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Abstract—The paper deals with new unconventional methods
of detecting unoccupied frequency channels in cognitive radios.
The main feature of these methods consists in their ability of
detecting unknown signals in the presence of noise under the
condition of a priori uncertainty. It makes it possible to increase
the efficiency of detecting unoccupied frequency channels in
cognitive radios due to the fact that these methods track changes
in the probabilistic properties of observations. During the course
of spectrum sensing of the frequency range, the detected signals
are divided into known (classified training samples of which
are available in the system) and unknown ones. Application
of methods for recognizing specified signals in the presence of
unknown signals makes it possible to simultaneously avoid the
erroneous occupation of a frequency channel by a secondary
user, in the case when previously unregistered signal occurs, and
also refresh the cognitive radio database. To detect unknown
signals, only information about probabilistic characteristics of
the channel noise is used.

Index Terms—Cognitive radio, spectrum sensing, unoccupied
channel, detection, secondary user, a priori uncertainty, efficiency

I. INTRODUCTION

Development and modernization of telecommunication net-
works stimulates an increase in traffic, which in turn acts as
an accelerating agent for offering new services. These new
services demand development of communication technologies.
Wireless technologies have received an exclusive development
in recent years. The problematic aspects of wireless commu-
nications are: (i) increasing transmission rate; (ii) lack of
frequency channels; (iii) low efficiency of frequency resource
utilization due to static allocation of frequencies for licensees.

Licensed frequency bands are available for use only to
those users for whom they are assigned. However, the radio
frequency resource remains limited and its efficient use is
realized not for all available frequencies. To improve the
efficiency of the frequency resource utilization, a cognitive
radio (CR) technology was built. Such a technology allows
secondary users to occupy fragments of the frequency band

when they are not used by primary users who have the right
to use them on a license basis. That is why, when operating
wireless networks, it is essential to monitor occupancy of the
frequency resource and perform the search for frequency chan-
nels which are temporarily vacant, i.e. not used by primary
users. Spectrum sensing in cognitive radio networks serves this
goal. The aim of the spectrum sensing is to identify signals in
distinct frequency channels and divide the operating frequency
range into “occupied” and “available” frequency sub-bands.

A literature survey [1]–[5] results in this list of conventional
methods for detecting radio emissions of primary users: (i) en-
ergy, (ii) matched filtering and (iii) cyclostationarity method.

The energy method requires no prior knowledge about the
signal to detect, while the last two rely on some sort of
characterization of the signal. The ease of implementation
and use of the energy detector are two main factors which
have predestined its wide spread. However, at low SNRs this
method performs poorly. Also, it suffers from uncertainty in
determining the required threshold of operation. The uncer-
tainty is caused by changes of signal and noise environment
in frequency channels.

The matched filtering method is capable of delivering short
observation times, that is, relatively short input samples are
sufficient to ensure specified values of probabilities of false
alarm or missed detection. The drawback of the method is the
fact it requires a receiver of a particular type to process signals
of each class of primary users. This is impractical for CRs.

The cyclostationarity method makes use of the fact that
short or long term dependencies must show up in real world
modulated signals. An obvious advantage of the method is
its ability to discriminate signals from noise reliably. The
method does well even in cases when the sought for signals
are below the noise level. Among disadvantages of the method
are high computational complexity and significant observation
time, which is not good from the perspective of the CR as it
decreases potential secondary channel throughput.



Judging the pros and cons of the aforementioned methods
to detect signals in the context of employing them to classify
frequency channels into currently used and free ones we con-
clude that cognitive radio systems will benefit from relying on
unconventional methods of signal detection and recognition.
The feature of these methods is that they allow us to reference
unknown signals to a special class of signals for which no
prior information is provided. Acting this way first makes
it possible to refresh the CR database of signals peculiar to
a particular frequency band and second fusing the tasks of
detection and recognition of sensed signals into one operation
creates preconditions for prioritizing access to the frequency
resource for secondary users who exhibit receptiveness to
possible transmission delays.

The rest of the paper deals with describing ideas put into
the basis of unconventional methods for signal detection and
recognition and reports results of performance analysis of
these unconventional methods applied to real-world samples
of signals and noise, obtained during spectrum sensing in CRs.

II. SPECTRUM SENSING

A. Decision Rules for Blind Signal Detection

We put forward two hypotheses. The first one, H0 is valid
if the frequency band to analyze is empty (i.e. only noise
present). The alternative hypothesis, H1 becomes valid if H0

fails (i.e. a mixture of signal and noise present).
Peculiarities of application of the theory of signal detection

to solving tasks of automated radio monitoring (i.e. spec-
trum sensing) one may find, for example, in [2], [6]. Let
~X ∼ W ( ~X|~α) be an observation vector of length L and
W ( ~X|~α) is a multivariate PDF specified by a vector parameter
~α. The following decision rule is applicable to detect unknown
signals:

W ( ~X|~α 0)
H0

≷
H1

∆0, (1)

where ~α 0 is the vector parameter of the intrinsic distribution
of H0; ∆0 is a certain threshold value selected to provide the
specified probability of false alarm.

If ~X comes from a multivariate Gaussian distribution, then
(1) turns to [6]–[8]

( ~X − ~µ 0)T (R0)−1( ~X − ~µ 0)
H0

≶
H1

∆0, (2)

where ~µ 0 and R0 are mean vector and covariance matrix of
the noise. Estimates for ~µ 0, R0 are determined from a learning
sample of noise ~X0 respectively.

In turn, when for decision-making a set of observation
vectors { ~Xr}vr=1 is used, the decision rule (2) takes the form:

v∑
r=1

( ~Xr − ~µ 0)T (R0)−1( ~Xr − ~µ 0)
H0

≶
H1

∆0
v. (3)

Another variation of rule (3) is

Tr(R−R0)(R−R0)T
H0

≶
H1

∆0
R, (4)

where R0 = 1
n0

∑n0

r=1( ~X0
r − ~µ 0

r )( ~X0
r − ~µ 0

r )T , R =
1
v

∑v
r=1( ~Xr−~µ 0

r )( ~Xr−~µ 0
r )T , n0 is for the size of a training

sample and v � n0 is the size of a control sample; Tr(·)
designates the matrix trace operator.

A conventional energy detector is

~XT ~X
H0

≶
H1

∆0. (5)

The decision rules (2) – (5) define some possible algorithms
for detecting unknown signals in the presence of noise, and
can be used for determining occupancy of channels in CRs.

B. Selection and Recognition of Given Signals in the Presence
of Unknown Ones

The following decision rule [6], which compares the Maha-
lanobis distance to a threshold, is used to solve the problem
of selecting and recognizing given signals in the presence of
unknown ones:

Hi :

{
Di < ∆i,

Di ≤ Dl, i, l = 1,M, i 6= l;
(6a)

H(M+1) : Di ≥ ∆i, i = 1,M, (6b)

where Hi is the hypothesis which states the i-th known signal
is present. In turn H(M+1) is valid if Hi fails, i.e, an unknown
signal have been spotted in the frequency channel. Next, Di =
( ~X − ~µi)T (Ri)−1( ~X − ~µi), ~µi and Ri are the mean vector
and covariance matrix of the i-th known signal represented by
its training sample and ∆i is some threshold value.

Decision rule (6) serves the goal of formalizing the problem
of selection and recognition of M specified signals and refer-
encing unspecified ones to the (M + 1)-th class. A stepwise
procedure is induced by this rule. Namely, first we test the
hypothesis about the i-th specified signal presence. Than, if all
the hypotheses Hi have been rejected, we declare the received
signal to be unknown one from the (M + 1)-th class.

C. Spectrum Sensing System

With the aid of a USB DVB-T TV tuner and open-source
SDR# application, samples of signals and noise, typical for
the IEEE 802.22 standard frequency range, were accumulated.
Such a tuner is able to receive radio emissions within the
range 24–1710 MHz, yet it can analyze spectra of signals
with types of modulation specific to the mentioned frequency
range, namely, AM, FM, WFM, NFM, CW, SSB, etc. Control
samples of signal and noise realizations of size 1000 were em-
ployed for the ensuing analysis of the operating characteristics
of the signal detection rules. There were L ≤ 512 time bins
in every realization.

D. Procedure to Determine Threshold Value ∆0

In this paper, the following procedure of selecting threshold
values ∆0 for rules (2), (3) and (5) was used.

1. Based on the learning sample ~X0, estimates for ~µ0 and
R0 are found. These values are treated as reference ones.

2. For every testing sample of noise, values of left-hand-
sides of decision statistics of rules (2)–(5) are computed.



3. Order statistics ∆0
(1), . . . ,∆

0
(N) are obtained by arranging

in ascending order values of decision statistics found in
the previous stage of the algorithm. The number of testing
samples is designated with N .

4. Threshold ∆0 is chosen as the order statistic ∆0
(n), where

n is the smallest sequence number such that 1 − n
N ≤

P(1|0). Here P(1|0) means the probability of false alarm.

III. EVALUATION

A. Operating Characteristics of Signal Detection Rules

Here we present results of performance evaluation of de-
cision rules (2) through (5) in terms of dependency of the
probability of channel occupancy correct detection on the
signal to noise ratio. The switch from the time to frequency
domain is beneficial from the perspective of spectrum sensing
in CRs. Such a switch allows us to localize the signal within
a frequency sub-band and thereby increase the difference
between the mixture of signal+noise and noise itself. In our
experiment two types of signals were considered as unknown
ones. Namely, a narrow band signal AFS FSK 130 Bd and a
wide band WFM signal. Magnitude spectra of these signals
are depicted in Fig. 1.

To get probabilities of signal correct detection P(1|1) in the
presence of noise, a series of simulations was performed. At
the learning stage, parameters of the decision rules from sub-
Sec. II-A were determined with respect to accumulated realiza-
tions of noise. Threshold values were selected in accordance
with the algorithm from sub-Sec. II-D so as to provide the
requested values of the false alarm probability, P(1|0) = 0.04.
Probabilities P(1|1) were estimated as proportions, that is
ratios of the number of successful trials to the total number of
trials. The total number of trials was 1000. A trial was declared
successful if it yielded a correct decision on the presence of
unknown signal (AFS FSK 130 Bd or WFM, one at a time).

Fig. 2 depicts detailed information on the behavior of rules
(2) through (4) as well as the comparison with a conventional
energy detector (ED), rule (5). The dependencies of P(1|1) vs
SNR were obtained under these assumptions: the DFT block
size L = 128; the number of realizations used to make a
decision was v ∈ {1, 2, 3}. Note that for v = 1 decision rule
(3) reduces to rule (2). The leftmost plot in Fig. 2 corresponds

(a) AFS FSK 130 Bd signal (b) Wide band FM (WFM) signal

Fig. 1. Magnitude spectra of signals treated as unknown ones

to the use of decision rule (3) for testing the hypothesis H0

against H1 about the presence of AFS FSK 130 Bd signal.
In turn, the last two plots in Fig. 2 show respectively the
dependencies peculiar to rules (3) and (4) applied to detecting
the vacancy of the channel which might be occupied by a
WFM signal. Error bars in Fig. 2 match confidence bands for
proportions [9], confidence level 0.05. Analysis of the plots
suggests that for v ∈ {1, 2} rule (4) outperforms rule (3); for
v = 3 the difference is subtle. Also, rules (3) and (4) exhibit
better performance compared to the energy detector, especially
at low SNRs. Rule (4) is recommended for use when both
operation time and P(1|1) are equally important for the end
user. If we are looking for keeping high values of P(1|1) while
minimizing operation time, rule (2) comes into play.

B. Procedure for Selection and Recognition of Given Signals

In sub-Sec. II-B decision rule (6) for selection and recogni-
tion of specified signals in the presence of unknown ones was
described. Such a procedure lends itself well to constructing
a signal spectrum sensing system for CRs. Indeed, spectrum
sensing is performed as a two-step procedure. First, we are
looking for familiar to the CR system signals and if we have
serially rejected hypotheses for the presence of all known
signals, we proceed to answering the question whether we
deal with an unspecified signal or noise. That is, if the test for
properties of noise of the observed signal have been rejected,
we declare the signal to be unknown one and update the CR
database. The Type I error rate for both of our hypothesis
testing steps was selected in accordance with the Bonferroni
procedure [10], [11]. It was equal αf-w/2. Here αf-w/2 is for
the desired significance level of the sensing procedure. More
details on the this spectrum sensing procedure are in [12].

Below we report results of simulations, which were done
in MATLAB. In our experiment we used samples of 6 kHz
signals. Learning and testing samples were composed of 100
realizations each. Every realization was represented by a
vector of 128 time bins. As before, the processing is done
in the frequency domain (L = 64). Fig. 3 plots normalized
averaged magnitude spectra of the signals.

It is known that power spectrum bins are asymptotically in-
dependent, thus we supposed components of the input vectors
to be uncorrelated. That is, the distances Di, used in (6), take
on the form

Di =

L∑
j=1

(xj − µi
j)

2

(σi
j)

2
, i = 1,M,

where ~X = [x1, x2, . . . , xL]T , ~µi = [µi
1, µ

i
2, . . . , µ

i
L]T , Ri =

diag((σi
1)2, (σi

2)2, . . . , (σi
L)2). Among signals in Fig. 3, the

first four (i.e. #1 through #4) were treated as known ones,
while the rest (#5 through #8) we considered as unknown
signals. Thus, in our particular case M = 4. The channel noise
signal was included into the category of unknown signals and
had the sequence number #5. Thresholds ∆i, i = 1,M were
found to match the significance level α = 0.05/2 = 0.025.
Results of recognition are summarized in Tab. I.



Fig. 2. Behavior of decision rules, from left to right: rule (3) / AFS FSK 130 Bd; rules (3) and (4) / WFM signal.

Fig. 3. Standardized averaged magnitude spectra of signals.

Analyzing Tab. I data we see that #7 was erroneously
assigned to #4 because of the lack of learning samples
corresponding to it. The rest of unknown signals have been ref-
erenced properly to the (M+1)-th class. From the perspective
of the CR smooth operation the registered signal entanglement
influences nothing as as we are looking for not occupying a
used by primary user channel, which we do achieve.

IV. CONCLUSION

The ability to reference unknown signals to a special class
of signals, suggests described in the paper two-stage decision
making procedure. At the first stage the input signal is tested
for being a known one, while at the second stage all the
signals, labeled as unknown ones, are tested for exhibiting
features of the channel noise. Despite being conservative,
this procedure allows us to substantially reduce chances for
occupying a previously engaged by the primary user channel,
which is one of CRs’ main objectives.
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