaps).

A comparison of the ISL and PSL criteria is shown in
Fig. 5. We can see that while at the start of the procedure

(mismatched filters), the results of both criteria are quite com-
parable; after 40 swaps, the side-lobe suppression achieved by
the ISL criterion is up to 15 dB better.

FIGURE 5. Comparison of side lobe suppression by the SWAP algorithm
using ISL and PSL criteria. Initial signal FD LFM is used.

Similar dependencies were obtained when the Doppler
effect was included in the optimization. An example of suc-
cessful side-lobe suppression with the ISL criterion, even
when the signal is modulated by a 5 kHz Doppler shift,
is shown in Fig. 6. The side lobes fall below −70 dB after
20 exchanges.

B. ALGORITHM EXAMINATION
To facilitate further illustration, we introduce a new char-
acteristic SL representing the mean sidelobes and crosstalk
level. This is the power ratio of the mean absolute value
of the side lobes and the crosstalk to the main lobe
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FIGURE 6. Comparison of the filter responses to signals, modulated by a
Doppler shift of 5 kHz after 20 swaps. The blue line - neither filters nor
signals are optimized for the Doppler shift, the black line - optimization
for the Doppler shift. The minimum ISL criterion is used.

maximum, z(0)m,m (0) = C .

SL = 20.log
[

1
M2 (2N − 1− P)C

×

∑
m,µ,n

[∣∣∣w(0)m,µ (n) .z(0)m,µ (n)∣∣∣− Cδm,µδ (n)] . (37)

As a measure of algorithm convergence, we consider the
norm of the difference between the subsequent approx-
imations of signal samples or filter coefficient matrices,∥∥i+1X− iX

∥∥, or ∥∥i+1Q− iQ
∥∥.

FIGURE 7. Dependence of the signal difference norm
∥∥∥i+1X− i X

∥∥∥ during
SWAP optimization.

An example displayed in Fig. 7 shows that a substantial
approximation occurs during the first ten or 20 exchanges.
It is worth to note that matrix

∥∥i+1X− iX
∥∥ consists of

N × M = 2 000 elements, therefore the average difference
between the signal samples of the subsequent iterations is less
than 5 × 10−4 after only 15 exchanges (swaps).
From Fig. 8 – 10, it is evident that during the SWAP algo-

rithm, the side lobes and crosstalk are continually reduced,
but simultaneously, the SNR loss and PAR increase slightly.
All of these parameters changed until the 10th exchange
mainly.

From Fig. 8, it is clear that while the effect of the initial
signal choice (i.e., LFM or NLFM) on the side lobes and
crosstalk suppression is negligible, the impact of the opti-
mization criterion selection is significant.We can also see that
by using the ISL metric, the achieved SL value is improved
by approximately 15 dB.

FIGURE 8. Development of the side lobe suppression depending on the
number of exchanges using both minimum ISL and minimum PSL criteria.

FIGURE 9. SNR loss dependence on the number of exchanges during the
SWAP algorithm optimization.

In contrast, the changes in SNR loss during the SWAP
algorithm, as shown in Fig. 9, are not significant and remain
at acceptable levels, which is vitally important. Except for
the combination of the minimum ISL criterion and FD LFM
signals, the SNR loss was maintained below 1 dB.

FIGURE 10. Dependence of the peak to average power ratio (PAR) on the
number of swaps in the course of optimization using the SWAP algorithm.

Fig. 10 shows the dependence of PAR on the optimization
criterion and initial signal modulation during the SWAP algo-
rithm. The PAR mainly depends on the selected optimization
criterion. Using the ISL metric, the PAR quantity reaches
values of up to four or five after only ten swaps, which is
unacceptable.

In contrast, when using the minimum PSL criterion, PAR
remains under a magnitude of 2, even in the case of a higher
number of swaps.
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For instance, using this criterion and the NLFM initial sig-
nal, we obtain a PAR value of approximately 1.7 at 10 swaps,
which is a tolerable value in modern radars.

IV. CONCLUSION
In this study, we introduce a method for the simultaneous
optimization of filters and signals suitable for long-range
radars with a pulse length shorter than the return time of
the reflected signals. For this optimization method of cyclic
approximation, we used the term SWAP. It turns out that with
a partial relaxation of the requirements of constant signal
amplitude and SNR loss, a significant improvement in the
side lobe and crosstalk suppression can be achieved. The
SWAP method also includes the optimization of signals with
a Doppler shift. An important tool for achieving these results
is the independent weighting of the side lobes and crosstalk
for all signal and filter combinations. The properties of the
SWAP algorithm are documented for specific cases using
signals with the time bandwidth product Bτ = 100, number
of signals M = 4, and number of signal samples N = 500.
This method can find applications, especially for narrowband
long-range radars such as 3D ground surveillance radars or
weather radars.
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