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Abstract—Smart systems are enabled by artificial intelligence
(AI), which is realized using machine learning (ML) techniques.
ML algorithms are implemented in the hardware using fixed-
point, integer, and floating-point representations. The perfor-
mance of hardware implementation gets impacted due to very
small or large values because of their limited word size. To
overcome this limitation, various floating-point representations
are employed, such as IEEE754, posit, bfloatl6 etc. Moreover,
for the efficient implementation of ML algorithms, one of the
most intuitive solutions is to use a suitable number system. As
we know, multiply and add (MAC), divider and square root
units are the most common building blocks of various ML
algorithms. Therefore, in this paper, we present a comparative
study of hardware implementations of these units based on
bfloatl6 and posit number representations. It is observed that
posit based implementations perform 1.50x better in terms
of accuracy, but consume 1.51x more hardware resources
as compared to bfloatlé based realizations. Thus, as per the
trade-off between accuracy and resource utilization, it can be
stated that the bfloat16 number representation may be preferred
over other existing number representations in the hardware
implementations of ML algorithms.

Index Terms—Floating-point representations, Deep Learning,
Posit, Training,

I. INTRODUCTION

For decades, artificial intelligence (AI) has been integrated
into almost every aspect of digital life. As artificial neural
networks (ANN) is not new, re-emergence is transpiring to
introduce upgrades and modifications in models. The model
learning is a process, which takes a huge labeled dataset as
an ¢xample to construct a classification network. However,
there are a number of datasets to be employed to improve
convergence of the algorithm. The common machine learning
(ML) algorithms take time to converge even when they are
executed on a high performance computing machine. As we
know, training is the most compute intensive step in Al
modeling. When the input dataset is in the form of images,
while training a classification model, it needs to adjust millions
of weights continuously. As the process requires data to be in a
wide dynamic range, the floating-point representation presents
an enormous range in fixed bit width, which is not possible
by integer or fixed-point representation. Therefore, floating-
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point representations have become the primary choice in the
realization of ML models.

The floating-point number is represented by significand,
exponent and base as significand x basec“Ponent TEEE754
[1] is the most commonly used floating-point representation.
It is expressed using varied bit-widths, such as 64, 32, 16, 8-
bits etc., and delivers high numeric precision and throughput.
However, the IEEE754 standard was introduced in 1985 ex-
hibiting expensive processing and memory access. Nowadays,
computation is cheap and accessing the memory is expensive,
therefore it makes the existing IEEE754 representations ineffi-
cient. In 2014, Google Brain introduced a modified version and
called it the brain floating-point representation (bfloat16) [2].
This representation performs well for ML application [3] [4],
and leads the machine learning model towards optimization.
Intel has also proposed its Cooper Lake Xeon processor [5],
which employs bfloatl6 representation, for accelerating the
DNN model.

The few other works [6] [7] [8] depict that posit [9], a
newer version of floating-point representation may replace the
IEEE754 standard. Further, [8] describes that it provides better
accuracy for DNN models. In this paper, we propose the study
of various number representations for the efficient realization
of ML algorithms. We have compared various floating-point
number representations based on accuracy, area and power
consumption of the hardware realization of a few selected
most commonly used units, viz. MAC, divider and square root
units in this paper. These units are the most commonly used
modules in ML algorithms.

Since ML algorithms employ above mentioned arithmetic
modules during their hardware implementation. The analysis
of these arithmetic units is essential for the fair comparison of
various floating-point number representations. It is observed
that to achieve minimum resource utilization, single-precision
compliant training needs additional parameters. When results
are compared with posit based training of ML algorithms, the
accuracy of posit based training seems to be higher as com-
pared to all other representations [10]. Further, the analytical
study illustrates that except for posit, all other representation
based trainings showcase worse accuracy than bfloat16 based



training. It is found that bfloatl6é based implementations
outperform posit based realizations during the experimental
analysis.

Rest of the paper is organized as follows. Section II
introduces details of floating-point number representations
available in the literature. Section III demonstrates hardware
realization of different arithmetic modules based on these rep-
resentations. Section V presents performance analysis based
on resource utilization and power consumption of various
arithmetic modules. The proposed work is concluded in section
VL

II. RELATED WORK

In this section, we brief about the most popular floating-
point number representations.

A. Posit

In 2017, another floating-point representation, named as
posit [9], is proposed. It is claimed that it performs better than
the existing IEEE754 based representations [9], and does not
support overflow or underflow, which reduces complexity of
exception handling. This number system is represented using
Figure 1. The decimal value of this representation is calculated
using equation 1, where £ is the length of the regime field. The
regime bits are realized by useed, where useed is 22° . Here,
E'S is the decimal representation of exponent bits considering
it as an unsigned integer. Posit does not contain any bias to
implement exponent term. The remaining bits are allocated to
mantissa.
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Fig. 1. Posit number format
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B. Brain floating-point representation (bfloat16)

Bfloat16 representation is proposed with a slight modifica-
tion in single-precision floating-point (FP32) representation by
Google brain. It is a 16 — bi{ representation, which contains
8 — bit exponent and 7 — bl mantissa and a sign bit at MSB.
The number system is shown in Figure 2 and equation 2 is
used to calculate the decimal value of bfloat16 representation.
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Fig. 2. Brain floating-point representation
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III. IMPLEMENTATION DETAILS

The machine learning algorithms require ample computation
during training and testing of the models. Implementing com-
putation module in the hardware requires an efficient number
representation. In a machine learning model, data may vary
in a wide range, which creates the requirement of floating-
point representation. There are a number of floating-point
representations available in the literature, which are described
in section II. In this section, we discuss basic computation
elements (fused multiply and addition, division and square-
root) based on 16-bit fixed point, single-precision (FP32),
posit, and bfloat16 representations.

To perform any arithmetic operation on floating-point rep-
resentations, it is imperative to identify the representation first,
which requires an extraction unit to find exponent, mantissa or
fraction. However, fixed-point, single-precision, and bfloat16
representations can be directly employed in the computation
modules, whereas, posit requires a setup to extract the above
mentioned information. Single-precision (FP32), and bfloat16
are given directly in terms of exponent and mantissa. An
extraction code! for posit based implementations is employed,
which is realized using 28 OR, 18 AND, 8 NAND and 24
multiplexers. The area utilization and power consumption of
the extraction unit are 4.095um? and 3.757mW , respectively.
As mentioned above, in order to find the best number represen-
tation for the realization of ML algorithms, basic computation
elements, such as a fused multiply and addition, division and
square-root are used. These basic computations e¢lements are
described below for completeness.

A. Fused Multiply and Addition

The fused multiply and add operations are performed using
three inputs, where the product of the initial two inputs is
summed with the third one. Algorithm 1 [11] is employed
for each floating-point representation except the fixed-point
representation because it contains different extraction methods.
The fixed-point representation has used a traditional [12]
algorithm for the said purpose.

TABLE I
NUMBER OF GATES, AREA, POWER AND DELAY OF EACH
REPRESENTATION DURING FUSED MULTIPLY AND ADD OPERATION.

Datatype Gates | Area (um?) | Power(mW) | Delay(ns)
Fixed-point 4308 266.905 211.912 88.113
Single-precision | 6393 359.736 285.866 211.572
Posit 2247 115.721 106.711 109.971
Bfloatlo 1998 113.038 97.452 108.979

It is assumed that the 16-bit fixed-point representation con-
tains a 6-bit integer and a 10-bit fraction. The number of gates
used by each representation in multiply and add operations are
shown in Table 1. Since multiplication is the costliest operation
among basic arithmetic operations, it consumes more resources
with the increase of bits. The fixed-point number and other

Isource code obtained from https:/github.com/manish-kj/Posit-HDL-
Arithmetic



Algorithm 1 Fused Multiply-Addition

procedure FUSED MULTIPLY-ADD(Inputl, Input2, Input3)
Given: N = word length, E = exponent, Bias = (2*%(E-1))-1
Input: Inputl, Input2, Input3
Data Extraction:
Inpuwil: Infy, 21, Sy, By, M3
Inpu2: Im fo, Zo, S, Ba, Mgy
Inpwi3: Infs, Z3, Sz, B3, M3
Exceptions: Zero <— Z1 AND Zg
Infinity <~ Infy OR Infg
Multiplication Operation:
Sp < 81 XOR Sy
Mantissa Multiplication:
Mudtiplication of My and Mo: M, .1 <+ M1 X Mg
Mantissa Overflow: fmon +— My 1 [MSB]: My, 1 <<1
Mp + M0 Mo, <<1
Exponent processing: Ep <— Eq - B + fmowv
Add/Sub processing:
Operation: Op <— Sp XOR S3
Greater: I,_grt_I3 <+ Ep, Mp > Input3[N-2:0171:0
Large (L) values: Sy, By, M
Small (S) values: Sg, Eg, Mg
Mantissa Addition:
Exponen: difference: Dif fe <+ Ej — Eg
Mst <— shifting mantissa by D4 f fe
Addition of M and Mst: Mfma + Opr? M + Mst H
Maniissa Overflow: fmon +— Mfma [MSB]
Mpma & Mpma: Mpme<<1
Exponent processing: Efma = Diffe 7E + Diffe: By
Data Processing:
Final Owuput: Ofma +— Sl'Efma'Mfma

M — Mg,

representations are divided into sections (such as fraction,
exponent, and mantissa), which makes it less costly compared
to other representations. It is observed from Table I, bfloat16
consumes a 1.60x smaller number of gates compared to other
representations. The area utilization of bfloat16 representation
is 1.63x less among all representations. For better analysis,
we have used another example to compare the results in the
next subsection.

B. Division & Square-root

Since division and square-root (DSQRT) is another most
commonly employed arithmetic operation, it is implemented
for analysis. DSQRT module operates in two modes, one
is division and another is square root. When the module is
operating in division mode, it will receive two inputs and
produce an output. When working in square root mode, there
is only one input that results in a square root. We employed
the non-restoring algorithm 2 [13] for analysis purposes. The
algorithm is not employed to fixed-point representation due to
a different extraction pattern of these representations.

Algorithm 2 Division & Square-root

procedure DIVISION & SQUARE-ROOT(Inputl, Input2, DSQRT)
Given: N = word size, E = exponent, Bias = (2**(E-1))-1
Input: Inputl, Input2
Operation: Op <— DSQRT? DIV : SQRT
Division:
Data Extraction:
Inputl: Inf1, Z1, S1, E1, My
Inpu2: In fo, Zo, So, Eg, My
Exceptions: Zero <— Z1 AND Zg
Infinity +— Infq OR Infy
Multiplication process:
S g4, + S1 XOR Sy
Mantissa Division:
Division of M1 and Mo: M g;,, <+ M1 <+ Mgy
Mantissa Overflow: fmov +— Mgz, [MSB]: Mg;, <<1
Mga, +— Mgy Mgz, <<1
Exponent processing: E4;,, <+ E1 - E2 + fmou
Data Processing:
Final Owpur: O g;., +— S g5 Edinv - Mdin
Square-root:
Data Extraction:
Inputl: Inf, Z, S, B, M
Exceptions: Zero <— Z
Infinity +— In f
Ssqrt + 5
Exponent processing: Bggpy +— B+ 1
Mantissa Square-root:
if Eggre is odd
Msgri +— Msqre <<1
Data Processing:
Final Owput: Ogqrt <+ Ssqrt-Bsqrt-Msgrt

TABLE II
NUMBER OF GATES, AREA, POWER AND DELAY OF EACH
REPRESENTATION DURING DIVISION AND SQUARE-ROOT OPERATION.

Datatype Gates | Area (um?) | Power(uWW) | Delay(ns)
Fixed-point 273 17.126 13.227 50.725
Single-precision 647 52.201 37.087 240.142
Posit 449 24.733 22.132 126.998
Bfloatl6 370 21.392 19.230 126.110

The fixed-point representations have used a traditional di-
vision and square-root [14] algorithm for the operation. The
number of gates used by each representation in the opera-
tion is shown in Table I. Since fixed-point representations
have limitations of less range, they are not a better choice
for machine learning applications. While comparing among
single-precision, posit and bfloat16, it is observed that bfloat16
representation consumes 1.79x, 1.53x and 1.45x less area,
power, and delay, respectively.

On the basis of the above analysis, it is worth saying that
among floating-point representations, for arithmetic compu-
tation, bfloatl6 consumes minimum resources. The reason
for this decreased resource utilization is its fewer mantissa
bits. However, the bfloatl6 representation shows the values
in the same range as single-precision, which makes it more
compatible for applying in machine learning computation
models.

Mean Relative Error Distance (MRED) is used to resemble
the potential of single-precision, posit, and bfloat16 floating-
point number systems. A single-event upset (SEU) as men-
tioned in [15], is employed in the analysis. The study is
performed by flipping the mantissa, exponent, and regime bit
one by one. As long as a 16-bit bfloat16 representation cannot
be compared with a 32-bit representation, bfloat16 is compared
with a 16-bit posit. The study shown in [15], depicted the
comparison between posit (32,2) and single-precision and it is
proved that posit is more error resilient than single-precision.

The analysis is performed by injecting a fault at the ‘"
bit position of a number represented in posit and bfloatl6
formats. An error is calculated with respect to its actual value
using equation 3 in this analysis. The range of half-precision
representation is substantially less and not sufficient for a large
value, which is why it is not including in the analysis.

1 n—1
MRED = —~ ;

[Val, — Valf|
Val, )

where, Val; and Val; are the actual and modified values
generated before bit-flip and after bit-flip, respectively. Figure
3 presents comparison between various numbers represented in
bfloat16 and posit formats. It can be observed that posit(16,1)
is more error resilient than bfloatl6.

Table I and II show that bfloat16 based modules utilizes
1.69x and 1.33x better for fused multiply and addition and
division and square-root operations. The comparison is made
between posit and bfloatl6 because they are the best two
performing floating-point representations.









power, delay and range. Posit performs better in terms of
accuracy, but the figure of merit (product of area, power, and
accuracy) of bfloatl6 is better than posit.

Figure 7 exhibits the total number of gates employed in the
realization of fused MAC, as well as divider and square root
units employing posit and bfloat16 number representations. It
shows that bfloat16 based implementations consume 1.35x
less gates as compared to posit based implementations. This
states that bfloat16 based implementations can be utilized in
the efficient realization of ML algorithms.

VI. CONCLUSION

The proposed research aims to present bfloatl6 as the
best choice for machine learning applications among existing
floating-point representations. This is because of the same
dynamic range of bfloat16 as single-precision, which is ac-
ceptable for the realization of ML algorithms. It is observed
that bfloat16 based designs perform better in the resource uti-
lization and power consumption than posit and other floating-
point number representation based designs. However, posit
based implementations perform better in terms of accuracy
and precision as compared to other representation based im-
plementations, but they consume an average of 1.51x more
hardware resources. On the other hand, bfloat16 based designs
consumes an average of 1.50x less power consumption than
posit based designs. Further, bfloat16 based implementations
exhibit a robust behavior while training a neural network, and
the use of bfloatl6 in the design eliminates hyper-parameter
tuning in the block quantization. Due to all these observations,
bfloat16 shows its relevance among other representations in
terms of hardware implementation of various machine learning
applications.
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