
Received 20 June 2022, accepted 21 July 2022, date of publication 8 August 2022, date of current version 31 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197660

Dynamic Search of Train Shortest Routes
Within Microscopic Traffic Simulators
ANTONÍN KAVIČKA AND ROMAN DIVIŠ
Faculty of Electrical Engineering and Informatics, University of Pardubice, 532 10 Pardubice, Czech Republic

Corresponding author: Antonín Kavička (antonin.kavicka@upce.cz)

This work was supported by the European Regional Development Fund (ERDF)/European Social Fund (ESF) ‘‘Cooperation in Applied
Research between the University of Pardubice and companies, in the Field of Positioning, Detection and Simulation Technology for
Transport Systems (PosiTrans)’’ under Grant CZ.02.1.01/0.0/0.0/17_049/0008394.

ABSTRACT Computer simulations are frequently used for rail traffic optimization. This approach, referred
to as simulation-based optimization, typically employs simulation tools – simulators that are designed
to examine railway systems at various levels of detail. Microscopic rail traffic simulators find use when
examining rail traffic and the rail infrastructure in great detail. Such simulators typically serve to follow
the positions and motions of rail vehicles (trains, locomotives, train cars) and their relocation as well as
segments of the rail infrastructure (tracks, switches, track crossings). One of the typical problems to be
solved by microscopic simulators within a simulation experiment is to determine the realistic (optimal) train
and shunting routes (within the currently occupied infrastructure) along which the rail vehicles are moved.
This paper describes novel dynamic route searching algorithms applicable to the relocation of rail vehicles
within track infrastructure of railway systems. The following main topics are presented in turn: overview
of solutions to the problem of finding track routes in the literature, a suitable rail infrastructure model
(associated with algorithms that seek admissible routes for the transfer of the relocation objects of given
lengths), graph search algorithms computing the shortest track routes (represented by the admissible shortest
walks on graphs), illustrative examples of algorithms’ deployment, computational complexity of presented
algorithms, comparison with other algorithms and summary of the benefits of newly developed algorithms.
The use of the algorithms within the simulation tools (working at the microscopic level of detail) extends
the modelling possibilities when searching for realistic track routes (especially for complicated shunting
operations), which contributes to better modelling of complex railway traffic (than in the relevant existing
rail traffic simulators) and thus to better application of the results of traffic simulations in practice.

INDEX TERMS Rail traffic, simulation-based optimizations, single-train shortest routes.

I. INTRODUCTION
Traffic simulation models built at a microscopic level of
detail (microscopic traffic simulators), serving to examine
and optimize rail traffic systems, may be capable of mirroring
real (or designed) systems as authentically as possible.

In practice, microscopic traffic simulation models examin-
ing various scenarios of simulation experiments are typically
used, e.g., to address the following tasks:

� Detailed examination of the traffic properties of certain
track infrastructure parts (within feasibility studies).

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhigang Liu .

This type of simulation investigation is mainly applied
when assessing the impact of a planned rail infrastructure
reconstruction or upgrade on railway traffic. Thus, it is appro-
priate to compare the characteristics of the relevant traffic,
for example, for the existing variant of the infrastructure
configuration and for the variant after the reconstruction.

� Determination of the traffic characteristics when launch-
ing new transport technological processes. The introduction
of new innovative technological procedures of train handling
(e.g., simultaneous shunting technique within railway yards),
which can be tested by computer simulation before their
deployment, represents a very good potential for increasing
the efficiency of railway operation.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 90163

https://orcid.org/0000-0002-7780-0941
https://orcid.org/0000-0001-8260-3099
https://orcid.org/0000-0003-4154-5587

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

� Optimization of the decision-making strategies when
addressing selected traffic problems (such as the assignment
of alternative platform tracks to delayed trains) applying
a specific optimization criterion (e.g., associated with the
minimization of the sum of delays of all trains during the
period examined). Simulation tools are very useful for testing
various decision supports for different types of operational
problems occurring randomly during the railway traffic under
investigation. Innovative supports that show good results are
appropriate candidates for application in practice.

� Testing the robustness of train schedules/timetables and
work schedules for rostering resources concerning the occur-
rence of random traffic disruptions (such as train delays).
Simulation testing of the resilience of timetables (especially
for selected critical areas on the rail network) contributes to
the elimination of risks associated with the deployment of
inappropriate variants of traffic plans.

When setting up themicroscopic simulators, the simulation
computations must mirror the processes as faithfully as pos-
sible. Among the examples of important tasks is the setting of
admissible train and shunting routes for the relocation of rail
vehicles within a specifically occupied track infrastructure.
For well-designed automated computations to be included
in a simulator, it is necessary to design and implement:
(i) an appropriate track infrastructure model and (ii) efficient
algorithms working over that model and computing the route
topologies for the specified relocations. And it is the original
infrastructure model and the original algorithms that consti-
tute the subject of this paper.

This article follows up the paper [1] addressing the meso-
scopic level of investigation, which proved to be useful when
designing and implementing both a track infrastructuremodel
and route searching algorithms for rail vehicle relocations.
Mesoscopic simulators examine the rail traffic primarily for
determining the infrastructure’s traffic capacity rather than
for faithful monitoring of all rail vehicle motions.

II. RELATED LITERATURE
Traffic simulations are widely used for rail traffic
optimizations (simulation-based optimizations) with respect
to specific criteria [2], [3]. For example, one of the global
traffic indicators that should be minimized is the sum of the
weighted delays of all trains [4] within the railway network
segment of interest. A simulation experiment requires many
partial optimization problems to be solved during the run
(such as the assignment of alternative platform tracks to
delayed trains; determining the priorities for entering the
line tracks if the timetable is not followed; searching for the
shortest admissible routes for rail vehicle relocations within
the rail infrastructure; appropriate location of the service
resources within the infrastructure; etc.), where different
model types can be applied to the different partial problems.
The use of partial optimizations facilitates the optimization
of the traffic within the specific part of the railway network
during the period of interest.

When solving the problem of searching for train routes on
a track infrastructure, the route optimization can be based
on a minimization of the route length. This problem con-
stitutes a part of a wider problem called the train routing
problem, which includes, among other things, the following
tasks: route assignment to the trains within extensive railway
network areas [5]; coordinated assignment of track routes to
multiple trains in the railway stations [6], [7], [8], [9]; identi-
fication of the single train shortest route [1], [10], [11], [12];
etc. The layout of the track infrastructure on which the traffic
takes place must be taken into account when addressing prob-
lems of this type. From this point of view, the specific type of
investigation requires an appropriate infrastructuremodel and
efficient algorithms. Among the track infrastructure models
that are frequently used is the graph (and its implementations)
as a mathematical concept dealt with graph theory [13]. The
graph implementations are associated with the field of data
structures and algorithms [14]. The models can use both
directed graphs and undirected graphs. Many original mod-
ifications of the standard graphs are currently used, such as
the double vertex graph [15], [16] and the doubly-weighted
(edge-weighted and vertex-weighted) digraph [1], where the
polar graph concept is loosely applied [10], [17]. Among
typical problems addressed by the graph algorithms over the
appropriate models is the identification of the admissible
(potentially shortest) track routes along which the rail vehi-
cles are relocated. Here, it may be advantageous to use the
concept of the initial Dijkstra’s algorithm [11], [14], [18],
[19], which searches for the single-source shortest paths on
edge-weighted directed graphs. Many modifications of this
algorithm are also used when examining railway systems
[20], [21], [22].

The above-mentioned rail traffic simulations can be
applied in conjunction with various specialized simulation
tools, which can employ different rail infrastructure sub-
models [1], [15], [16], [22]. Examples of relevant simu-
lation tools used for such simulations include OpenTrack
[23], [24], RailSys [25], [26], [27], Villon [28], MesoRail
[4], NEMO [29], PULSim [30], Simarail [31] etc. Such tools
apply the same level of detail of investigation (microscopic,
mesoscopic, or macroscopic) within one simulation model.
However, approaches also exist where different levels of
detail are applied in the different parts of one simulator: such
simulations are referred to as multi-scale simulations [32] or
hybrid simulations [33], [34].

The extension of the research the results of which were
published in [1] and [10] was driven by the need to broaden
the modelling capabilities of the MesoRail simulation tool
(briefly characterized in the supplementary material to the
article [4]). This tool was initially used for mesoscopic rail
traffic simulations only. As efforts were made to expand
the tool to apply to rail traffic simulations at the micro-
scopic level of detail, it became necessary to implement
innovated functions for automated dynamic computations of
the track routes along which the relocation objects (trains,
locomotives) will be transferred (within the microscopic rail

90164 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

infrastructure model). To this end, the relevant initial
algorithms, which have not been published so far, were
re-designed and implemented. Such one-phase algorithms
search the shortest admissible walks in the undirected
edge-weighted graph representing the track infrastructure
model. The walks represent the shortest routes within the
track infrastructure. The implementations of the algorithm
were successfully tested, integrated, and then tested within
the MesoRail tool. The microscopic infrastructure model
and the algorithms working over it constitute an original
solution which (based on available literature) has not been
used elsewhere. Conceptually closest to the above algorithms
are approaches published in [11] and [12], where two-phase
algorithms are used. The first, preprocessing phase serves
to identify those track switches behind which reversals of
trains (whose length is L) are feasible. The next step consists
in the creation of a transformed model/graph enabling the
shortest route to be computed by using original Dijkstra’s
algorithm during the second, routing phase. The computation
result from this phase can be transformed into the shortest
route in the track yard. However, the use of two-phase algo-
rithms within very frequently called operations (searching
the shortest route during the simulation experiment) is rather
inconvenient from the time aspect because the preprocessing
phase must be applied to each switch (regardless of its utiliza-
tion). In contrast to the approaches applied in [11] and [12],
the algorithms described herein compute the feasibility of
train motion reversals only for those track switches that were
actually reached within the computation spreading.

III. TRACK INFRASTRUCTURE MODEL
The track infrastructure model, which represents a part of
the traffic simulator’s state space, is represented by a spe-
cific edge-weighted undirected graph G. The definition of
the graph is presented in Table 1. The edge weights (deter-
mined through the function ω) match the physical lengths
of the tracks/track segments modelled by the edges. The
graph edges represent both tracks (and are referred to as
destination edges) and track segments (and are then referred
to as connecting edges), which can be parts of track crossings
or switches. The terms mirror the assumption that while the
tracks serve as the relocation object destinations, switches are
the connecting elements between different tracks.

So, when specifying a rail vehicle relocation requirement,
both the relocation start, and finish are assumed to be repre-
sented by specific tracks (modelled by the appropriate des-
tination edge). Furthermore, the track end over which the
vehicle should leave the starting track and the track end over
which the vehicle should enter the destination track can also
be specified. The track ends are represented by elements of
the set I(G).

Function κ is introduced for graph G: this function assigns
to the two opposite ends of each edge their edge ingress
vacancies. The edge ingress vacancy value mirrors the length
of the free part of the relevant track from the specific end.
If the two edge ingress vacancies of an edge are equal to

TABLE 1. Specification of the edge-weighted undirected graph G - the
model of track infrastructure.

the weight of that edge, then the track (track segment) is
considered free and passable. If this is not so, the track is
either occupied by a rail vehicle (vehicles) or else it is fully
locked by the railway interlocking system (in which case
the ingress vacancies are zero). Specific weights of selected
edges and values of the ingress vacancies of selected edges
are illustrated in Example 1 below.

Track crossings must be discriminated from the various
types of switches when setting up track yard models. To this
end, a model as a subgraph of graph G is used for each track
switch type and track crossing. The mental concept of the
construction of such subgraphs is illustrated in Fig. 1.

First, the schematic symbols for track crossings and tract
switches are shown (as used in track yard layouts). Next, the

VOLUME 10, 2022 90165

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

FIGURE 1. Models of switches and crossings.

initial graph models that intuitively mirror the connections
of the elementary track segments by using graph vertices are
introduced. Finally, the final graph models whose topology is
adequately modified to implement their admissible passages
within the calculations of the track searching algorithms are
presented. ‘‘Forbidden turns’’ between edge pairs modelling
the partial track segments of a switch are graphically repre-
sented by grey triangles. This expresses the fact that direct
relocations between selected segments belonging to the same
switch are impossible.

The structure of the demonstration track yard model is
presented in the illustrative example shown graphically in
Fig. 2. First, the track yard layout is shown in Fig. 2(a).
Next, the initial graph model is set up (Fig. 2(b)) as an intu-
itive transformation of the track yard layout to an undirected
graph where each track is modelled by one edge and the
switches are represented by subgraphs interconnected with
the edges/tracks. The total length of the tracks and track
segments is 3 418 m. Figs. 2(c) and 2(d) show the final track
yard model as an edge-weighted undirected graph including
the final track switch models (track switches: TS1-TS6) and
weights of all edges in the graph.

IV. GRAPH SEARCH ALGORITHMS
At this stage of the introduction of the new algorithms for
searching train and shunting routes in track yard models
it should be emphasized that the algorithms are designed
for computations over the model (edge-weighted undirected
graph) specified in the previous section. From this point of
view, the algorithms can be classed as graph search algo-
rithms. The optimization performed by the algorithms is
based the searching for the shortest admissible walk in the
graph whose topology mirrors the route in the track yard.

The inspirative starting point when designing the algo-
rithms was Dijkstra’s algorithm [18], which is applicable
when searching for the shortest routes between two vertices
of an edge-weighted graph. Only such applications in which

the edge weights are positive were relevant. However, this
algorithm had to be fundamentally extended and redesigned
to meet the requirements for the route computations in the
track yard models. The algorithm was required to take into
account the relocation object lengths and to enable inclusion
of reversals in the track routes. Once the reversals are con-
sidered, the computation results of the new algorithms are
interpreted as the shortest walks rather than the shortest paths,
in contrast to Dijkstra’s algorithm.

Auxiliary sets, row vectors and subprograms (described in
Tables 2-4) are used in the specification of the route search
algorithms (in the form of pseudocodes).

In the subprograms, discrimination is made between the
input parameters (labelled with the prefix ‘ ↓ ‘), output
parameters (with the prefix ‘ ↑ ‘) and input-output parame-
ters (with the two-sign prefix ‘ ↓↑ ‘).

A. PRIMARY ALGORITHM SEARCHING FOR THE
SHORTEST WALK
This primary algorithm (referred to as Algorithm 1) is
focused on searching for the shortest walk in the track yard
model:

� from a specific start edge (track)
ex∈Edest(G), ϕ(ex)=(va,vb), va,vb∈V(G) through its speci-
fied end vertex va ; the set S of start edge-vertex elements is
constructed as S={[ex,va]}

� to a specific finish vertex (track) ey∈Edest(G),
ϕ(ey)=(vg,vh), vg,vh∈V(G) through its defined end vertex
vg; the set F of finish edge-vertex elements is constructed as
F={[ey,vg]}
The shortest walk found mirrors the shortest route in the

track yard for the relocation of an object O whose length is L.
The basic Shortest_Path routine calculates the above-

specified shortest walkwhose topology it returns in the output
parameter Seq. For Algorithm 1, |S|=1 and |F|=1. The algo-
rithmmodifications to be introduced later can use variants for
|S|∈{1,2} and |F|∈{1,2}.
The Shortest_Path routine computation is started with a

test (within the Start_Finish_Test subprogram) to find if the
route can be computed for the given relocated object’s start
and finish positions. The route cannot be sought if S = F
or if the finish edge ingress vacancy is smaller than the
relocation object length, κ([ey,vg])<L. If the route should
be found between the two opposite ends of an edge/track
(ex=ey ∧ [ex,va]6=[ey,vg]), the ingress vacancy of that edge
with respect to the final relocation position is temporarily
modified – updated – through the Vacancy_Update function.
The updated value κ([ey,vg]) mirrors the track (edge ey)
occupancy after the relation object O has left.
The General_Init subprogram performs general initializa-

tion operations concerning the:
� vertex-edge marks (contained in the sets stored in the

elements of the row vector M),
� distance marks of vertices (stored in the elements of the

row vector D) and

90166 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

FIGURE 2. Demonstration track layout models.

VOLUME 10, 2022 90167

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 2. Specifications of auxiliary sets related to the weighted undirected graph G.

� dynamic sets TV and UV and reversal paths beyond all
switches.

Hence, the elements of vector M are sets. Set mk
represents the k-th element of vector M which is asso-
ciated with the vertex vk∈V(G). Cardinality of each
set mk, k∈ 〈1, . . . , |V(G)|〉, equals the degree of ver-
tex vk: |mk|=deg(vk). The elements of the sets mk are
two-component marks [lenj,ej]∈mk, lenj∈R

+

0 , ej∈Y(vk),
j=1, . . . , deg(vk). The dynamic length-component len j fixes
the current minimum length of the walk from the start posi-
tion to the vertex vk attained from the ‘‘direction’’ deter-
mined by component ej. The static edge-component ej∈Y(vk)
contains permanent information about the edge that is inci-
dent with vertex vk. The values dk of the elements of vec-
tor D (dk∈R

+

0 , k=1, . . . , |V(G)|) mirror (for each vertex
vk of the graph) the minimum of the length-components:
dk=min(lenj), [lenj,ej]∈mk, ej∈Y(vk). Set TV saves (dur-
ing the calculation of Algorithm 1) the temporarily marked

vertices of graph G. The elements of set TV are repre-
sented by the ordered triplets [vi,eu,q], vi∈V(G), eu∈E(G),
q∈R+0 , vi∈ϕ(eu), which contain the specification of vertex
vi (labelled with mark q) attained from the direction/edge
eu. Set UV potentially contains the ultimately marked fin-
ish edge-vertex element [eu,vi] where [eu,vi]∈F, eu∈E(G),
vi∈V(G), vi∈ϕ(eu).
All elements of vector D are initialized to the value

dist∞∈R+0 , a constant which is higher than the highest
admissible walk length in the graph G. For each set mk
(k=1, . . . , |V(G)|) from vector M, the length-components of
all of its elements are initially set to the value dist∞. Sets TV
and UV are initially set empty, the reversal paths beyond all
switches are set to the status notcalc (not yet calculated).

The initialization procedures (performed through the
function Start_Finish_Init) are finalized by adjustment pro-
cedures concerning the start and finish positions of the relo-
cation route being sought. The relocation start vertex va

90168 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 3. Specifications of auxiliary sets and row vectors associated with the weighted undirected graph G.

([ex,va]∈S) is labelled with the mark q=κ([ex,va]), the value
of which expresses the following fact: If the relocation object
O stands on track (edge) ex (at a certain distance from the
end va through which it will leave), then the distance q to the
relevant end of track ex must be run first. So, the value q in
the context of vertex va plays a role in the following settings
of the D and M set elements: da←q, Set_Mark(↓ma,↓ex,↓q).
Now, the first element [va,ex,q], mirroring the status at the
beginning of the route search process, is inserted into set
TV. If the finish track/edge ey is completely free and the
relocation object should enter it through its end/vertex vg
(ϕ(ey)=(vg,vh), F=[ey,vg]), then the ingress vacancy of that
edge/track with respect to the opposite end/vertex vh, is tem-
porarily reduced: κ([ey,vh])←(ω(ey)−ε), ε∈R

+

0 , ε�ω(ey).
The aim of this provision is to prevent transit of the edge/track
ex from the ‘‘direction’’ of the edge vh (the transit cannot
occur if κ([ey,vh])< ω(ey)).
The algorithm continues by starting the main computation

cycle. It first selects (by means of the subprogram Vert_Select
using the routine Min_Dist) the vertex vc in the set TV to
be processed within the next iteration step. The value of
the distance mark q of the selected vertex vc is the low-
est among the vertices in the set TV. Next, the element
[vc,eu,q]∈TV, which contains the vertex vc, is removed from

the set TV. Subsequently, the vertices that are adjacent to the
vertex vc are potentially re-marked (through the Adj_Mark
routine), if the routes to them are more advantageous than
the existing ones. The computation cycle is terminated if
one finish vertex has been ultimately marked (UV 6=∅). The
alternative termination condition (TV=∅) mirrors the fact
that the computation cannot propagate along the infrastruc-
ture model anymore (because no vertex from which addi-
tional improvement of the existing routes could be sought is
available).

If an adjacent vertex vt∈adjWtrans(vc,eu) exists, then it
can be reached from vertex vc via the track/edge es
(ϕ(es)=(vc,vt)) provided that the latter is currently passable
(κ([es,vc])=ω(es)). Vertex vt can be re-marked by means
of the Try_Change_Transit subprogram (using the Set_Mark
function) to a new distance value newdist←(q+ω(es)) if the
relation newdist < currdist, [currdist,es]∈mt, holds true. The
newdist value expresses the fact that a distance that is equal
to the weight of edge es (ω(es)) must be run to reach the
end (vertex vt) of the track/edge es. Once vertex vt has been
re-marked, the appropriate element [vt,es,newdist] is inserted
into the set TV.
If an adjacent vertex vr∈adjWrev(vc,eu) exists, then it can

be reached via edge es (ϕ(es)=(vc,vr)) provided that the

VOLUME 10, 2022 90169

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 4. Specifications of subprograms/functions.

90170 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 4. (Continued.) Specifications of subprograms/functions.

latter is currently passable (κ([es,vc])=ω(es)). In addition,
it holds for the edges eu and es that (eu,es)∈Z. Those edges
represent a ‘‘forbidden turn’’, i.e., they mirror two track
segments of the same switch between which direct relocation
of rail vehicles is technically impossible. The following two

assumptions must be met for vertex vr to be re-markable in
the Try_Change_Reverse subprogram:

� First, the relation newdist<currdist, [currdist,es]∈mr,
must apply to enable vertex vr to be re-marked to a new
distance value newdist←(q+ω(es)+L) where L mirrors the

VOLUME 10, 2022 90171

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

Algorithm 1 Computation of the shortest walk from S = [ex,va]to F = [ey,vg]

01 function Shortest_Walk(↓S,↓F,↓L,↑Seq)
02 Seq← ∅
03 correct←true
04 Start_Finish_Test(↓S,↓F,↓L,↓↑correct) //admissibility of the start/finish vertices
05 if correct then
06 General_Init(↓L) // setting initial marks of all vertices
07 Start_Finish_Init(↓S,↓F) // initialisations related to the start/finish vertices
08 repeat
09 if TV 6=∅ then
010 Vert_Select(↓F,↑vc,↑eu,↑q) // selection of a new current vertex vc
011 if UV=∅ then
012 Adj_Mark(↓vc,↓eu,↓q,↓L) // potential marking of adjacent vertices of vc
013 end
014 end
015 until TV=∅ or UV 6=∅ // algorithm termination testing
016 if UV 6=∅ then
017 Get_Walk(↓↑Seq) // getting a topology of the shortest walk
018 end
019 end
020 end
021 function Start_Finish_Test(↓S,↓F, ↓L,↓↑okay)
022 if S=∅ or F=∅ then
023 okay←false
024 exit
025 end
026 if [ex,va]=[ey, vg] or κ([ey,vg])<L then // [ex,va]∈S, [ey,vg]∈F
027 okay←false // inadmissible combination of the start and finish edges-vertices
028 exit
029 end
030 if ex=ey and [ex,va]6=[ey, vg] then // [ex,va]∈S, [ey,vg]∈F
031 Vacancy_Update(↓↑ κ)([ey,vg]) // an update of edge-vertex element vacancy
032 end
033 end
034 function General_Init(↓L)
035 for i←1 to n do// n=|V(G)| do
036 mi← ∅

037 di←dist∞

038 for each ej∈Y(vi) do do
039 mi←mi∪[dist∞,ej]
040 end
041 end
042 for each (eu, es)∈Z do do
043 Set_Path_Status(↓eu,↓es,↓L,notcalc)
044 end
045 TV← ∅

046 UV← ∅

047 end

length of the relocation object O. The newdist value expresses
the fact that for reaching the end (vertex vr) of the track seg-
ment (edge) es, the object O must first pass through the track
segment (edge) eu and be completely relocated ‘‘behind’’ the

appropriate switch (‘‘behind’’ vertex vc). Then the object O
motion direction must be changed to continue the relocation
operation to the track segment (edge) es. This reversal is
associated with a trajectory the length of which is L.

90172 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

Algorithm 1 (Continued). Computation of the shortest walk from S=[ex,va]to F=[ey,vg]

048 function Start_Finish_Init(↓S, ↓F)
049 Get_Index(↓va,↑a)
050 q← κ([ex,va]) // [ex,va]∈S
051 Set_Mark(↓ma,↓ex,↓q) // initial marking of the start vertex
052 da←q
053 TV←TV∪[va,ex,q] // initial insertion of the start vertex into the set TV
054 if ex 6=ey and κ([ey, vg])=ω (ey) then // [ex,va]∈S, [ey,vg]∈F, ϕ(ey)=(vg,vh)
055 κ([ey,vh])← ω(ey)−ε/ /ε∈R

+

0 , negligible small value compared to the weights of edges
056 end
057 end
058 function Vert_Select(↓F,↑vc, ↑eu,↑q)
059 Min_Dist(↓TV,↑vc,↑eu, ↑q) // selection of a vertex vc with the lowest distance mark q
060 TV←TV−[vc,eu,q]
061 if vc∈ϕ(ey) then // [ey,vc]∈F
062 UV←UV∪[ey,vc]
063 end
064 end
065 function Adj_Mark(↓vc,↓ eu,↓q,↓L)
066 if adjWtrans(vc, eu)6=∅ then
067 for each vt∈adj Wtrans(vc,eu)
068 Try_Change_Transit(↓vc,↓eu, ↓q,↓vt) // potential remarking of vt
069 end
070 end
071 if adjWrev(vc, eu)6=∅ then
072 for each vr∈adjWrev (vc,eu)
073 Try_Change_Reverse(↓vc,↓ eu,↓q,↓vr,↓L) // potential remarking of vr
074 end
075 end
076 end
077 function Try_Change_Transit(↓vc,↓ eu,↓q,↓vt)
078 Get_Index(↓vc,↑c)
079 Get_Index(↓vt,↑t)
080 if κ([es,vc])=ω (es) then // if the edge is completely vacant; ϕ(es)=(vc,vt)
081 Get_Mark(↓mt,↓es,↑currdist)
082 newdist←(q+ω(es))
083 if newdist<currdist then
084 if newdist<dt then
085 dt←newdist
086 end
087 Set_Mark(↓mt,↓es,↓newdist)
088 TV←TV∪{[vt,es,newdist]}
089 end
090 end
091 end

� Second, free infrastructure must be available ‘‘behind’’
the switch, which means that there must be available a
partial track route whose length is no shorter than L,
to which the object O will be temporarily relocated
(in the track yard model, this route is represented by a
vacant path in the graph). The route is searched by the
Depth_First_Search routine using a depth-first search (DFS)

algorithm. If the route is found, its topology is saved
(by means of the Upload_Path function) for later partial
use when setting up the topology of the finish shortest
walk.

Once the vertex vr has been re-marked (by means of the
Set_Mark function), the appropriate element [vr,es,newdist]
is inserted into the set TV.

VOLUME 10, 2022 90173

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

Algorithm 1 (Continued). Computation of the shortest walk from S=[ex,va]to F=[ey,vg]

092 function Try_Change_Reverse(↓vc, ↓eu,↓q, ↓vr,↓L)
093 Get_Index(↓vc,↑c)
094 Get_Index(↓vr,↑r)
095 if κ([es,vc)]=ω(es) then // if the edge is completely vacant; ϕ(es)=(vc,vr), (eu,es)∈Z
096 Get_Mark(↓mr,↓es,↑currdist)
097 newdist←(q+ω(es)+L)
098 if newdist<currdist then
099 Get_Path_Status(↓eu,↓es,↑status)
100 if status = notcalc then // if the reversal path is not known yet, try to find it
101 Partroute← ∅
102 Depth_First_Search(↓vc, ↓eu,↓es,↓↑Partroute,↓L)
103 if Partroute=∅ then
104 Set_Path_Status(↓eu,↓es,↓L,notexist)
105 exit
106 end
107 Upload_Path(↓vc, ↓eu,↓es,↓ Partroute)
108 Set_Path_Status(↓eu, ↓es,↓L,exist)
109 else
110 if status = notexist then
111 exit
112 end
113 end
114 if newdist<dr then
115 dr←newdist
116 end
117 Set_Mark(↓mr,↓es,↓newdist)
118 TV←TV∪[vr,es,newdist]
119 end
120 end
121 end

A few facts are noteworthy as regards the DFS-algorithm
computing strategy. This algorithm uses the auxiliary stack
data structure, applying the LIFO (Last In First Out) strategy
for the order of the vertices processed during the computation
progress. The ongoing results of the DFS-algorithm compu-
tations are saved in local auxiliary row vectors (and).
Additional auxiliary subprograms are listed in Table 5. Dur-
ing the algorithm computations, vector stores the distance
mark values of the vertices of graph G, mirroring the current
lengths of the paths to the vertices from the starting vertex vc.
Each element k, k=1, . . . , |V(G)| of vector saves infor-

mation on the predecessor of vertex vk∈V(G) within the
topology of the currently found path from the start vertex
vc to vertex vk. The main computation cycle is based on a
stepwise withdrawal of elements from the stack and potential
re-marking of their adjacent transit vertices if they can be
reached through paths that are shorter than the currently
found ones. The DFS-algorithm computation is terminated
once it has found the first path from vertex vc whose Path-
Length meets the condition PathLength≥L. The topology of
this path is made available through the Get_Path function,
which makes reverse browsing of the path found (by using

the marks-predecessors from vector). The computation will
also be terminated if it finds that no path having the required
length exists within the given (currently occupied) track yard
model.

The final part of the main Shortest_Walk routine consists in
the topology computation of the shortest walk found within
graph G. This computation uses theGet_Walk function, mak-
ing reverse browsing from the finish element [ec,vc] reached
(which has the property [ec,vc]∈F ∧ [ec,vc]∈Uv) as far as the
start element of the walk [ex,va]∈S. The elements of the walk
topology are inserted one by one into the linearly ordered
dynamic set Seq. The elements of set Seq are ordered triplets:
[i,dir,[e,v]], i=1,. . . ,k, dir∈{in,out}, [e,v]∈I(G), k=|Seq|. The
dir component expresses the direction associated with the
passage of edge e through vertex v ([e,v]). If dir=in, the
i-th element of the walk is interpreted as entering the edge e
through its side vertex v. The opposite case (dir=out) is inter-
preted as leaving edge e through its side vertex v. The finish
position of the walk is mirrored by the element [1,in,[e,v]]∈
Seq and the start position of the walk is mirrored by the ele-
ment [k,out,[e,v]]∈ Seq. The auxiliary functions Pred_Edge
andPred_Vertex are used for the stepwise identification of the

90174 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

Algorithm 1 (Continued). Computation of the shortest walk from S=[ex,va]to F=[ey,vg]

122 function Depth_First_Search(↓vc, ↓eu,↓es,↓↑Partroute,↓L)
123 for i←1 to n do// n=|V(G)|
124 i←dist∞

125 i←none
126 end
127 Stack← ∅
128 PathLength←0
129 Get_Index(↓vc,↑c)
130 c←0
131 c←vu// vu∈ϕ(eu), ϕ(eu) = (vc, vu), vu 6=vc
132 Push(↓↑ Stack, ↓vc) // insertion of a first vertex into the stack
133 while PathLength<L and Stack 6=∅ do do
134 Pop (↓↑ Stack,↑vk) // removal of the top vertex from the stack
135 Get_Index(↓vk,↑k)
136 PathLength← k
137 for each vt∈adj Wtrans(vk,ex) do/ /ϕ(ex)=(vk, k)
138 Get_Index(↓vt,↑t)
139 if t> k + ω(eu) then // ϕ(eu)=(vk, vt)
140 if κ([eu,vc]) =ω(eu) then // if the edge is completely vacant
141 t← k+ω(eu)
142 t←vk
143 Push(↓↑ Stack, ↓vt)
144 end
145 end
146 if κ([eu,vk])+ k>PathLength then // if found the new longest reversal path
147 PathLength← κ([eu,vk])+ k
148 end
149 end
150 end
151 if PathLength≥L then
152 Get_Path(↑Partroute)
153 else
154 Partroute← ∅
155 end
156 end

predecessors for the walk elements. These functions evaluate
(with respect to the current vertex vc) the distance marks
from those elements (of the set mk) that are associated with
the vertices vk∈adjW(vc,ec). Based on those evaluations, the
vertex-predecessor or edge-predecessor is identified for each
currently processed walk element (this procedure is illus-
trated in Example 1). A specific procedure is used if the
reverse browsing finds that two consecutive walk elements
should contain edges ec and ep for which (ec,ep)∈Z. These
edges mirror the track segments of a certain track switch
(TS) and are in the ‘‘forbidden turn’’ interrelation. It holds
that the partial walk topology must be inserted ‘‘between’’
those elements. Data for the computation of that partial walk
(represented by the path topology behind the track switch
TS) were precalculated before by the Depth_First_Search
subprogram and are made available by means of the Down-
load_Path routine (through the Partroute output parameter).

The partial walk in question is built up and inserted on an
ongoing basis into the currently constructed main walk by
means of the Insert_Reversal subprogram. This subprogram
first performs an ‘‘egress‘‘ traversal and then an ‘‘ingress‘‘
traversal of the route whose topology was provided by the
Partroute parameter.

B. MODEL PROPERTIES AND IMPLEMENTATION
COMMENTS
As regards the above primary algorithm, additional infor-
mation concerning the implementation as well as the track
infrastructure model properties can be presented.

� With respect to the properties of the graph G:

∀ vi∈V(G) : deg(vi)∈1, 2, 3,m≤b(3/2) nc, n≥4,

n = |V(G)|,m = |E(G)|

VOLUME 10, 2022 90175

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

Algorithm 1 (Continued). Computation of the shortest walk from S=[ex,va]to F=[ey,vg]

157 function Get_Walk(↓↑Seq)
158 Stop←false
159 i←0
160 dir←out
161 Pull_Out(↓Uv,↑[ec,vc]) // selecting the finish vertex
162 repeat
163 i←i+1
164 if dir = out then
165 dir←in
166 else
167 dir←out
168 end
169 Seq←Seq∪[i,dir,[ec,vc]]
170 if [ec,vc]∈S then // if the start vertex is reached
171 Stop← true
172 else
173 if dir = in then
174 Pred_Edge(↓[ec,vc],↑ep)
175 ec←ep
176 if (ec,ep)∈Z then // if a reversal is supposed to be constructed
177 Download_Path(↓vc,↓ec, ↓ep,↑Partroute)
178 Insert_Reversal(↓Partroute,↓↑i,↓↑dir,↓↑Seq)
179 end
180 else
181 Pred_Vertex(↓[ec,vc],↑vp)
182 vc←vp
183 end
184 end
185 until Stop
186 end
187 function Insert_Reversal(↓Partroute,↓↑i,↓↑dir,↓↑Seq)
188 k←|Partroute|
189 first←k // the first cycle starts at the last Partroute element and goes back to the first element
190 last←1
191 cycle←1
192 repeat
193 for j←first to last do
194 Select_Element(↓Partroute,↓j,↑[e,v])
195 i←i+1
196 if dir = out then
197 dir←in
198 else
199 dir←out
200 end
201 Seq←Seq∪[i,dir,[e,v]]
202 end
203 if cycle=1 then
204 first←1/ / the second cycle starts at the first element and goes back to the last element
205 last←k
206 end
207 cycle←cycle+1
208 cycle>2 // the function is terminated after finishing the first and the second cycleuntil
209 end

90176 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 5. Specifications of auxiliary vectors, sets and functions associated with the depth-first search algorithm.

This is a sparse graph [13] where the relation between the
number of its edges (m) and the number of its vertices (n)
can be expressed by a linear function. For the infrastructure
model described (graph G), the computations of Algorithm 1
do no spread massively to the width (using the basic concept
of Dijkstra’s algorithm) because it is possible to continue in
no more than 2 directions from each vertex attained. This can
be illustrated on the demonstration track yard model shown
in Fig. 2(d), for which we have n=22, m=24, as well as on
the model of the real rail infrastructure (partially shown in
Fig. 3), where n=677 and m=710. From the practical point
of view, this means that the number of routes/walks (leading
to the given relocation finish positions) that must be examined
is considerably lower than in the case of dense (undirected)
graphs. For such graphs, the relation between m and n can be
expressed by a quadratic function [13].

For example, the maximum number of edges in a simple
undirected graph is n ((n−1)/2). The undirected graph G
can also be characterized by using the indicator d(G) called
edge density [13]: d(G)=(2 m)/(n (n−1)), d(G)∈〈0, 1〉. This
parameter mirrors the graph sparsity/density rate expressed
by the ratio of the actual-to-maximum possible number of

edges in graph G. A graph is crudely classified as sparse
if its d(G)<1/2, dense if its d(G)>1/2, and indifferent if its
d(G)=1/2. The graph shown in Fig. 2(d) has d(G)=0.103 and
the graph shown in Fig. 3 has d(G)=0.003.

� Graph G was implemented by using an aggregate data
structure composed of two hash tables, making their elements
accessible based on keys. The one table stores the graph
vertices, the other, the graph edges. Each element-vertex
encapsulates an array of references at the appropriate incident
edge (of which there can be up to 3). Each element-edge
fixes 2 references to the relevant incident vertices. The ref-
erences associated to the elements in the two tables can
be used for efficient traversing between the graph vertices
and edges. A Fibonacci heap [14] was used for the imple-
mentation of set TV, whereby very efficient implementa-
tion of the priority queue is attained. The priorities of its
elements ([vi,eu,q], vi∈V(G), q∈R+0 , eu∈E(G), vi∈ϕ(eu),
are determined by the q-component value (the element
priority is the higher the lower the value of its distance
mark q).

� The track infrastructure can be defined within a specific
configuration file (in XML format), which uses templates

VOLUME 10, 2022 90177

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

FIGURE 3. Part of the track layout related to the station Pardubice hl.n.
and its surroundings.

inspired by the railML standard [35], [36]. The infras-
tructure models can be constructed (e.g., for the MesoRail

simulator [4]), within the TrackEd simulator [37] for
instance.

� For the Shortest_Walk function (performing calculation
withinAlgorithm 1), the finish relocation position ([ey,vg]∈F)
within the track yard model (graph G) is represented by
track/edge ey, reached through its particular end (vertex vg).
In reality, this means that once the relocation motion is over,
object O will stand precisely at the respective end of the
finish track. So, if object O is required to stand at a cer-
tain distance 1 from the above track/edge end (vertex vg),
1≥L ∧ 1≤κ([ey,vg]), the total distance travelled by object
O must be increased by 1.

V. EXAMPLES OF PRIMARY ALGORITHM DEPLOYMENT
To illustrate the use of Algorithm 1, examples of its applica-
tion when computing different routes within the track yard
demonstration model are presented below.

A. EXAMPLE 1—TRAIN SHUNTING
Example 1 describes the computation of the route for train
shunting between two selected tracks. Fig. 4 illustrates the
position of relocation object (train) O1 with a length L within
the model (graph G) of the demonstration rail infrastruc-
ture (mirroring a realistic track yard). Object O1 stands on
track/edge e5(at its end v12) and is required to be relocated
to track/edge e4 through its end v11. The following settings
apply when computing the track route (by the Shortest_Walk
routine):

S = {[e5, v12],F = [e4,11]},L = 120

The weights and ingress vacancies for selected edges in
graph G are as follows:

ω(e4) = 280, κ([e4, v11])

= κ([e4, v9]) = 280, e4∈Edest(G), v9, v11∈V(G)

ω(e5) = 259, κ([e5, v12])

= 0, κ([e5, v10]) = 139, e5∈Edest(G), v10, v12∈V(G)

In one case, the shortest path was sought (by the
Depth_First_Search subprogram) ‘‘behind’’ the track switch
(e18,e19)∈Z. Table 6 lists the contents of the auxiliary vectors

and (the symbols ‘–’ in the table substitute the dist∞

values or ‘none’ elements) after termination of the above
subprogram, whereby the following path was found:
Partroute={[1,in,[e9,v16]], [2,out,[e21,v16]], [3,in,[e21,

v14]], [4,out,[e7,v14]], [5,in,[e7,v13]]}
The contents of the auxiliary vectors M and D when the

Shortest_Walk routine is over is illustrated in Table 7 and
the resulting walk Seq is presented in Table 8. For graphic
reasons, each element of the walk Seq is saved on one table
column and the partial components of the various elements
are saved in different rows.

As mentioned above, the topology of the walk Seq is
computed by the Get_Walk function, and the computation
development (related to object O1) proceeds from its finish
position to its start position. The process can be illustrated

90178 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

FIGURE 4. Track route related to Example 1.

TABLE 6. Vectors and after computations made by Depth_First_Search(↓v13,↓e19,↓e18,↓↑Path,↓L), L=120.

as follows. The walk finish track/edge is e4 and the finish
vertex is v11(with the distance mark d11 = 194). Element
[e4,v11] is initially inserted into the walk Seq. Furthermore,
it is found that v11 was reached through edge e18 (this infor-
mation can be gained from m11), hence, element [e18,v11]
is inserted into the walk. The predecessor vp of vertex v11
is identified first. Based on the property of the edge e18 it
can be determined from the appropriate data structure that
vp∈ϕ(e18) ∧ vp 6=v11, and hence, vp = v13 (element [e18,v13]
is inserted into the walk Seq). The predecessor of vertex v13
is identified in the next step. It holds for that vertex that
d13= 40 and it was reached through edge e19 (as can be found
fromm13). However, since it is indicated that (e18,e19)∈Z and
d11 = d13+ω(e18)+L (194= 40+34+120), the partial walk
PartSeqmust first be inserted into Seq (by the Insert_Reversal
routine).

The walk PartSeq is stepwise built up (and, at the same
time, inserted into Seq) over the Partroute path topology by
means of the Insert_Reversal function. The Partroute path
is obtained by using the Download_Path(↓v13, ↓e18, ↓e19,
↑Partroute) function. The Partroute path is traversed twice
when building up the PartSeq walk. First it is passed via
the ingress vertex v13 (from edge/track e7) as far as the
edge/track e9 (via v16). Subsequently this path is traversed
back.

Once the complete PartSeq has been inserted into Seq, the
element [e19,v13] is added to the walk. Now, the predecessor

of vertex v13 (reached via edge e19) can be determined, it is
vertex v12(labelled with the mark d12=0).

The element [e19,v12] is inserted into the walk Seq. This
vertex is the start vertex of the walk (and its incident edge
e5 is the start edge of the walk). So, the element [e5,v12] is
the last to be inserted into the walk Seq, whereby the Seq
construction procedure is terminated.

In summary, the topology of the complete track route in
graph G, found by the computation, is:

e4(314)←v11(194)←e18←v13←e7←v14←e21←v16← e9
←v16←e21←v14←e7←v13(40)←e19←v12(0)←e5

The numeral data in parentheses (following selected walk
elements) describe the lengths travelled by object O1 to the
points that represent the ingress ends of the edges/tracks
reached. The route travelled by object O1 from the starting
position to the ingress end (v11) of the finish track/edge (e4) is
194 m long. The last partial relocation to the finish track/edge
requires object O1 to travel a distance of L=120 m. So, the
total relocation length is 314 m. Fig. 4 displays the ultimate
distance mark values at the relevant vertices for the computed
shortest walk in graph G.

For illustration, Table 9 contains the reduced distance
matrix (RDM) (for L=120) containing the relocation lengths
between all the relevant destination edge pairs in graphG. The
RDMwas calculated by Algorithm 1 (with differently defined
sets S and F). The computations were made assuming that
except for object O1 (each time standing on a different start

VOLUME 10, 2022 90179

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 7. Vectors D, M after computations of
Shortest_Walk(↓S,↓F,↓L,↑Seq), S=[e5,v12], F=[e4,v11], L=120.

track), the infrastructure is completely empty. The RDM is
obtained by simple reduction of the complete distance matrix
(CDM). The reduction is based on the fact that the RDM does
not include those CDM rows and columns all elements of
which contain the dist∞ value (indicating the non-existence
of the walk specifying the object O1 relocation).

B. EXAMPLE 2—SHUNTING LOCOMOTIVE RELOCATION
The example demonstrates the computation results for the
relocation trajectory along which a shunting locomotive is
moved to a specific end of a particular train set. Fig. 5 shows
the model of the track yard, now occupied by 3 relocations

objects: object/train O2 100 m long stands on track/edge e5;
object O1 - a regional multiple-unit train 50 m long − stands
on track/edge e10; and object/train O3 50 m long stands on
track/edge e4. The task is to relocate object O1 to track/edge
e4 via track/edge end v9.
The following settings apply to the track route computation

(by the Shortest_Walk routine):

S = {[e10, v21],F = [e4, v9]},L = 50

Theweights and ingress vacancies of certain edges in graph
G are specified below:

ω(e4) = 280, κ([e4, v11]) = 0, κ([e4, v9])

= 260, e4∈Edest(G), v9, v11∈V(G)

ω(e5) = 259, κ([e5, v12]) = 159, κ([e5, v10])

= 0, e5∈Edest(G), v10, v12∈V(G)

ω(e10) = 236, κ([e10, v21]) = 0, κ([e10, v23])

= 186, e10∈Edest(G), v21, v23∈V(G)

The contents of the auxiliary vectors M and D when the
Shortest_Walk subprogram is over are listed in Table 10 and
the resulting walk Seq is shown in Table 11 (this walk
includes 2 reversals: v4←e2←v4 and v20←e8←v20).
The topology of the ultimate track route is as follows:
e4(1752)←v9(1702)←e16←v8(1668)←e3←v6(1648)←

e14←v4←e2←v4(1518)←e13←v7(1433)←e6←v18(706)
←e23←v19(639)←e11←v22(143)←e25←v20← e8←v20(33)
←e24←v21(0)←e10

The total length of the trajectory travelled by object O1 is
1752 m.

This example can be used to demonstrate the irreplaceable
role of the distance marks from vector M in this situation
where the distance marks from vector D are not sufficient (in
contrast to the traditional Dijkstra’s algorithm). This case is
associated with vertex v19, the marking of which can be as
follows during the Algorithm 1 computation:

d19 = 639,m19 = {[666, e11], [639, e22], [dist∞, e23]}

The following cases occurred during the re-marking of
vertex v18 from the adjacent vertex v19 (via edge e23), for
which we have ω(e23)=κ([e23,v19])=40:

(a) d18=729, m18={[dist∞,e6],[729,e23]}
(b) d18=706, m18={[dist∞,e6],[706,e23]}

In case (a), vertex v19 was attained via edge e22 and
reversal after the track switch (e22,e23)∈Z had to be take
into account. This implies that the relocation length (L=50)
of object O1 beyond the switch had to be included. Ver-
tex v18∈adjWrev(v19,e22), attained by edge e23, is from the
set of its adjacent reversal vertices. As a result of the
reversal, the distance mark of vertex v18 was changed to
729=639+L+ω(e23). The re-markings could be made where
the condition: currdist>729, [currdist,e23]∈m18, was met.

In case (b), vertex v19 was attained via edge e11. Vertex
v18∈adjWtrans(v19,e11), attained via edge e23, is an element of

90180 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 8. The shortest walk topology (Seq) computed by Shortest_Walk, S=[e5,v12], F=[e4,v11], L=120.

TABLE 9. The reduced distance matrix (RDM) for the parameter L=120 and vacant track layout.

the set of its adjacent transit vertices. Where the condition:
currdist>706 (666+ ω(e23)) was met and hence, the current
value (currdist) of the mark ([currdist,e23]∈m18) could be
changed, this was performed.

From the above description it will be clear that the
minimum (639) from the distance marks of vertex v19 mir-
rors correctly the length of the shortest walk to this ver-
tex via edge e22 (starting from [e10,v21]). Despite that,
when seeking for the shortest walk to the adjacent vertex

v18 (with respect to vertex v19), it is more advantageous
to use another walk (starting from [e10,v21]) to v19 via
edge e11. The reason for this is that when vertex v18 is
ultimately re-marked (as the successor of vertex v19 via
edge e23), the lowest of the values len22+L+ω(e23) and
len11 + ω(e23), where [len11,e11], [len22,e22]∈m19, will be
relevant.

Two additional illustrative cases beyond this example are
worth presenting:

VOLUME 10, 2022 90181

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 10. Vectors D, M after computations of
Shortest_Walk(↓S,↓F,↓L,↑Seq), S=[e10,v21], F=[e4,v9], L=50.

� If the whole track yard including track e5 were unoc-
cupied (except for the start track e10) and the remaining
parameters remained unchanged, the track route would be as
follows:

e4(724)←v9(674)←e16←v8← e3←v6←e14←v6←e3←
v8(590)←e17←v10(549)←e5←v12(290)←e19← v13(250)
←e7←v14(210)← e20←v15(172)←e8←v20(33)←e24←v21
(0)←e10

� In this case, it is possible to find a track route that is sub-
stantially shorter (724 m) than with the basic parametrization
in Example 2 (where the route is 1752 m long).

� In the parametrization in Example 2, no track route is
found if the L value is changed to L=150. Track/edge e4
cannot be accessed via its end/vertex v9 because a relocation
object 150 m long cannot perform the required reversal on
track/edge e2 due to the inadequate vacancy − ω(e2)=100.

C. EXAMPLE 3—LOCOMOTIVE SERVING ONE TRAIN
This example demonstrates a case where a shunting locomo-
tive is relocated from one train end to the other end. A train
car set without a locomotive, 200 m total length, stands in the
track yard themodel of which is shown in Fig. 6. The car set is
regarded as object O2 standing on track/edge e5. A shunting
locomotive − object O1 - 20 m long has just been uncoupled
from the train to be coupled up to it at the opposite end A.
For this, the locomotive must enter track/edge e5 through its
end v10.

The following settings are considered for the track route
computation (by the Shortest_Walk routine):

S = [e5, v12],F = [e5, v10],L = 20, ω(e5)

= 259, κ([e5, v12]) = 0, κ([e5, v10])

= 39, e5∈Edest(G), v10, v12∈V(G)

The contents of the auxiliary vectors M and D once the
Shortest_Walk subprogram is over is listed in Table 12 and the
resultingwalk Seq, in Table 13 (this walk includes 2 reversals:
v13←e7←v13 and v8← e3←v8).
The track route topology is as follows:
e5(508)←v10(469)←e17←v8← e3←v8(408)←e16←v9

(374)←e4←v11(94)←e18←v13←e7←v13 (40)← e19←v12
(0)←e5

The total length of the trajectory travelled by object O1,
including the distance travelled to reach the end A of object
O2, is 508 m.

VI. EXTENSIONS OF THE PRIMARY ALGORITHM
Algorithm 1 is designed to search for the shortest route in
the model of a currently occupied track yard. The route starts
from one end of the start track (where object O is present) and
leads to one defined end of the finish track (to which object O
is to be relocated). This can be referred to as the single-source
single-destination shortest walk (that is, |S|=|F|=1).

If no requirement exists as to the end through which object
O should leave the start track and/or the end through which
the object should access the finish track, then Algorithm 1
must be modified: set S and/or set F (|S|∈{1, 2}, |F|∈{1, 2})
must be specified differently. This is so because it can be irrel-
evant through which end the start track is left and/or through
which end the finish track is accessed. The combinations
of the differently specified sets S and F that are associated
with the different modifications of Algorithm 1 are listed in
Table 14.
Algorithms 2-4 differ from the primary Algorithm 1 only

by partial changes in the implementation of the two func-
tions Start_Finish_Test and Start_Finish_Init, the remaining
parts of the algorithms are the same as in Algorithm 1. The

90182 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

FIGURE 5. Track route related to Example 2.

TABLE 11. The shortest walk topology (Seq) computed by Shortest_Walk, S=[e10,v21], F=[e4,v9], L=50.

FIGURE 6. Track route related to Example 3.

routines test by various methods the admissibility of com-
binations of the input parameters and perform the initial-
ization operations regarding the relocation start and finish
elements.
Algorithm 2 searches for the shortest admissible walk

between two two-member sets S and F (|S|=|F|=2), that
is, a two-sources two-destinations shortest walk. From the
practical point of view, this means that the algorithm starts
its propagation in 2 directions from the side vertices of the

same edge (mirroring the opposite ends of that track on
which the relocation object O stands). Hence, initialization
includes a procedure during which two elements represent-
ing the two possible starting positions (two sources) of the
route are inserted into set TV (temporarily marked vertices).
If the walk was found, the algorithm was terminated under
the condition that one of the finish vertices was withdrawn
from the set TV. The use of Algorithm 2 is illustrated in
Example 4.

VOLUME 10, 2022 90183

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 12. Vectors D, M after computations of Algorithm 1, S=[e5,v12],
F=[e5,v10], L=20.

Algorithm 3 applies the two-sources single-destination
strategy. The potential result obtained with this algorithm is
the shorter of the two walks starting from the specific start
positions (the two side vertices of the start edge) and ending
in one specified finish position.

The last modification of the primary algorithm is Algo-
rithm 4 which makes the single-source two-destinations
type search, that is, searches for the shorter of two
walks starting from one start position and leading to two
defined finish positions (the two opposite ends of the finish
track).

A. EXAMPLE 4—TWO-SOURCES TWO-DESTINATIONS
SEARCH
A locomotive (object O1 whose length is L=20 m) stands
on track/edge e6 of the track yard shown in Fig. 7. The
track length and the position of object O1 on the track are
characterized as follows:

ω(e6) = 727, κ([e6, v18]) = 207, κ([e6, v7]) = 500

The object should be relocated by the shortest route to
track/edge e4. The object (O1) may be stopped at that track
end through which the track was accessed.

So, the parametrizations of Algorithm 2 (or the Short-
est_Walk function) is as follows:

S = {[e6, v18], [e6, v7]},F = {[e4, v9], [e4, v11]},L = 20

The contents of the auxiliary vectors M and D once the
Shortest_Walk routine is over is listed in Table 15 and the
resulting walk Seq is shown in Table 16 (this walk includes
one reversal: v19←e11←v19).

The track route topology is:
e4(740)←v11(720)← e18←v13(686)←e7←v14(646)← e21
← v16(605)←e9←v17(303)←e22←v19←e11← v19(247)←
e23←v18(207)←e6

The total length of the trajectory run by object O1 is 740 m.
An alternative trajectory, where track/edge e4 is reached via
vertex v9, is 19 m longer (Table 15).

VII. VERIFICATION AND VALIDATION
The track infrastructure models and shortest route searching
algorithms described in the previous sections were imple-
mented within the MesoRail simulator [4]. While initially
designed for mesoscopic rail traffic simulations, this simu-
lator was extended recently to be applicable to microscopic
simulations as well. Several case studies mirroring different
parts of the Czech railway network infrastructure were used
for testing. Each case study included the track infrastructure
of both selected railway lines (or their parts) and a selected
relevant railway station. To illustrate the time demands of the
track route searching algorithms, the next parts of this paper
use the results of a case study dealing with the application
of the algorithms to a model of the infrastructure of the Par-
dubice Main Train Station (Pardubice hl.n.) and the adjacent
railway network (the total length of this track infrastructure
was: 71 514 m).

Verification and validation (of the infrastructure models
and track route searching algorithms) followed the same
procedure as described in detail in ref. [1]. The procedure is
based on the approaches published in refs. [38], [39].

First, attention was paid to the conceptual model, contain-
ing 2 components:

(i) An undirected edge-weighted graph (mathematical
model reflecting the topological situation and associ-
ated lengths of the track infrastructure elements).

90184 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

FIGURE 7. Track route related to Example 4.

TABLE 13. The shortest walk topology (Seq) computed by Algorithm 1, S=[e5,v12], F=[e5,v10], L=20.

TABLE 14. Overview of algorithm variants calculating the shortest track routes.

(ii) Graph algorithms computing the shortest admissible
walks reflecting the routes along which the reloca-
tion objects can be moved in the track yard. Such
algorithms build on the basic concept of Dijkstra’s
algorithm, which had to be substantially modified and
completed.

Conceptual model validation focused on the appropriate-
ness of both the mathematical model describing the track
infrastructure and selected algorithmsworking over themath-
ematical model. The approach referred to as IV&V (Indepen-
dent Verification & Validation) [39] was used: this is based
on an expert assessment by a professional in the respective
application domain. Specifically, a renowned independent
railway traffic expert – employee of the railway transport

company ČD – Informační systémy a.s. (Czech Railways –
Information Systems) was hired for this assignment. This
expert used the Face Validation (Expert Validation) method
[39], requiring in-depth knowledge/expertise in the rail traffic
system domain. The following conclusions arose from the
conceptual model validation: (i) the mathematical model of
the track infrastructure reflects the topological properties and
lengths of the actual track elements adequately faithfully; and
(ii) the algorithms for the computation of the rail vehicle
relocation routes (and working over the given mathemati-
cal model) are conceptually well-designed to provide results
matching the relevant solutions in practice (i.e., the realistic
topologies of the routes in the specifically occupied track
yard).

VOLUME 10, 2022 90185

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

Algorithm 2 Computation of the shortest walk, S=[ex,va],[ex,vb], F=[ey,vg],[ey,vh]

01 function Start_Finish_Test(↓S,↓F,↓ L,↓↑okay)
02 if S=∅ or F=∅ or ex=ey then // [ex, va], [ex, vb]∈S, [ey, vg], [ey, vh] ∈ F
03 okay←false
04 exit
05 end
06 for each [ey, vj]∈F do
07 if κ([ey, vj])<L then
08 F←F−{[ey,vj]}
09 end
010 end
011 if F=∅ then
012 okay←false
013 exit
014 end
015 end
016 function Start_Finish_Init(↓S, ↓F)
017 for each [ex, vi]∈S do
018 Get_Index(↓vi,↑i)
019 di← κ([ex,vi]) // initialisation of selected distance marks
020 Set_Mark(↓mi,↓ex,↓di)
021 TV←TV∪{[vi,ex,di]} // initial insertion of vertices into the set TV
022 end
023 end

Algorithm 3 Computation of the shortest walk, S=[ex,va],[ex,vb], F=[ey,vg]

01 function Start_Finish_Test(↓S,↓F,↓L, ↓↑okay)
02 if S=∅ or F=∅ then
03 okay← false
04 exit
05 end
06 if ex = ey or κ([ey, vg])<L then // [ex, va], [ex, vb]∈S, [ey, vg]∈F
07 okay← false // inadmissible combination of the start and finish edges-vertices
08 exit
09 end

010 end
011 function Start_Finish_Init(↓S, ↓F)
012 for each [ex, vi]∈S do
013 Get_Index(↓vi,↑i)
014 di← κ([ex,vi]) // initialisation of selected distance marks
015 Set_Mark(↓mi,↓ex,↓di)
016 TV←TV∪[vi,ex,di] // initial insertion of vertices into the set TV
017 end
018 if κ([ey, vg])=ω(ey) then // [ey, vg]∈F, ϕ(ey) = (vg, vh)
019 κ([ey,vh])← ω(ey)−ε // ε∈R

+

0 , negligible small value compared to the weights of edges
020 end
021 end

A computerized model was subsequently set up. Model
implementation included an appropriate memory represen-
tation of the track yard model, briefly described at the

Section IV.B. This memory representation (data structure)
was designed so that the shortest walk-searching algorithms
should make the computations efficiently. Verification of this

90186 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

Algorithm 4 Computation of the shortest walk, S=[ex,va], F=[ey,vg],[ey,vh]

01 function Start_Finish_Test(↓S,↓F,↓L,↓↑okay)
02 if S=∅ orF=∅ or ex=ey then // [ex,va]∈S, [ey,vg], [ey,vh]∈F
03 okay←false
04 exit
05 end
06 for each[ey, vj]∈F do
07 if κ([ey,vj])<L
08 F←F−[ey,vj]
09 end
010 end
011 if F=∅ then
012 okay←false
013 exit
014 end
015 end
016 function Start_Finish_Init(↓S, ↓F)
017 Get_Index(↓va,↑a) // [ex,va]∈S
018 da← κ([ex,va]) // initialisation of selected distance marks
019 Set_Mark(↓ma,↓ex,↓da)
020 TV←TV∪[va,ex,da]
021 end

model included checks of the logical correctness of the results
provided by the algorithms, which should correspond with
the shortest track routes for the relocation of objects having
defined lengths. The focus was specifically on:

� Topological correctness of the routes found, especially
with respect to the reversals of the specifically long relocation
objects.

� Accounting for the track occupancies (by rail vehicles)
or their blocking by the interlocking system.

The verification procedure was performed by the authors
of this paper, who found the computation results obtained
with the relevant algorithms in the case studies to be logically
correct. Some wrong results also occurred, of course, and
were corrected by modifying the algorithm implementations
accordingly.

The process of checking the suitability of the comput-
erized model was concluded by its operational validation,
made by the above Czech Railways company expert using
the IV&V approach and the Face Validation method. In the
various case studies, the traffic and technical admissibility
of selected representative routes (delivered by the algorithms
being tested) was examined for the specifically occupied
track infrastructure and the specific relocations of the dif-
ferently long rail vehicles. As a result, the solutions pro-
duced by the algorithms were classed as correct, both from
the traffic aspect and from the technical aspect. Taking the
validation results into account, the algorithms were integrated
into the MesoRail simulation tool and are now routinely
used.

FIGURE 8. Demonstration model of track infrastructure where the degree
of each vertex is 3.

VIII. COMPUTATIONAL COMPLEXITY AND PRACTICAL
USE OF THE ALGORITHMS
This section analyses (formalizes) the computational com-
plexity of the algorithms introduced above (regarding the
implementations) and includes comments on the practical use
of the algorithms for rail traffic simulations.

A. COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS
The term computational complexity refers herein to the upper
bound for the asymptotic computational complexity of an
algorithm, which can be formalized by means of the big-O
notation [14]. To express the total computational complex-
ity of the algorithms described in the preceding sections
(Algorithms 1-4), each algorithm must be first decomposed

VOLUME 10, 2022 90187

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 15. Vectors D, M after computations of Algorithm 2, S=[e6,v18],
[e6,v7], F=[e4,v9], [e4,v11], L=20.

into parts that will be independently analyzed (from the com-
putational complexity aspect).

As mentioned in the previous sections, Algorithms 1-4
use (i) a modified concept of Dijkstra’s algorithm (applied
to the calculation of the shortest path between two graph
vertices) and (ii) the concept of the depth-first search (DFS)
algorithm. The two concepts are used in independent parts of
the programs and hence, can be analysed separately. The total
computational complexity of the algorithms is then obtained
by subsequent aggregation of the results of that analysis.

Each computation of the DFS-algorithm is used to deter-
mine the topology of the first free path found (in the
undirected graph G specified in Tables 1-2), which serves to

locate an object (with a length L) on the modelled rail yard
infrastructure ‘‘behind’’ the track switch before reversing the
direction of its movement. The complexity of one compu-
tation run of this algorithm can be expressed as O(m + n),
n=|V(G)|, m=|E(G)| [14]. The maximum possible number of
reversals computed on graph G (during the computation of
each of the Algorithms 1-4) is |Z|≤bm/2c. This means that
the DFS-algorithm can be computed no more than bm/2c-
times on a maximum of m edges of graph G (this is the
upper bound of the number of edges passed through during
a computation). Hence, the total computational complexity
associated with the repeated use of the DFS-algorithm can
be expressed as O((m/2)·(m + n))=O((1/2) m2

+(1/2) m n).
If the upper bound of the number of edges in graph G is con-
sidered to be m=(3/2) n, then the complexity can be written:
O((15/8) n2). A simple illustrative example of a graph G for
which m=(3/2) n is shown in Fig. 8.

Computations of the modified Dijkstra’s algorithm are
also performed over the undirected graph G (Table 1).
The standard expression of the computational complexity
of the original Dijkstra’s algorithm, however, is associ-
ated with its application over an edge-weighted directed
graph G, for which we have: G=(,E,ϕ,ω), =| (G)|,
=|E(G)|, ϕ: E(G)→[i, j]|[i, j]∈ (G)× (G), i 6= j,

ω: E(G)→R+. If this algorithm uses a Fibonacci heap for
the implementation of the set of temporarily marked vertices,
then it exhibits the complexity: O(log +) [14]. Each
vertex k∈ (G) has available just one mark k∈R+ which,
during the computation, reflects the current length of the
current shortest path from the starting vertex a∈ (G) to
vertex k. During the computation of the original Dijkstra’s
algorithm, each oriented edge is passed through/processed
once at the most.

When the modified Dijkstra’s algorithm concept is used
within Algorithms 1-4, the changes against the original
Dijkstra’s algorithm must be analysed when examining the
computational complexity. This practically means that the
computations performed on the basic undirected graph G
can be illustrated as computations performed over a virtual
‘‘transformed’’ directed graph G, for which the parameters
=| (G)|, =|E(G)| must be primarily determined and com-

pared to the parameters n=|V(G)|, m=|E(G)| of the initial
graph G.

� Each vertex vk∈V(G) has available a maximum of three
marks: [lenj,ej]∈mk (lenj∈R

+

0 , ej∈Y(vk), j=1, . . . , deg(vk),
deg(vk)∈1,2,3); the mark values mirror the current lengths of
the shortest walks leading to vertex vk through its different
incident edges during the computation. In the context of
the storage and potential removal (through the Extract_Min
function [14]) of each vertex from set TV (implemented by
using the Fibonacci heap), the upper bound of the number of
vertices in the virtual graph G can be determined as =3 n.

� Each edge eu∈E(G) can be passed through/processed
four times as a maximum (this case is illustrated in Fig. 9 on
edge e3 as part of the infrastructure model fragment shown.
So, with respect to the re-marking (by means of the

90188 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 16. The shortest walk topology (Seq) from Algorithm 2, S=[e6,v18], [e6,v7], F=[e4,v9], [e4,v11], L=20.

FIGURE 9. Illustration of a quadruple processing of the edge e3.

Decrease_Key function [14]) of each vertex in set TV (imple-
mented by using the Fibonacci heap), the upper bound of the

number of edges in the virtual graph G is =4 m. If the
computation were to be performed in the virtual graph G,

VOLUME 10, 2022 90189

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 17. Mean calculation times of the Algorithm 1 related to searching a shortest walk.

measures would have to be made to ensure meeting of the
condition that an oriented edge can be passed through no
more than once (as in the original Dijkstra’s algorithm).
So, the computational complexity of the modified Dijk-
stra’s algorithm within the computations of Algorithms 1-4
can be expressed as O(log +)=O(3 n log 3 n+4 m).
If the upper bound of the number of edges is m=(3/2) n, then
the computational complexity can be alternatively expressed
as O(3 n log 3 n+ 6 n).
Fig. 9 shows the sample computation of Algorithm 1 seek-

ing for the shortest route for the relocation of a train which
is 200 m long. Among the 4 different treatments of edge e3
(during the different computation phases), one of the inci-
dent vertices of e3 is re-marked in 3 cases (Figs. 9(c), 9(d)
and 9(e)). In one case the condition for vertex (v5) re-marking
is not satisfied and so that vertex is only examined (Fig. 9(f)).
Two of the 4 cases – Figs. 9(c) and 9(e) – mirror the situation
where the potential passage through the relevant edge (e3)
is not immediately preceded by train movement reversal,
whereas the other 2 cases – Figs. 9(d) and 9(f) – describe the
potential start of the train movement through e3 immediately
following a reversal.

The total computational complexity of each of the Algo-
rithms 1-4 can be expressed by combining the partial com-
putational complexities of the modified Dijkstra’s algorithm

and the DFS-algorithm:

O((15/8) n2 + 3 n log 3 n+ 6 n). (1)

B. COMPUTATION TIME DEMANDS
For using the algorithms within simulation experiments, it is
useful to know how long each program will actually run in
real time. This is important for practical reasons: simulations
should not call too many time-consuming routines or else
they are unusable. Examples of the mean times (and maxi-
mum times) taken by Algorithms 1-4 for two demonstration
track infrastructures are included in Tables 17-20. The first
infrastructure describes the demonstration track yard shown
schematically in Fig. 2 (a), the second infrastructure refers to
the track yard of Pardubice hl.n. and some parts of the adja-
cent rail network (a part of this infrastructure is schematically
shown in Fig. 3). Pardubice hl.n. represents a medium-sized
passenger railway station. There are 2 double-track lines
and 1 single-track line adjacent to the station. These lines
lead to neighboring railway stations, whose models are also
part of the investigated simulation system. The infrastructure
model also includes 97 single switches, 3 track crossings and
15 transit station tracks.

The second infrastructure model (including Pardubice
hl.n.) – an edge-weighted undirected graph – encompasses

90190 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 18. Mean calculation times of the Algorithm 2 related to searching a shortest walk.

677 vertices and 710 edges and its total track length is
71 514 m. Different relocation object lengths were used in
the computation experiments: L=0, 20, 50, 100, 200, 300,
400 and 500.

The shortest walk was computed for all the admissible start
and finish track pairs (the latter represented by destination
edges in the model) regarding the track yard as empty. The
condition was imposed that the start and finish track/edge
weights are no lower than the L value. From the results it
can be concluded that the mean computation time (meant) of a
track route (represented by the shortest admissible walk in the
infrastructuremodel) did not exceed 2milliseconds in a rather
extensive demonstration case study. Computations through
which no shortest walk was found because none exists are
also included. From the point of view of rail traffic simula-
tions, the above mean computation time can be considered
very favourable because it does not stress the system sig-
nificantly more than other computation routines involved in
simulations. The computations were made on a PC equipped
with an Intel i7-8550U CPU@1.80 GHz processor, 16.0 GB
RAM.

C. COMBINATION OF STATIC AND DYNAMIC
COMPUTATIONS
Static and dynamic computations can be combined during the
rail traffic simulations aimed at finding the optimum track

routes for the train riding and shunting. Static computations
are made by the algorithms before starting the simulation
experiments and they may result in a quite extensive base
of frequently used alternative routes for train relocations.
The routes in the base are computed for the conditions of
a free track infrastructure and preference can be given to
no-reversal train relocation routes. Dynamic computations
are made during the simulation experiment and are largely
used to identify routes for rolling stock shunting and some
train running routes. Such combinations can bring about
reduction in the computation demands of the simulation pro-
gram runs because the number of dynamic computations of
the (frequently repeating) track routes is then lower.

IX. ADDITIONAL POTENTIAL ALGORITHM
MODIFICATIONS
Additional modifications and/or extensions of the algorithms
presented are feasible. Some are introduced below.

A. ROUTE LENGTH LIMITATION
Very long track routes between the given start position and
the desired finish position are seldom set in real rail traf-
fic. If a rail vehicle needs to be relocated at a long dis-
tance, the approach typically consists in consecutive setting
of several shorter routes. This strategy can be inspirative

VOLUME 10, 2022 90191

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 19. Mean calculation times of the Algorithm 3 related to searching a shortest walk.

for the specification of the requirements for rail vehicle
relocation in infrastructure models that are parts of railway
traffic simulators. This means in practice that the potential
requirements for finding a long route in a simulation trial can
be divided into multiple requirements for searching several
shorter routes. The partial routes lead consecutively to partial
finishes, the last being identical with the desired finish of the
complete (long) relocation. For this, a next parameter might
be introduced in the route searching algorithms to specify
the maximum admissible route length (distmax) that is still
acceptable as the algorithm computation result: no longer
routes would be sought and the computation procedure would
be terminated. So, if no route is found, the relocation object
must temporarily stay in its current position. The requirement
for finding a route is repeated after any traffic change (e.g.,
after another object leaves a track).

For the computations, the condition under which the
distance mark of a vertex v∈V(G) (i.e., currdist) can be
changed to a new value (newdist∈R+0) would have to
be extended. This extension of the condition (which is
included in rows 83 and 98 of Algorithms 1-4) is as fol-
lows: newdist<currdist ∧ newdist≤distmax. If this condition
is not met, vertex v∈V(G) is not re-marked or inserted into
set TV.

B. RESTRICTIONS ON REVERSALS
If the route is required to contain no reversals, the algorithms
can be simply modified as follows. The code in rows 71-75 is
removed (with no substitution) from the Adj_Mark function.
This means that if the neighbours of the current vertex vc are
examined, vertices from the set of its reverse adjacent vertices
are omitted (and are not re-marked). So, the algorithms will
identify only such routes (e.g., for the relocation of trains) as
do not require the relocation object’s direction of motion to
be reversed during the relocation operation.

In another approach, routes involving reversal are not inad-
missible, but priority is given to reversal-free routes. This can
be achieved, for instance, by imposing an expert penalty on
each reversal included in the route: for instance, the length
parameter of each reversal can be increased by a penalization
constant (penconst). As a result, routes with reversals will
be selected only if reversal-free routes either do not exist
or are too long. The way to do this consists in a minor
modification in row 97 of the Try_Change_Reverse function,
where the new distance-mark value (newdist) is calculated as
newdist←(q+ω(es)+L+penconst). It must be borne in mind,
however, that in this approach, the vertex distance marks will
not contain the true relocation distances anymore: instead,
the distance will potentially be increased by the penalty for

90192 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 20. Mean calculation times of the Algorithm 4 related to searching a shortest walk.

reversals. This fact must be accounted for when imposing any
route length limitations.

C. SIMPLIFIED PROCEDURE TO GET THE
ROUTE TOPOLOGY
The computation aimed at gaining the shortest route topology
(by the Get_Walkfunction) can be simplified by expanding
the state space by adding another dynamic component (edge
Pejmk from vector M. Edge Pej is the edge-predecessor of
edge ej on the walk being sought. Edges ej and Pej are
incidental with the same vertex vi. So, the elements mk are
defined as follows:

mk = {[lenj, ej,Pej]|lenj∈R
+

0 , ej∈Y(vk), ej,
Pej∈Y(vi),

vk, vi∈V(G)}, |mk|=deg(vk), k = 1, . . . , |V(G)|

Hence, the implementation of the Get_Walk function can
be modified (simplified) for reverse browsing of the walk
found. In this modification, it is possible to consecutively
reversely traverse directly over the predecessors of each ver-
tex and edge visited while the Insert_Reversal function is
used in the unchanged form.

For this extension, the transfer and setting of the Pej com-
ponents during the computation must be treated. Another
parameter must be added to the Set_Mark function for the

input of edge Pej. The function calls must be modified in
rows: 51 (input value: noneu

D. HEAD-OF-TRAIN MONITORING
If the train in the finish relocation position is required to be
oriented specifically in one of the two possible directions,
steps must be made to follow either the head-of-train (heot)
or the end-of-train (eot) during the computation. For example,
Algorithm 3 can be modified into Algorithm 3M.

The Algorithm 3 modifications to give Algorithm 3M are
as follows:

� The set of the start edge-vertex elements S and the
set of the finish edge-vertex elements F obey the relation:
S,F⊂I(G)×{head,end}, |S|=2, |F|=1 (a two-sources single
destination search algorithm).
The elements [[ex,va],head],[[ex,vb],end]∈S specify that

the relocation object – train –stands on edge/track ex so
that the head-of-train is oriented towards vertex va and
the en-of-train is oriented towards vertex vb. The element
[[ey,vg],ind]∈F specifies that the relocation finish track/edge
is ey and this must be entered through the end vg. In addi-
tion, it is determined that the train must enter the finish
track by its precisely defined part (front part or back part,
ind∈{head,end)}.

VOLUME 10, 2022 90193

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 21. State space of Algorithm 3M, S=[[e5,v12],head], [[e5,v10],end], F=[[e4,v11],head], L=120.

90194 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 21. (Continued.) State space of Algorithm 3M, S=[[e5,v12],head], [[e5,v10],end], F=[[e4,v11],head], L=120.

FIGURE 10. Track route related to Example 1A demonstrating Algorithm 3M.

If Example 1A (partly modifying Example 1) is defined as
follows:

S = {[e5, v12], head], [[e5, v10], end]},

F = {[[e4, v11], head]},L = 120,

then the route obtained is different from that obtained in the
initial Example 1. The topology of this route (Fig. 10) is as
follows:

e4(1413,head)←v11(1293,head)←e18←v13(1259,head)←
e7← v14(1219,head)←e20←v15(1181,head)← e8←v20(1042,

head)←e25←v22(982,head)←e11←v19 (459,head)←e22←
v17(423,head)←e9← v16(121,head)←e21←v14(80,head)←
e7←v13(40,head)← e19←v12(0,head)←e5

� A case of the state space of Algorithm 3M when the
route search computation according to Example 1A is over
is included in Table 21. The mean and max. times taken by
computations of Algorithm 3M are presented in Table 22. The
following holds for the set mk of the vector M:

mk = {[lenj, ej, ind]|lenj∈R
+

0 , ej∈Y(vk), ind∈ {head,end},
vk∈V(G)}, |mk| = 2 deg(vk), k = 1, . . . , |V(G)|.

VOLUME 10, 2022 90195

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 22. Mean calculation times of the Algorithm 3M related to searching a shortest walk.

For Example 1A, we can illustrate the element
[118,e20,head]∈m15, which stores the current value (118) of
the distance mark of vertex v15 with respect to its attainment
by the train head through edge e20. As a practical conse-
quence of the structure modification of the elements from the
sets mk, we can follow not only the potential attainment of
any vertex through all incident edges but also the attainment
by either of the train (relocation object) ends. The algorithm
is successfully terminated if the specified finish position has
been attained by the required train end. If the finish position is
approached by the other train end, the train must not proceed
further by transiting the finish edge. This must be taken into
account in the algorithm.

In relation to the structure modification of the elements
of the sets mk, the implementation of Algorithm 3M should
modify (against that of Algorithm 3) those parts that are
associated with the initializations of the above elements,
with their reading and re-marking (by the Get_Mark and
Set_Mark functions). Furthermore, provisions can be made
for the Try_Change_Reverse routine to be able to change the
train ride orientation – once the reversal is over, the other
adjacent vertices will be attained by the train end opposite
to that before the reversal. As regards the attainment of the
vertices potentially by either train end, the use of the two-row

vectors headD a endD is convenient. They are used in a way
analogous to that for vector D in Algorithms 1-4.

� For the finish position of the relocation object O (whose
length is L) it can be potentially required that the heot
is located in a given point R at a distance of 1 meters
from the approach end/vertex vg of the finish track/edge
ey ([[ey,vg],head]∈F, 1≥L ∧ 1≤κ([ey,vg])) – point R can
mirror, e.g., the railway signal. For the above example, the
total object O relocation length is headdg +1 where headdg is
the value of the relevant distance mark of vertex vg stored in
vector headD.

� The procedures to analyse Algorithm 3M may be similar
to those used in the analysis of Algorithms 1-4 (and described
in Section VIII.A). Since the train orientation is relevant,
the number of variants by which each edge of graph G is
passed is twice as high as in the orientation-free approach.
In addition, each vertex vk∈V(G) has available a maximum
of six marks (|mk|=2 deg(vk), deg(vk)∈1,2,3). In this context,
the upper bounds of the number of edges and vertices in the
virtual graph G are =6 n, =8 m. If the upper bound of
the number of edges is m=(3/2) n, then the complexity of the
modified Dijkstra’s algorithm can be alternatively expressed
as O(6 n log 6 n + 12 n). After adding the complexity of
the DFS-algorithm, the total computational complexity of

90196 VOLUME 10, 2022

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

TABLE 23. Comparison of algorithms searching for the shortest train routes.

Algorithm 3M is:

O((15/8) n2 + 6 n log 6 n+ 12 n). (2)

Since only the basic concept of Algorithm 3M is described
here, the changes with respect to this algorithm will not be
described in more detail.

E. ALTERNATIVE APPROACHES TO THE TRACK ROUTE
EVALUATION
Evaluation of the identified track routes (admissible walks
in the graph) by means of the total distances travelled by
the relocation objects may not always be the most suitable
approach. Alternative measures may include, e.g., inclusion
of the object relocation times. This means that the graph
edge ‘‘length’’ weights will be completed with their ‘‘time’’
weights. Such time measures (τ : E(G)→R+) mirror the esti-
mated times required for the particular relocation object to
pass through the relevant track or track segment. The times
taken by train reversals would also have to be estimated.

X. COMPARISON WITH OTHER ALGORITHMS
Comparison of the presented new algorithms with other algo-
rithms that are focused on searching for the shortest routes
within the track infrastructure is quite difficult, due to the fact
that for other algorithms:

� their detailed formal description is often not available –
this typically applies to algorithms used within commercial
software tools focused on rail traffic simulations,

� their total asymptotic computational complexity is not
quantified,

� their focus is different to a greater or lesser extent (e.g.,
some algorithms do not take into account the length of the
relocation object),

� it is not possible to practically verify the time complex-
ity of their computations (due to the unavailability of their
implementation).

The algorithms described in Sections IV and VI and their
potential further extensions in Section IX, are referred to
as DynSTR-algorithms(Dynamic Search of Train Routes).

VOLUME 10, 2022 90197

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

From the available literature, these algorithms can only
be roughly compared with the SCRP-algorithm(Single-Cut
Routing Problem) described in [11] and [12]. The aforemen-
tioned comparisons can be made in the categories listed in
Table 23.

The SCRP-algorithm is a two-phase algorithm, in which
the first phase (preprocessing phase) is used to calculate for
all switches on the primary track model (edge-weighted undi-
rected graph) whether it is possible to reverse the specified
train (defined by its length L) ‘‘behind’’ them. Based on
the result of this phase, the transformation of the primary
graph into the final graph (edge-weighted directed graph) is
performed. On the final graph, the shortest relocation route
is computed (routing phase) as a classical shortest path using
Dijkstra’s algorithm.

In the preprocessing phase, a linear programming method
(computing the reduced longest path problem) is applied,
which is able to achieve the result in polynomial time for
certain track infrastructure topologies. However, the specific
computational complexity for the relevant class of problems
is not given by the authors.

On the other hand, DynSTR-algorithms are single-phase
algorithms that combine the principles of two computational
methods (a modified Dijkstra’s shortest path search algo-
rithm) and a Depth-first search algorithm that computes path
topologies for train reversals only ‘‘behind’’ those switches
that were reached during the computation.

A classical comparative analysis of these algorithms can-
not be performed, since the authors of this paper do not have
enough information on both the implementation of the SCRP-
algorithm (in particular its preprocessing phase) and the
expression of its respective total asymptotic computational
complexity.

However, for the needs of massively called shortest route
computations during traffic simulations, the deployment of
DynSTR-algorithms seems to be more appropriate, as these
purposely focus only on the computation of one specific
route (on the currently occupied track infrastructure) and the
corresponding computations do not focus on any parts of
the infrastructure model, that were not reached during the
computation (unlike the SCRP-algorithm, which calculates
the feasibility of reversals for a given train with respect to
all switches within the track layout during the preprocessing
phase – regardless of whether or not these are used in the next
routing phase).

XI. CONCLUSION
In conclusion, the above algorithms for automated dynamic
search (made during the simulation computation) of the short-
est track routes can be included in microscopic railway traffic
simulators. The routes found mirror the optimum ways to
relocate an object within a specifically occupied rail infras-
tructure represented by a model-graph. The input parameters
for the simulation include the relocation object’s start and
finish positions and its length.

A. SUMMARY OF KEY CHARACTERISTICS OF
ALGORITHMS
The novelties of the presented algorithms can be summarized
as follows:

� The shortest track route within rail infrastructure is
searched within the relevant infrastructure model (repre-
sented by the edge-weighted undirected graph) as the shortest
admissible walk.

� The algorithms are based on the combination of the prin-
ciples of the Dijkstra’s algorithm and the Depth-first search
algorithm.

� The lengths of modelled relocations objects (the trains
or train sets) are considered during computations of shortest
admissible walks.

The use of the algorithms described in this paper extends
the modelling possibilities when searching for realistic track
routes (especially for complicated shunting operations),
which contributes to better modelling of complex railway
traffic (than in the relevant existing rail traffic simulators)
and thus to better application of the results of traffic simu-
lations in practice. In addition, the application of the algo-
rithms supports significant simplification of the simulation
experiment scenario parametrization compared to approaches
that do not include such dynamic computations. The user
is freed from the task to tediously pre-define many track
routes and hence, the time needed to set up the com-
puter simulation models of the rail systems is appreciably
shorter.

The track route optimization method consisting in a min-
imization of the total route length responds to the practical
requirement to cut the railway traffic cost as much as reason-
ably achievable. In the current environment where electro-
mobility (also in the railway domain) is massively supported,
the optimization criterion can be applied with advantage to
the traffic patterns of the electric/battery shunting locomo-
tives operating within non-electrified infrastructure zones.
For this case, the minimization of the shunting route lengths
is interrelated with a maximization of the times between the
locomotive recharging periods.

REFERENCES
[1] A. Kavička and P. Krýže, ‘‘Dynamic automated search of shunting routes

within mesoscopic rail-traffic simulators,’’ J. Adv. Transp., vol. 2021,
pp. 1–22, Apr. 2021, doi: 10.1155/2021/8840516.

[2] A. Gosavi, Simulation-Based Optimization (Operations
Research/Computer Science Interfaces Series). Boston, MA, USA:
Springer, 2015, doi: 10.1007/978-1-4899-7491-4.

[3] G. Medeossi and S. de Fabris, ‘‘Simulation of rail operations,’’ Int. Ser.
Oper. Res. Manage. Sci., vol. 268, pp. 1–24, Mar. 2018, doi: 10.1007/978-
3-319-72153-8_1.

[4] R. Diviš and A. Kavička, ‘‘Reflective nested simulations supporting
optimizations within sequential railway traffic simulators,’’ ACM Trans.
Model. Comput. Simul., vol. 32, no. 1, pp. 1–34, Jan. 2022, doi:
10.1145/3467965.

[5] J.-F. Cordeau, P. Toth, and D. Vigo, ‘‘A survey of optimization models
for train routing and scheduling,’’ Transp. Sci., vol. 32, pp. 380–404,
Nov. 1998, doi: 10.1287/trsc.32.4.380.

[6] L. G. Kroon, H. E. Romeijn, and P. J. Zwaneveld, ‘‘Routing trains through
railway stations: Complexity Issues,’’ Eur. J. Oper. Res., vol. 98, no. 3,
pp. 485–498, 1997, doi: 10.1016/S0377-2217(95)00342-8.

90198 VOLUME 10, 2022

http://dx.doi.org/10.1155/2021/8840516
http://dx.doi.org/10.1007/978-1-4899-7491-4
http://dx.doi.org/10.1007/978-3-319-72153-8_1
http://dx.doi.org/10.1007/978-3-319-72153-8_1
http://dx.doi.org/10.1145/3467965
http://dx.doi.org/10.1287/trsc.32.4.380
http://dx.doi.org/10.1016/S0377-2217(95)00342-8

A. Kavička, R. Diviš: Dynamic Search of Train Shortest Routes Within Microscopic Traffic Simulators

[7] R. Freling, R. Lentink, L. Kroon, and D. Huisman, ‘‘Shunting of passenger
train units in a railway station,’’ Transp. Sci., vol. 39, no. 2, pp. 261–272,
Oct. 2005, doi: 10.1287/trsc.1030.0076.

[8] J.-A. Adlbrecht, B. Hüttler, N. Ilo, and M. Gronalt, ‘‘Train routing in
shunting yards using answer set programming,’’ Expert Syst. Appl., vol. 42,
no. 21, pp. 7292–7302, Nov. 2015, doi: 10.1016/j.eswa.2015.05.044.

[9] J. Riezebos and W. van Wezel, ‘‘K-shortest routing of trains on shunt-
ing yards,’’ OR Spectr., vol. 31, no. 4, pp. 745–758, Oct. 2009, doi:
10.1007/s00291-008-0140-9.

[10] A. Kavicka and L. Janosikova, ‘‘Trackage modelling and algorithms for
finding the shortest train route,’’ Commun.-Sci. Lett. Univ. Zilina, vol. 1,
no. 2, pp. 9–21, Jun. 1999, doi: 10.26552/com.c.1999.2.9-21.

[11] M. Aliakbari, J. Geunes, and K. M. Sullivan, ‘‘The single train shortest
route problem in a railyard,’’ Optim. Lett., vol. 15, no. 8, pp. 2577–2595,
Nov. 2021, doi: 10.1007/s11590-021-01761-w.

[12] N. E. Ahangar et al., ‘‘Algorithms and complexity results for the single-cut
routing problem in a rail yard,’’ Univ. Arkansas, Fayetteville, AR, USA,
Work. Paper scrp-20210603, 2021. [Online]. Available: https://industrial-
engineering.uark.edu/_resources/scrp-20210603.pdf

[13] R. Diestel, Graph Theory (Graduate Texts in Mathematics). Berlin, Ger-
many: Springer, 2017, doi: 10.1007/978-3-662-53622-3.

[14] T. H. Cormen, Introduction to Algorithms, 3rd ed. Cambridge, MA, USA:
MIT Press, 2009.

[15] M. Montigel, Modellierung und Gewährleistung von Abhängigkeiten in
Eisenbahnsicherungsanlagen. Zürich, Switzerland: ETH Zurich, 1994,
doi: 10.3929/ETHZ-A-001374188.

[16] X. Rao, M. Montigel, and U. Weidmann, ‘‘A new rail optimisation
model by integration of traffic management and train automation,’’
Transp. Res. C, Emerg. Technol., vol. 71, pp. 382–405, Oct. 2016, doi:
10.1016/j.trc.2016.08.011.

[17] B. Zelinka, ‘‘Polar graphs and railway traffic,’’ Appl. Math., vol. 19, no. 3,
pp. 169–176, 1974.

[18] E. W. Dijkstra, ‘‘A note on two problems in connexion with
graphs,’’ Numer. Math., vol. 1, no. 1, pp. 269–271, Oct. 1959, doi:
10.1007/BF01386390.

[19] M. Barbehenn, ‘‘A note on the complexity of Dijkstra’s algorithm for
graphs with weighted vertices,’’ IEEE Trans. Comput., vol. 47, no. 2,
p. 263, Feb. 1998, doi: 10.1109/12.663776.

[20] F. Schulz, D. Wagner, and K. Weihe, ‘‘Dijkstra’s algorithm on-line:
An empirical case study from public railroad transport,’’ ACM J. Experim.
Algorithmics, vol. 5, p. 12, Dec. 2000, doi: 10.1145/351827.384254.

[21] F. Schulz, D. Wagner, and C. Zaroliagis, ‘‘Using multi-level graphs for
timetable information in railway systems,’’ in Algorithm Engineering and
Experiments (Lecture Notes in Computer Science), D. M. Mount and
C. Stein, Eds. Berlin, Germany: Springer, Jul. 2002, pp. 43–59, doi:
10.1007/3-540-45643-0_4.

[22] D. Wang, X. Chen, and H. Huang, ‘‘A graph theory-based approach to
route location in railway interlocking,’’ Comput. Ind. Eng., vol. 66, no. 4,
pp. 791–799, Dec. 2013, doi: 10.1016/j.cie.2013.09.019.

[23] A. Nash and D. Huerlimann, ‘‘Railroad simulation using OpenTrack,’’ in
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto,
and S. Sone, Eds. Southampton, U.K.: WIT Press, 2004, pp. 45–54.

[24] S. Harrod, F. Cerreto, and O. A. Nielsen, ‘‘OpenTrack simulation model
files and output dataset for a Copenhagen suburban railway,’’ Data Brief,
vol. 25, Aug. 2019, Art. no. 103952, doi: 10.1016/j.dib.2019.103952.

[25] A. Radtke and J.-P. Bendfelt, ‘‘Handling of railway operation
problems with RailSys,’’ Ph.D. dissertation, Inst. Transp.,
Univ. Hanover, Hanover, Germany, 2011. [Online]. Available:
http://www.railwayresearch.org/IMG/pdf/235.pdf

[26] Y.Wang andX. Zhang, ‘‘Research on transport capacity of urban rail transit
based on RailSys,’’ in Proc. Int. Conf. Elect. Inf. Technol. Rail Transp.
(EITRT), in Lecture Notes in Electrical Engineering, vol. 2, L. Jia, Z. Liu,
Y. Qin, M. Zhao, and L. Diao, Eds. Berlin, Germany: Springer, Feb. 2014,
pp. 235–241, doi: 10.1007/978-3-642-53751-6_23.

[27] M. Wahlborg, ‘‘Banverket capacity consumption, congested infrastructure
and traffic simulation with RailSys,’’ in WIT Transactions on the Built
Environment, vol. 103. Southampton, U.K.: WIT Press, 2008, pp. 85–92,
doi: 10.2495/CR080091.

[28] N. Adamko and V. Klima, ‘‘Optimisation of railway terminal design and
operations using Villon generic simulation model,’’ Transport, vol. 23,
no. 4, pp. 335–340, Dec. 2008, doi: 10.3846/1648-4142.2008.23.335-340.

[29] B. Sewcyk and K. Michael, ‘‘Network evaluation model NEMO,’’
Ph.D. dissertation, Inst. Transp., Univ. Hanover, Hanover, Germany,
2001, p. 5. [Online]. Available: http://www.railway-research.org/IMG/
pdf/014.pdf

[30] Y. Cui, U. Martin, and J. Liang, ‘‘PULSim: User-based adaptable simula-
tion tool for railway planning and operations,’’ J. Adv. Transp., vol. 2018,
pp. 1–11, Jan. 2018, doi: 10.1155/2018/7284815.

[31] A. Sajedinejad, S. Mardani, E. Hasannayebi, S. A. R. M. Mohammadi,
and A. Kabirian, ‘‘SIMARAIL: Simulation based optimization software
for scheduling railway network,’’ in Proc. Winter Simulation Conf. (WSC),
Dec. 2011, pp. 3730–3741, doi: 10.1109/WSC.2011.6148066.

[32] Y. Cui and U. Martin, ‘‘Multi-scale simulation in railway planning
and operation,’’ PROMET-Traffic Transp., vol. 23, no. 6, pp. 511–517,
Feb. 2012, doi: 10.7307/ptt.v23i6.186.

[33] R. Novotný, ‘‘Hybrid simulation model supporting efficient computations
within rail traffic simulations,’’ in Proc. Eur. Modeling Simulation Symp.,
Sep. 2019, pp. 181–186, doi: 10.46354/i3m.2019.emss.003.

[34] W. Burghout, H. N. Koutsopoulos, and I. Andreasson, ‘‘A discrete-event
mesoscopic traffic simulation model for hybrid traffic simulation,’’ in
Proc. IEEE Intell. Transp. Syst. Conf., Sep. 2006, pp. 1102–1107, doi:
10.1109/ITSC.2006.1707369.

[35] RailML. Home-railML.org (EN). Accessed: Jun. 20, 2022. [Online]. Avail-
able: https://www.railml.org/en/

[36] T. Ciszewski, M. Kornaszewski, and W. Nowakowski, ‘‘RailML
application for description of railway interlocking systems,’’ AUTOBUSY-
Technika, Eksploatacja, Systemy Transportowe, vol. 19, no. 12,
pp. 373–377, Dec. 2018, doi: 10.24136/atest.2018.415.

[37] R. Novotný, ‘‘Model of a railway infrastructure as a part of a mesoscopic
traffic simula,’’ in Proc. Eur. Modeling Simulation Symp., Sep. 2019,
pp. 120–125, doi: 10.46354/i3m.2019.emss.003.

[38] J. Banks, Ed., Handbook of Simulation. Hoboken, NJ, USA: Wiley, 1998,
doi: 10.1002/9780470172445.

[39] R. G. Sargent, ‘‘Verification and validation of simulation models,’’
in Proc. Winter Simulation Conf., Dec. 2010, pp. 166–183, doi:
10.1109/WSC.2010.5679166.

ANTONÍN KAVIČKA was born in 1965 in
Prostějov, Czech Republic. He received the Ing.
(M.Sc.) degree in engineering from the Univer-
sity of Transport and Communications, Žilina,
Czechoslovakia, in 1989, and the Ph.D. degree in
automatic control from the University of Žilina,
Slovakia, in 1998. Since 2002, he has been work-
ing at the University of Pardubice, Czech Repub-
lic, where he is currently a Full Professor and the
Head of the Department of Software Technologies

at the Faculty of Electrical Engineering and Informatics.

ROMAN DIVIŠ was born in 1988 in Pardubice,
Czech Republic. He received the Ing. (M.Sc.)
degree in information technologies and the Ph.D.
degree in information, communication, and con-
trol technologies from the University of Pardubice,
Pardubice, in 2013 and 2020, respectively. Since
2015, he has been working at the University of
Pardubice, where he is currently an Assistant Pro-
fessor at the Faculty of Electrical Engineering and
Informatics.

VOLUME 10, 2022 90199

http://dx.doi.org/10.1287/trsc.1030.0076
http://dx.doi.org/10.1016/j.eswa.2015.05.044
http://dx.doi.org/10.1007/s00291-008-0140-9
http://dx.doi.org/10.26552/com.c.1999.2.9-21
http://dx.doi.org/10.1007/s11590-021-01761-w
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.3929/ETHZ-A-001374188
http://dx.doi.org/10.1016/j.trc.2016.08.011
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/12.663776
http://dx.doi.org/10.1145/351827.384254
http://dx.doi.org/10.1007/3-540-45643-0_4
http://dx.doi.org/10.1016/j.cie.2013.09.019
http://dx.doi.org/10.1016/j.dib.2019.103952
http://dx.doi.org/10.1007/978-3-642-53751-6_23
http://dx.doi.org/10.2495/CR080091
http://dx.doi.org/10.3846/1648-4142.2008.23.335-340
http://dx.doi.org/10.1155/2018/7284815
http://dx.doi.org/10.1109/WSC.2011.6148066
http://dx.doi.org/10.7307/ptt.v23i6.186
http://dx.doi.org/10.46354/i3m.2019.emss.003
http://dx.doi.org/10.1109/ITSC.2006.1707369
http://dx.doi.org/10.24136/atest.2018.415
http://dx.doi.org/10.46354/i3m.2019.emss.003
http://dx.doi.org/10.1002/9780470172445
http://dx.doi.org/10.1109/WSC.2010.5679166

