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Tensor Based Multivariate Polynomial Modulo
Multiplier for Cryptographic Applications

Bikram Paul, Angana Nath, Srinivasan Krishnaswamy, Jan Pidanic, Zdenek Nemec and Gaurav Trivedi

Abstract—

Modulo polynomial multiplication is an essential mathematical operation in the area of finite field arithmetic. Polynomial functions can be
represented as tensors, which can be utilized as basic building blocks for various lattice-based post-quantum cryptography schemes.
This paper presents a tensor-based novel modulo multiplication method for multivariate polynomials over GF (2m) and is realized on the
hardware platform (FPGA). The proposed method consumes 6.5× less power and achieves more than 6× speedup compared to other
contemporary single variable polynomial multiplication implementations. Our method is embarrassingly parallel and easily scalable for
multivariate polynomials. Polynomial functions of nine variables, where each variable is of degree 128, are tested with the proposed
multiplier, and its corresponding area, power, and power-delay-area product (PDAP) are presented. The computational complexity of
single variable and multivariate polynomial multiplications are O(n) and O(np), respectively, where n is the maximum degree of a
polynomial having p variables. Due to its high speed, low latency, and scalability, the proposed modulo multiplier can be used in a wide
range of applications.

Index Terms—Multivariate polynomial, Cryptography, Tensor, Homomorphic encryption, Modulo multiplication, Field programmable
gate array (FPGA).

F

1 INTRODUCTION

W ITH the rapid advancement of computational capa-
bilities, modern cloud computations, network data

transactions, etc., are facing tremendous security threats
against various unwanted adversaries. Post-quantum cryp-
tography (PQC) schemes exhibit stronger resistance to
classical and quantum computing-based attacks and have
become prime interest to the cryptography community.
Among various classes of PQC (hash-based, lattice-based,
code-based, supersingular isogeny, chaotic dynamic system
based, etc.), the lattice-based encryption schemes have got-
ten the most attention while designing alternate cryptosys-
tems due to their easy implementation on the hardware. For
post-quantum cryptosystems, many other security-related
applications, such as homomorphic encryption, key gen-
eration, encapsulation, and hash or signature generation
protocols, can be derived from the polynomial lattice. In
general, the lattice-based cryptosystems are implemented
using polynomial rings and execute modulo multiplica-
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tions and additions of two large-degree polynomials over
GF (2m) (Galois Field) basis, which is a compute intense
process.

Many efficient polynomial modulo multipliers are pro-
posed in the literature, which play a critical role in lattice-
based encryption schemes. Among them, Bit-parallel canon-
ical methods [1], [2], [3], [4], systolic multipliers based
on Montgomery techniques [5], [6], digit-serial and sys-
tolic Karatsuba methods [7], [8], [9], digit-serial dual basis
multipliers [10], [11], number theoretic transform (NTT)
based multipliers [12], [13], matrix-vector based Hankel and
Toeplitz multiples [14], [15], [16], [17] are quite well-known.
The salient features and limitations of the above multipliers
are listed in Table 1. Most of these works primarily focus
on implementing single variable polynomials and deal with
trinomials and pentanomials only, whereas our proposed
method is generic and optimally implemented on the FPGA.
Various FPGA hardware implementations of polynomial
modulo multipliers can be found in [7], [8], [9], [13], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24]. Further, the
efficiency of our proposed multiplier is estimated using vari-
ous parameters, such as computational complexity, resource
utilization, and scalability with a polynomial degree. It is
found that the proposed method has less computational
complexity then [4], [25] and consumes fewer hardware
resources with respect to [9], [13], [16], [17], [18]. It also
exhibits higher scalability with a greater polynomial degree
than the methods presented in [7], [8], [15], [19].

In this work, our main contribution is to develop a
generic, scalable power-efficient multivariate polynomial
multiplier, which can provide less delay so that it can
be used in various time-critical applications. Our pro-
posed multiplier works efficiently with Learning-with-
Errors (LWE) and Ring-LWE (RWE) based homomorphic
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TABLE 1
Comparison of Existing Polynomial Modulo Multiplication Methodologies

Existing Methodologies Salient Features Limitations Reference

Bit-parallel Canonical Multiplier Multiplexer based approach in the construction
of sub-quadratic complex space multipliers

Only irreducible trinomial is employed
in this scheme.

[1], [2], [3]

Systolic Montgomery Multiplier Efficient implementation of Montgomery multi-
plication over GF(2m) for all-one polynomials

Produces estimated value of quotients,
which is useful for RSA and DiffieHell-
man key exchange, but it is not applica-
ble for lattice based PQC algorithms

[5], [6]

Dual-basis digit serial multiplier

This method is based on irreducible trinomial
and a look-ahead technique in the dual basis
multiplication, processed by one cell of tree
structure in the most significant digit.

Limited to irreducible trinomial only,
and cannot be applied for general mul-
tivariate polynomial operations

[10], [11]

Hankel matrix-vector Multiplier
This is an iterative Fast Fourier Transform based
sparse matrix multiplication method with high
degree of accuracy

Slower throughput as compared to most
of the methods

[14], [15],
[16]

Digit-serial Karatsuba Multiplier This is a fast multiplication algorithm for multi-
precision numbers with O(m1.58) complexity

Less throughput due to longer gate de-
lays [7], [8]

Chiou’s Multiplier
The multiplication block is decomposed in four
mutually independent sub-multiplication units,
which improves the performance

Less scalability and more hardware re-
source intense process [19]

Toeplitz matrix-vector Multiplier A single digit is represented by 2-bits and poly-
nomial multiplication in every clock cycle

Higher resource utilization for hard-
ware implementation [17]

Systolic Karatsuba Multiplier Efficient implementation of single variable NIST
polynomial based multiplier

Less throughput, less scalable and more
power consumption [9]

Number Theoretic Transform
(NTT) Multiplier

Efficient implementation of single variable Ky-
ber scheme polynomial for FFT like architecture

No implementation exists for the multi-
variate polynomial multiplications [12], [13]

encryption schemes. This method is embarrassingly par-
allel and substantially improves the proposed method’s
throughput. Along with sequential design, 4-parallel col-
umn multiplication (4-PCM) and 16-PCM implementations
are presented in Table 9. The computational complexity of
the proposed modulo multiplier is linear for single variable
polynomial multiplications. The tensor matrices and input
vectors employed in this method are sparse, which opti-
mizes the space requirement of the proposed method.

The manuscript is organized as follows. Section II
presents preliminary research works which lay the foun-
dation of our proposed hardware architecture. Section III
presents the proposed tensor-based multivariate polynomial
multiplier with a suitable example. The time and space
complexity are discussed here with an appropriate com-
parison. Section IV explains the software and hardware im-
plementations of the proposed multiplier. Experimental and
implementation results, along with the detailed discussion
and comparison, are drawn in Section V. The application
of the proposed modulo polynomial multiplier in a basic
lattice-based homomorphic encryption scheme along with
its detailed formulation and security analysis is illustrated
in section VI. Finally, the conclusion of the proposed work
is presented in Section VII.

2 PRELIMINARIES

Many existing implementations are based on a single vari-
able polynomial and are limited to only a few polynomial
coefficients, such as trinomials and pentanomials. Gröbner
basis is constructed with unique algorithmic properties to
provide easy solutions for many fundamental problems in
a polynomial ring over a field. Let us assume F is a set of
polynomials in the ring R, i.e. f1(x1, x2, · · ·, xn), f2(x1, x2, · ·
·, xn), . . . , fn(x1, x2, cdot··, xn). The Gröbner basisG is con-
structed using the above-mentioned conditions by ordering
[26] monomials in a set of polynomials. The proposed mul-
tivariate modulo polynomial multiplier is conceptualized
based on the following three polynomial multiplications

presented in [27], [28], [29] for single and multivariate poly-
nomial expressions. The lexicographic ordering employed in
the proposed method is based on monomial ordering [30],
[31].

Polynomials over the field GF(2m) have coefficients from
domain {0, 1} and the highest degree of the polynomial is
(m − 1). For m = 16, a GF (216) multiplier for a single
variable polynomial is presented in [27]. Figure 1 exhibits
the structural organization of a single variable polynomial
operation.

f 2 f 0f 1f 3f 4f 15
a15 a14 a0a1a2a3

c15 c4 c3

c(y)

c2 c1 c0

Fig. 1. The structural construction of GF (216) multiplier for a single
variable polynomial

According to the Galois field, multiplication and ad-
dition are the primary operations in polynomial modular
multiplication [27]. Therefore, if a(y) and b(y) be two poly-
nomials in GF (2m), the product polynomial c(y) can be
expressed as equation 1.

c(y) = a(y).b(y) mod f(y) (1)

Initially, a(y) is multiplied sequentially by the coeffi-
cients of b(y). In this procedure, a(y) is multiplied first
with y; after that, a(y)y modulo f(y) is determined. Sub-
sequently, a(y) is multiplied by y2, and a(y)y2 modulo f(y)
is calculated. This process continues until the limit of the
Galois field dimension is reached. Multiplying a(y) with
b(y) and then dividing by f(y) results in equation 2.
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(a15f15 + a14)y
15 + (a15f14 + a14)y

14 . . . . . .

+(a15f1 + a0)y + a15f0
(2)

A univariate SISO (serial-in-serial-out) modulo multi-
plier for polynomial modulo multiplication is proposed in
[28]. The computational complexity of the SISO multiplier
is O(m). This algorithm is suitable for cryptographic appli-
cations due to less area utilization and higher output rate.
All the relevant data and parameters related to the SISO
multiplier over GF (2m) can be found in [28].

The multivariate polynomial residue number system
(MPRNS) based algorithm is presented in [29] to compute
equation 3 mentioned below, where, A(x), B(x) and C(x)
∈ R[x].

C(x) = A(x).B(x). mod
L∏
i=1

(xNi±1
i ) (3)

The quotient polynomial ring, R[x] = Zp/
∏L
i=1(x

Ni±1
i ),

has coefficients from the modular ring Zp. The existence of
an isomorphism between rings R[x] and ZN1,N2.....NL

p forms
the basis of MPRNS(L) for L-variate polynomials.

Vector-Matrix Multiplier
Vector-Vector Multiplier
Concatenation operation

(m-1)f

0f 0a0b

(m-1)a
(m-1)b c

M

M

M

M

M

M

M

Fig. 2. The Structural Construction of GF (2m) Multiplier for Multivariate
Polynomial

Figure 2 exhibits the primary structural organization
of the multiplication of two polynomials. This architecture
can be theoretically scaled up for multiple polynomials
by implementing identical blocks. Because of its sequential
architecture, the throughput of this method is limited, and
delay and power penalties are imposed. This methodology
is scaled up for generic multivariate modulo multiplication
by introducing tensor matrix multiplication techniques de-
scribed in the following sections.

3 TENSOR BASED POLYNOMIAL MODULO MULTI-
PLICATION

3.1 Tensor Basics
A tensor, T , is a multi-linear map, such that T : V1 × V2 ×
. . . Vn → W , where V1, V2, . . . , Vn and W are the vector

spaces of finite dimensions. The tensor can be expressed
as a multidimensional array if vector spaces have a fixed
base. For a bilinear map, one element from two vector spaces
maps into an element in the third vector space. Let V1 and
V2 be two vector spaces; a bilinear map B takes one element
each from the vectors V1 and V2 and maps it to a third vector
V3 using the following steps.

1) B : V1 × V2 ← V3
2) If v1 ∈ V1 is fixed, then v1 → B(v1, v2) is a linear

function from V1 → V3
3) If v2 ∈ V2 is fixed, then v2 → B(v1, v2) is a linear

function from V2 → V3

Here, the tensor product of the linear maps is described
briefly for completeness. Let L1 : V1 → V2 and L2 : W1 →
W2 be two linear maps, then the tensor product of two linear
maps is a linear map, L1⊗L2 : V1⊗W1 → V2 →W2, which
can be expressed by equation 4.

(L1 ⊗ L2)(v1 ⊗ w1)→ L1(v1)⊗ L2(w1) (4)

A tensor product of two linear maps, A and B, can be
represented as shown below.

A⊗B =


a11B a12B · · · a1nB
a21B a13B · · · a2nB
· · · ·

am1B am2B · · · amnB


Therefore, it can be stated that the polynomial multipli-

cation is a tensor map because polynomials can be expressed
as vectors in the polynomial space of n variables (i.e.,
x1, x2, . . . , xn with the maximum degree of each variable
< d). Thus it forms a vector space, V , of dimension dn.
Multiplication of polynomials in V modulo P can be con-
sidered as a function, f , which maps two elements of V
into another element of V . Here, p ∈ F2 [x1, x2, . . . , xn],
such that the degree of x1, x2, . . . , xn in any monomial is d,
i.e. f : V × V → V . Here, P is an irreducible polynomial
in F2. This manifests f to a bilinear map enabling it to be
employed for the tensor formulation.

The general modulo multiplication method requires
multiplication of polynomials if the quotienting polynomial
or reducible polynomial is changed. The main advantage of
the tensor matrix method is to compute the tensor only once
for a particular reducible polynomial to perform modulo
multiplication. For a given reducible polynomial and the
corresponding possible set of quotienting polynomials, a set
of tensor coefficients is determined, which is employed to
compute all the modulo multiplications until the reducible
polynomial is changed. In the case of lattice pollycracker-
based methods, the reducible polynomials do not alter much
for a particular key pair and the security parameters. There-
fore, the tensor matrix method can be of great advantage in
reducing compute-intensive matrix operations. This method
is elaborated below with a suitable example for complete-
ness.

3.2 The Tensor Matrix Method
The proposed tensor based multiplication technique is de-
rived from a fully homomorphic encryption scheme re-
ported in [32]. The generic description of our proposed
method is given below.
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Let p1 and p2 be the polynomials in an ideal I≤d and
y ∈ Znq , where Z is an integer and q is a prime number.
Zq denotes a finite field of cardinality q, and p1(y).p2(y) =
p1p2(y) = p(y). Therefore, p1.p2 ∈ I≤2d, which is a vector
subspace of Zq[x1, . . . , xl]≤2d. Here, dimensions l and d are
less than the dimension of subspace n. After the multipli-
cation, let us assume that the dimension of this subspace is
n′, where n′ > n. We now choose (n′ − n) additional points
in I≤2d, which span the vector space Zn

′

q to evaluate the
polynomial and are given below.

p(yn+1) =
n∑
i=1

βi.p(yi) +
n′+1∑
i=n+2

βi.p(yi) (5)

There exists γji for n + 2 ≤ i ≤ n′ + 1 and 1 ≤ j ≤ n,
such that for all p ∈ I≤d. Here, λs,j are the coefficients of
each term, and γji are the constants. Thus, equation 5 can be
represented as equation 6.

p(yi) =
n∑
j=1

γji λs,j .p(yj) for n+ 2 ≤ i ≤ n′ + 1 (6)

From the steps mentioned above, we can observe that a
linear transformation from I ≤ 2d to I ≤ d can be obtained,
which is depicted as a matrix L in Z(n+1)×(n′+1)

q below.

L =

[
Ln×n1 0n×1 L

1×(n′−n)
2

L1×n
3 1 L

1×(n′−n)
4

]
∈ Z(n+1)×(n′+1)

q

To formulate p(y) of dimension n′, an integer is added to
the (n+ 1)th entry of p(y), equivalent to p1p2(yn+1)mod q,
and is obtained using a transformation matrix, B, as shown
below.

B =

 In 0 0
β1 . . . βn 1 βn+2 . . . βn′+1

0 0 I(n′−n)


The vector p(y) is multiplied by L, which generates p′ =

∧sLB.p(y). Further, modular multiplication of p′ is obtained
using pmul = bp′c mod q ∈ Zn+1

q . Here, ∧s is a diagonal
coefficient matrix.

In order to validate the correctness of the method
mentioned above, a tensor M matrix-based scheme is
formulated. Let us consider a bilinear map BM :
Q(n+1) × Q(n+1) → Q(n+1), which can be represented
by a tensor M ∈ Q(n+1)(n+1)(n+1). BM(p1, p2) =
[pT1M1p2, . . . . . . , p

T
1Mn+1p2]

T , where Q is a rational num-
ber. M1, . . . . . . ,Mn+1 are the slices of tensor M and are
depicted as M = N ×1 (I)T ×2 (I)T ×3 ∧sLB. I is
an identity matrix, and N (i, i, i) = (λ−1s,i )

2 ∀i 6= n + 1,
N (n + 1, n + 1, n + 1) = 2

q and N (i, j, k) = 0 are every-
where else. Further, BM(p1p2) = p1p2 mod q, therefore,
pmul = bBM(p1.p2)c. The vector BM(p1p2) is the sum of
two vectors, v, and v′, where v is a vector with integer

entries equivalent to p(y) mod q. v′ is (0, 0, . . . , 0, η), where
η can be described as follows.

η =
2

q
(p1b

q

2
c+ e1 + qJ1)(p2b

q

2
c+ e2 + qJ2)

= p1p2b
q

2
c − p1p2

2q
+
q − 1

q
(p1e2 + p2e1) + (2e1 − p1)J2

+(2e2 − p1)J1 +
2

q
e1e2 + q(p1J2 + p2J1 + 2J1J2)

Therefore, bBM(p1p2)c mod q = bηc mod q, where e1 and
e2 are residue error terms due to performing operations in
Q space, and the values of |J1| and |J2| are less than the
norm of an identity matrix.

In our proposed work, the modulo multiplication
method is implemented over a binary field. Therefore,
coefficients are represented as either 0 or 1 in the pro-
posed method, and modulo multiplication is performed by
multiplying input vectors with the tensor matrix directly.
Note that all the other parameters during multiplication, i.e.
e1, e2, J1, J2, are considered zero due to GF (2m). An exam-
ple is given below depicting steps taken by the proposed
modulo multiplier.

Let us consider two multivariate polynomials, a =
(xy + 1) and b = (xy2 + x), and a quotienting polynomial
f = x2y + xy + 1. For polynomial ring 〈f1〉, the reducible
polynomial is taken as y3+1, and {1, y, (1+y), (y2), (1+
y2), (y + y2), (1 + y + y2)} are the elements of 〈f1〉.
The tensor elements are computed by finding a remainder,
which is obtained by dividing all the monomials in Table 2.
The presence of a remainder element in the tensor matrix is
marked by one or else as zero. The two main operations of
tensor matrix method are described below.

TABLE 2
Table to Find the Product of Monomials

. xy2 x2 xy y2 x y 1

xy2 x2y4 x3y2 x2y3 xy4 x2y2 xy3 xy2

x2 x3y2 x4 x3y x2y2 x3 x2y x2

xy x2y3 x3y x2y2 xy3 x2y xy2 xy
y2 xy4 x2y2 xy3 y4 xy2 y3 y2

x x2y2 x3 x2y xy2 x2 xy x
y xy3 x2y xy2 y3 xy y2 y
1 xy2 x2 xy y2 x y 1

Multiply: Each vector element is multiplied with other
elements in all possible ways, tabulated in Table 2.

Quotienting: After the multiplication, products are di-
vided by the quotienting polynomial to get a modular out-
put. This operation is a critical step in the tensor formation,
followed by the multiplication of the next polynomial.

The remainders can be tabulated as shown in Table 3. As
mentioned earlier, each of these steps can be calculated in
parallel. For generating a tensor for a particular coefficient,
if it appears in the remainder of a monomial after getting
the monomial divided by the quotienting polynomial, that
particular coefficient in the tensor is marked as “1”, else
“0”. The tensor matrix for xy2 is given below as a reference,
and other tensor matrices for x2, xy, y2, x, y and 1 can be
calculated similarly.
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TABLE 3
Remainders for Construction of Tensor Matrices

Matrix Check for Remainder Remainder Tensor
Indices Coefficients
a00 x2y4/〈x2y + xy + 1〉 xy + 1 0
a01 x3y2/〈x2y + xy + 1〉 xy2 + xy + y 1

...
...

...
...

a06 xy2/〈x2y + xy + 1〉 xy2 1
a10 x3y2/〈x2y + xy + 1〉 xy2 + xy + y 1

...
...

...
...

a66 1/〈x2y + xy + 1〉 1 0

Txy2 :



0 1 0 0 1 0 1
1 0 0 1 1 0 0
0 0 1 0 0 1 0
0 1 0 0 1 0 0
1 1 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0


(xy+1)∗(xy2+x)
〈x2y+xy+1〉 is further analyzed using the tensors

mentioned above. After lexicographic ordering, a = (xy+1)
and b = xy2 + x can be expressed as,

a =
[
0 0 1 0 0 0 1

]
; b =

[
1 0 0 0 1 0 0

]
.

In order to find whether terms are present in the final out-
put, a and b are multiplied with each tensor, i.e. a×T × bT ,
where T is a tensor. While finding the presence of xy2 in
the final output, a × Txy2 × bT have to be computed. If its
result is “1”, it indicates that the term is present in the final
output; otherwise not. The output of modulo multiplication
is determined as xy2 + xy + y2 + 1, using the above-
mentioned steps, which matches the algebraic output. A
detailed description of the polynomial multiplication with
an example is presented in Appendix A.

3.3 Complexity Analysis
The proposed method can be divided into three steps for
the complexity analysis. The first step is ordering random
multivariate polynomial equations in graded lexicographic
order. The second step is to generate a tensor matrix, and
the last step is to multiply it with multivariate polynomials
to get the modular output. The most recent works in the
polynomial modulo multiplication domain only deal with
single variable polynomial equations, whereas our proposed
scheme can also be applied to multivariate polynomials. The
dimension of the tensor matrix is related to the number of
variables and the degree of the polynomials.

For lexicographic ordering, the time complexity for a
single variable polynomial with n-terms is (n− 1) or O(n),
whereas the time complexity of the polynomial having n-
terms of m-variables is (nm − 1) or O(mn). For ordering,
monomials are generated using coefficients taken from re-
ducing and quotienting polynomials for generating tensor
matrices. Later, every monomial is divided by a quotienting
polynomial, and a table is generated for storing the remain-
ders of the individual monomial. Further, a n × n binary
tensor matrix for each coefficient is generated individually
by finding its presence in the remainders. Monomials can

be generated in parallel using n2 processing elements in
a single step. Similarly, remainders for each monomial are
also computed in parallel using n2 processing elements.
The time complexities of finding monomials and remainders
are O(1) and O(dlog2ne) [33], respectively. It is to mention
that for multivariate polynomials, the time complexity to
find the remainder is O(mdlog2ne). Since each tensor can
be computed in parallel for all the coefficients, total time
complexity for generating all the tensors is O(dlog2ne) for
m = 1, i.e. single variable polynomials. As we know,
each tensor and input polynomial vectors (a and b) are
represented in binary. Therefore, the step a × T × bT em-
ployed for finding the output of the modular multiplier
can be performed in (k + 1)n + 2 steps. The multiplication
of row vector a with a column of T takes O(1) using n
processing elements. Later, the addition of the binary partial
products is also performed in O(k), where k is the depth of
LUTs mimicking XOR operations. Further, the resultant row
vector after performing a×T is multiplied with the column
vector b, and it takes O(1 + k) to compute the final result
of the modular multiplication. Thus, the worst-case time
complexity of modular multiplication is (n− 1)+ dlog2ne+
(k + 1)n+ (k + 1) or O(n) + dlog2ne+ (k + 1)n+ (k + 1)
or O(n) + dlog2ne+ (k+ 1)(n+ 1). In our case, for a single
variable with 256 terms input, where the maximum degree
of the variable is 256, modulo multiplication is performed
in O(1), i.e., k = 1. This is because of performing additions
of 256 bits in a single clock cycle. It is to be noted that k � n
in general, thus, (k + 1)(n + 1) ≈ (n + 1). This transforms
the overall time complexity of modular multiplication to
O(n) + dlog2ne+2n+2, which can also be validated using
Table 8 by analyzing the delay and number of variables.

As we know, a tensor matrix is sparse and stored us-
ing sparse matrix storage formats, such as Compressed
Row Storage, Harwell-Boeing etc., having space complexity
O(nnz). Here nnz is the total number of “1” in a given tensor
matrix. Thus, space complexity is O(nnzn) for all the ten-
sors. Similarly, for storing monomials, the space complexity
is O(n2) and for storing lexicographically ordered inputs,
the space requirement is O(n). Thus, the worst case space
complexity of modular multiplication is O(n2 + nnzn+ n),
i.e., O(n2) for a single variable polynomial.

Area complexity can be determined by the total number
of gates utilized in designing a particular algorithm. The
most resource-intensive part of the proposed multiplier is
tensor generation operation, where the remainder is eval-
uated for every possible monomial by dividing it using
an irreducible polynomial, taking log2n steps to compute.
Every step utilizes n AND and (n − 1) XOR operations
to produce a remainder in log2n steps, and there are n
such monomial divisions computed simultaneously. There-
fore, the total space required for a tensor computation is
AA[n

2log2n] +AX [(n(n− 1))log2n], where AA and AX are
the area required for single 2-input AND and XOR gates.
Subsequently, from Figure 3 in section 4, it can be observed
that the space complexity of the input vector and tensor ma-
trix multiplication isAAn(r+1)+AX(n−1)(r+1) for a sin-
gle multiplication, where r is the number of parallel column
multiplications (r-PCM). Similar to tensor generation, this
step is also implemented in parallel, and for n such blocks,
the total space complexity isAAn2(r+1)+AX(n2−n)(r+1).
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TABLE 4
Comparison of Time and Space Complexities, and Latency

Test cases Type Proposed Reyhani-Hasan [4] Zhang-Parhi [25] Others
Trinomial
(P (x) = xn + xm + 1)
(n > m > 1)
(# e is constant)

Time (n−1)+dlog2ne+(k+
1)(n+ 1)

n2 + (2 +
dlog2(n− 1)e)(n2 − 1)

n2+(2+dlog2ne)(n2−
1)

(d(n − 1)/ee + 3 +
dlog2ee)# [34]

Space AA[n2(log2n + (r +
1))] + AX [(n2 −
n)(log2n+ (r + 1))]

AAn
2 +AX(n2 − 1) AAn

2 +AX(n2 − 1) ANAn
2 + AXN (n2 −

1) +AR(n2 + 3n+ 1)

Latency TA + TX [(n
r
− log2n+

1)]
TA + (2 + dlog2(n −
1)e)TX

TA + (1 + dlog2ne)TX ) (TNA + TXN )

Pentanomial
(P (x) = xn + xk3 +
xk2+xk1+1, 1 < k1 <
k2 < k3 ≤ n

2
)

Time (n−1)+dlog2ne+(k+
1)(n+ 1)

n2 + (4 +
dlog2(n− 1)e)(n2 +
2n− 3)

n2+(6+dlog2ne)(n2+
2n− 3)

-

Space AA[n2(log2n + (r +
1))] + AX [(n2 −
n)(log2n+ (r + 1))]

AAn
2+AX(n2+2n−3) AAn

2+AX(n2+2n−3) -

Latency TA + TX [(n
r
− log2n+

1)]
TA + (4 + dlog2(n −
1)e))TX

TA + (6 + dlog2ne))TX -

Single variable s-ESP
(P (x)=xms+x(m−1)s+
· · ·+ xs + 1, n = ms)

Time (n−1)+dlog2ne+(k+
1)(n+ 1)

n2+(1+dlog2ne)(n2−
s)

n2+(1+dlog2ne)(n2−
s)

-

Space AA[n2(log2n + (r +
1))] + AX [(n2 −
n)(log2n+ (r + 1))]

AAn
2 +AX(n2 − s) AAn

2 +AX(n2 − s) -

Latency TA + TX [(n
r
− log2n+

1)]
TA + (1 + dlog2ne)TX TA + (1 + dlog2ne)TX -

Generic Polynomial
(P (x) = xn+xkt+· · ·+
xk2+xk1+1, 1 ≤ k1 <
k2 < . . . kt ≤ n

2
)

Time (n−1)+dlog2ne+(k+
1)(n+ 1)

n2 + (dlog2(t+ 1)e +
dlog2(d t2 e+ 1)e +
dlog2(n− 1)e)(n +
t)(n− 1)

n2+(2t+ dlog2ne)(n+
t)(n− 1)

1.78nlog23 +
(4.91nlog23 − 11n +
8.88)(2log2n− 1)

[35]

Space AA[n2(log2n + (r +
1))] + AX [(n2 −
n)(log2n+ (r + 1))]

AAn
2 +AX(n+ t)(n−

1)
AAn

2 +AX(n+ t)(n−
1)

AA(1.78nlog23) +
AX(4.91nlog23−11n+
8.88)

Latency TA + TX [(n
r
− log2n+

1)]
TA + (dlog2(t+ 1)e +
dlog2(d t2 e+ 1)e +
dlog2(n− 1)e)TX

TA + (2t+ dlog2ne)TX TA + TX(2log2n− 1)

Multivariate
polynomial
P (x1, x2 . . . xm)

Time (mn− 1)+mdlog2ne+
(k + 1)(n+ 1)

- - -

Space AA[n2m(log2nm +
(r+1))]+AX [(nm(n−
1)(log2nm+ (r + 1))]

- - -

Latency TA + TX [(nm
r

−
log2nm+ 1)]

- - -

Therefore, the overall space complexity of our proposed
modulo multiplication method for a single variable polyno-
mial isAA[n2(log2n+(r+1))]+AX [(n2−n)(log2n+(r+1))]
and for multiple variable polynomials is AA[n2m(log2nm+
(r + 1))] +AX [(nm(n− 1)(log2nm+ (r + 1))], where m is
the number of variables. Time delay in terms of TA (2-input
AND gate delay), and TX (2-input XOR gate delay) can be
calculated after aggregating the total time taken by all the
AND and XOR gate delays. Here, generation of individual
tensor matrices and vector-matrix multiplication of input
polynomials with tensors are mutually exclusive processes.
The time delay of a single and multiple variable polynomials
are TA+TX [(nr−log2n+1)], and TA+TX [(nmr −log2nm+1)].
Note that n is the maximum degree of the input polynomial.

The comparison of time and space complexities and
latency of the proposed method with [4], [25], [34], and
[35] is presented in Table 4. ANA, AXN , TNA, and TXN

in [34] are area and gate delays of 2-input NAND and
XNOR gates. The comparison of the methods reported
in [4], [25], [34], and [35] for specific values of n are
presented in Table 5. It can be seen that for {(r, n)} =
{(16, 128); (32, 256); (32, 512)} latencies are (TA + 2TX),
(TA + TX) and (TA + 8TX). These are the optimal latencies
of the proposed multiplier for n = 128, 256 and 512, and
are the least among all the other multipliers. It is to mention
that the practical limit of latency cannot be reduced further
even if more PCMs are employed. This would only increase
dynamic power consumption without further reduction of
the latency. Note that our proposed method does not de-
pend on the polynomial expression of a single variable
and can be easily extended to multivariate polynomials.
It can be observed from Table 4 that the time complexity
and latency are linear, whereas the existing methods are
quadratic or subquadratic. Further, the space complexity

TABLE 5
Complexity Comparison for Specific Values of n

Trinomial (xn + xm + 1, where n > m > 1); r-PCM is used

Method n = 128; r = 16; n = 256; r = 32; n = 512; r = 32;
#AND #XOR Delay #AND #XOR Delay #AND #XOR Delay

[35] 3888 9145 (TA + 14TX) 11664 29360 (TA + 16TX) 34992 90124 (TA + 18TX)
[4] 16384 16383 (TA + 9TX) 65536 65535 (TA + 10TX) 262144 262143 (TA + 11TX)

[25] 16384 16383 (TA + 8TX) 65536 65535 (TA + 9TX) 262144 262143 (TA + 10TX)

Proposed 131072 130048 TA + ( 128
r
− 6)TX 589824 587520 TA + ( 256

r
− 7)TX 2621440 2616320 TA + ( 512

r
− 8)TX

= (TA + 2TX) = (TA + TX) = (TA + 8TX)
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of many existing single variable polynomial multipliers is
O(n1+ε) [34] [35], whereas the space complexity of the
proposed multiplier is O(n2logn). Here, 0.5 < ε < 1.
This is due to not considering the sparsity of the tensors,
which results in the quadratic space complexity. Further,
the implementation details of the proposed multiplier are
depicted in the following section.

4 IMPLEMENTATION DETAILS

The proposed multiplier is implemented using MATLAB
(software) and on the FPGA platform (hardware). MATLAB-
based implementation is described in detail below.

4.1 MATLAB Implementation
A multivariate polynomial is represented as,[
E0 E1 E2 . . . En

]
, where E0 represents a constant

term and Ei holds the information about the maximum
degree of the ith variable for i = 1 · · ·n. In the example
discussed in Appendix A, E0, E1 and E2 are equal to 1, 2
and 2, respectively. Thus, the program takes an input in the
vector form [E0, E1, E2, . . . En]. The lexicographic ordering
of the polynomials follows the steps mentioned above.
Subsequently, multiplication and quotienting operations are
performed. The following modules are designed to meet
the desired goal. Their brief descriptions and algorithmic
descriptions are given below.
• Monomial Ordering Module: In the proposed work,

the graded lexicographic ordering method is applied, where
degree of a polynomial is given more weightage than the
individual order of a variable. Algorithm 1 exhibits the steps
of the module implementation. We have modified the stan-
dard lexicographic ordering algorithm [30], [31] and have
employed it to generate ordered input polynomial vectors
for our proposed tensor multiplication. Let us assume that
the number of polynomial variables is m and the maximum
degree of each variable is n. This results in the total number
of possible coefficients l = (n+1)m. A(X1, X2 . . . , Xm) and
B(X1, X2 . . . , Xm) denote unsorted and sorted polynomi-
als of degree n, respectively. The algorithm, which performs
lexicographic ordering of A(X1, X2 . . . , Xm), is described
in Algorithm 1. The output of this algorithm is a binary
array S = {s1, s2, . . . , sl}, which is employed in all the
subsequent operations in our proposed modulo multiplier.
Here, in the proposed method, lexicographically ordered
output exhibits the presence of any particular coefficient in
the input polynomial vectors.

Correctness of lexicographic ordering: The
final ordered polynomial, B(X1, X2, . . . , Xm) =
{(Xn

1X
n
2 . . . X

n
m), (Xn

1X
n
2 . . . X

n−1
m ), . . . , (Xn

1X
n
2 . . . X

0
m),

. . . , (X0
1X

0
2 . . . X

1
m), (X0

1X
0
2 . . . X

0
m)}, can be obtained

using our lexicographic ordering algorithm on an unsorted
m-variable and n-degree generic polynomial. In Algorithm
1, it can be observed that the initialization of d[m] can
be performed in O(m). Steps mentioned in Lines 8 − 11
extract the degree of individual variable in Ak and store
it in d[m]. This can also be conducted in O(m). Steps
stated in Lines 12 − 13 determine the location of Ak in
B(X1, X2, . . . , Xm) in O(1). Also, d[m] re-initialization is
performed in O(m). The whole process, i.e., Lines 6 − 15,
repeats p times, taking O(pm) steps. Thus, the total time
complexity of Algorithm 1 is O(pm) +O(m) or O(pm). For

Algorithm 1: Graded Lexicographic Ordering

1. Input: A(X1, X2, . . . , Xm), m, n
2. Output: S={s1, s2, . . . , sl}, where l = (n+ 1)m

3. Initialize: p=number of coefficients in
A(X1, X2, . . . , Xm); S= {0, . . . , 0}; temp = 0

4. Ak =
∏m
j=1(X

i
j) and 0 ≤ i ≤ n, 1 ≤ k ≤ p

5. Initialize d[m]: An integer array of size m to hold
degree of each variable in Ak;
6. for k = 1 to p
7. begin
8. for j = 1 to m
9. begin
10. dj = degree of Xj ∈ Ak;
11. end
12. temp =

m∑
i=1
{(n+ 1)m−i.(n− di)}+ 1;

13. stemp = 1
14. Re-initialize d[m]
15. end
16. return S

single variable polynomials, m = 1 enables Algorithm 1 to
perform in O(p) or linear time. In reality, a significantly less
number of coefficients are present in the polynomial, i.e.,
p � l, which reduces computation time drastically. It is to
be noted that B(X1, X2, . . . , Xm) is an ordered polynomial.
A one-to-one map exists between B and S for all of its
ordered terms. It can be proved inductively that for p terms,
if a linear mapping exists between B and S, Bp+1]B, Sp+1

is uniquely determined, assuming that no two terms in A
or B are the same, and each term ∈ B has a unique image
in S.

For instance, we take two variables (x and y) and the
maximum degree of a variable in the polynomial as three,
i.e., m = 2, n = 3 and l = (n + 1)m = (3 + 1)2 = 16.
Here, all the possible coefficients ordered lexicographically
can be expressed as B={x3y3, x3y2, x3y, x3, x2y3, x2y2,
x2y, x2, xy3, xy2, xy, x, y3, y2, y, 1}. These coefficients are
uniquely mapped from 1 to 16 in S in an ordered manner.
Now consider an input polynomial (x2y3 + y2 + x3 + 1),
where p = 4. Thus, in the output vector, there should be
four “1s” only. Using Algorithm 1, four array indices can be
computed using the expression temp = ((n + 1)m−1.(n −
d1)+(n+1)m−2.(n−d2)+1), where {d1, d2} for p = 1→ 4
are ({2, 3}, {0, 2},{3, 0}, and {0, 0}), respectively. The array
indices, thus calculated, are {4, 5, 14, and 16} for x3+x2y3+
y2 + 1, which constitute the final binary output in graded
lexicographic format as {0001100000000101}.
•Monomial Multiplication Module: This module mul-

tiplies two monomials to generate their product, as shown
in Table 2. The details of this module have already been
explained in section 3.
• Quotienting Module: We employ a well-known Eu-

clid’s polynomial division algorithm to obtain remainders
to generate tensor matrices. Algorithm 2 depicts the steps
taken to perform the quotienting operation. Since Euclid’s
polynomial division method is widely known, its detailed
mathematical description and hardware implementation
can be found in [36], [37], [38]. In Algorithm 2, D(x), R(x),
and Divi(x) denote quotienting, reducible polynomial and
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Algorithm 2: Polynomial Quotienting Operation

1. Input: D(x), R(x), Divi(x)
2. Output: Remainder Rem = Divi(x)/D(x) mod

R(x)
3. Initialize: A = D(x), B = R(x), C =
Divi(x), E = 0, Rem = 0;

4. while (B 6= 0) do
5. while(a0 == 0) or (b0 == 0) do
6. if(a0 == 0) then
7. A = A/x,C = (C + c0.R(x))/x;
8. end if
9. if b0 == 0 then
10. B = B/x,E = (E + e0.R(x))/x;
11. end if
12. end while
13. if A > B then
14. A = B +A,C = C + E;
15. else
16. B = B +A,E = C + E;
17. end if
18. end while
19. Rem = C −A.E;
20. Return Rem

input polynomial to be quotient, respectively. Here, Rem is
the final remainder of the quotienting operation.

The ordering of the input vectors is determined using
the steps of Algorithm 1. Thereafter, the multiplier module is
called recursively, followed by the quotienting module (Al-
gorithm 2), until all the input polynomials are evaluated,and
tensor matrices are formulated.

4.2 FPGA Implementation
Modulo multiplication of multivariate polynomials is de-
signed using Verilog HDL. All the modules are synthesized
and analyzed using the Xilinx Vivado platform [39] and are
implemented on Zynq-7000-Z020 and Artix-7-200T Xilinx
FPGA boards. A detailed description of these modules is
given below.
• Top module: This module receives two multivariate

polynomials as input, and is the central control unit of the
proposed multiplier. The top module calls the following
modules in the hierarchy: multipoly, divpoly, tensorPoly and
mulVectMat, which are described below. The finite state
machine (FSM) of the multivariate polynomial modulo mul-
tiplication method is presented in Figure 4.
• MultiPoly: This module takes two monomials simul-

taneously as inputs and generates their product. Iteratively,
it produces product of every combination of the monomials.
• Divpoly: This module receives the product obtained

from the MultiPoly module as input and divides it first by
the quotienting polynomial. If the product is not divisible by
the quotienting polynomial, either reducible or irreducible
polynomials are chosen to divide the product. In each it-
eration, this module generates a division of every product
obtained from the MultiPoly module.
• TensorPoly: This module receives an output of the

DivPoly module and generates tensor matrices.
• MulVectMat: Finally, modulo multiplication of poly-

nomials employing tensors is performed by this module.

Vector-Tensor-Vector Multiplication
The architecture of the multiplication unit of the input
polynomial vector and a tensor matrix is presented in
Figure 3. Initially, it is needed to generate tensor matri-
ces T = {T1, T2, . . . , Tx, . . . , Tn} specific to an irreducible
polynomial, which is generated once, if this polynomial is
unchanged while performing different polynomial multi-
plications. The first polynomial A = {A1, A2, . . . , An} is
multiplied with a tensor matrix Tx of dimension (n × n)
column-wise and then multiplied with a second polynomial
B> = {B1, B2, . . . , Bn}> to determine the presence of the
corresponding coefficient in the output. Here, each column
of Tx is multiplied with all the coefficients of polynomial
A, which takes two clock cycles to compute the result. This
implementation is noted as one parallel column multiplica-
tion (1-PCM) and can be performed up to r-PCM, where
r ≤ n. As all the coefficients of A, B, and a tensor matrix
Tx are computed and stored in BRAM, all the operations
related to PCM can be performed simultaneously. Therefore,
by increasing r, vector-tensor-vector computation time can
be reduced drastically with a minimal increase in resource
utilization. As an example, in Figure 3, 2-PCM is marked in
gray.

r - PCM

1st Column
of Tensor

2nd Column
of Tensor

nth Column
of Tensor

Fig. 3. r-Parallel Column Multiplication (r-PCM) Architecture

X5

X6

X0

X1

X2
X3

X4

Val=0

Val=1

En0=1

En0=0

En1=1

En1=0

En2=0

En2=1

En3=1

En3=0
Ovr=1

Ovr=0

End=1

End=0

output

input

Fig. 4. Finite State Machine of Main Module

Tables 6 and 7 present descriptions of all the probable
states and transitions to a 7-bit flag register F={Val, En0,
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TABLE 6
State Description of the FSM and Dependency on Flag Registers

State Specific Description Flag
X0 Check for valid data Val, End
X1 Compute monomial multiplication Val, En0

X2
Quotienting operation to generate
remainders

En0, En1,
Ovr

X3 Formulate tensors from X3 En1, En2
X4 Vector tensor matrix En2, En3
X5 Check for further modulo division En3, Ovr
X6 Produce multiplication output Ovr, End

TABLE 7
State Transition of the FSM of Proposed Modulo Multiplier

Flag Present State
register X0 X1 X2 X3 X4 X5 X6

Next
State

Val 0 X0 x x x x x x
1 X1 x x x x x x

En0 0 x X2 x x x x x
1 x X1 x x x x x

En1 0 x x X3 x x x x
1 x x X2 x x x x

En2 0 x x x X4 x x x
1 x x x X3 x x x

En3 0 x x x x X5 x x
1 x x x x X4 x x

Ovr 0 x x x x x X6 x
1 x x x x x X2 x

End 0 x x x x x x X0

1 x x x x x x X6

“x” is Don’t Care condition

En1, En2, En3, Ovr, End}. It can be observed that there
are no ambiguous state transitions, and for all the possible
values of the flag register, there is a unique transition from
the present state to the next state. All the inputs to the main
multiplication module are assumed to be lexicographically
ordered; therefore, ordering is not included in the main
module of the FSM. The X0 remains in the same state until
it gets lexicographically ordered inputs. As per the state
diagram of the top module described in Figure 4, state X0

receives input, checks for valid data, and forwards it to the
next state. If data is not valid, the flag V al is set to “0”,
and it waits for a valid input until the valid input V al
flag is set and enters into state X1. State X1 computes the
multiplication of elements and stores it in a vector if En0
is set. After completion of the multiplication, the En0 flag
resets to zero, and state X2 is activated. Based on flag En1,
the division operation is performed in state X2. Thereafter,
if En2 is set, state X3 formulates tensors and advances the
FSM into the next state. Subsequently, when En3 is set,
state X4 multiplies tensor with input polynomials. State X5

checks whether modulo division is needed to constrain the
output in the desired range or not. If affirmative, it sets flag
Ovr to “1”, advancing the FSM to state X2 or moving to
state X6. The flag End is set to “1”, which implies X6 is
ready to generate and produce an output. If an external
circuit is ready to take the output, the flag End is reset from
“1” to “0” and the FSM re-enters into an initial state X0.
Additionally, an overview of the hardware implementation
is shown in Figure 5.

There are two ways to prove the correctness of a finite
state machine (FSM), as mentioned in [40]. In the first
method, an FSM can be split at two abstraction levels,
i.e., high and low. The high-level abstraction specifies the

To
p

 m
o
d

u
le

MultiPoly

DivPoly

MulVectMat

TensorPoly

  Random
Polynomial

Modulo Multiplication Output

     Setup
Polynomials

Fig. 5. Block-level view basic process flow of the FSM

abstract behavior of an FSM, while the low level illustrates
a detailed hardware implementation of the FSM. There-
fore, an FSM’s correctness can be addressed by employing
behavioral equivalence between these two processes, i.e.,
the abstract specifications and hardware implementation.
The second method is based on algebraic computational
methodology, in which FSM algebraic techniques (based
on semantic transitions or syntactic transformations) can
be analyzed for their correctness. The intermediate results
obtained through hardware implementation match Tables 2
and 3 for the same polynomial inputs. It is to be noted that
the FPGA implementation outcome is ratified step by step
with the theoretical analysis of our proposed modulo multi-
plier. This fulfills the equivalence criterion of the correctness
of the FSM, as stated in [40]. In the next section, experimen-
tal details of the proposed multiplier are presented.

5 RESULTS AND DISCUSSION

In this section, the results of FPGA implementation are
presented. The proposed modulo multiplier is realized on
Zynq-7000-Z020 and Artix-7-200T Xilinx FPGA boards. Each
slice of the FPGA contains two types of LUTs; 6-input and 2-
output, and 4-input and 2-output LUTs. Every slice contains
four such types of LUTs. The Artix and Zynq architecture
has eight flip-flops, one MUX, and one look-a-head carry
logic cell per slice. Since most of the logic is implemented
using pass-transistor logic, the total estimated transistor
count is around 222 per slice. The proposed multiplier
implemented on FPGA is validated with the vast range of
inputs. The number of variables in inputs varies from two
to nine, and the maximum degree for each variable ranges
from 16 to 128. Note that the experiments are performed
over field sizes ranging from 32 to 1152. The resource,
power, area, and delay information is presented in Table
8. A comparison of the proposed multiplier with the recent
multipliers is depicted in Table 9 and Table 10. From the
basic structural diagram for multivariate polynomial mul-
tiplication shown in Figure 2, the total functional blocks
required for the operations can be calculated using equation
7. The main polynomial multiplier block, a vector-matrix
multiplier block, and vector addition block are denoted by
MultP , MultV and AddV , respectively. If the total number
of variables is V and the maximum degree of a variable is
D, then the arithmetic functional block utilization can be
formulated as equation 7.

MultP ×D +MultV ×D × V +AddV × (D − 1) (7)
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TABLE 8
Resource Utilization For Various Inputs

Variables Degree Slice
Count

Transistor
Count

Area (µm2) Delay
(ns)

Power
(mW )

PDP
(10−12J) PDAP ADP(µm2.ns)

2

16 781 173382 3120.9 1.84 205.96 378.97 1182691 5742.42
32 1565 347430 6253.8 2.736 291.25 796.84 4983197 17110.24
64 3133 695526 12519.5 4.528 461.81 2091.07 26179027 56688.16
128 6269 1391718 25051.0 8.112 802.95 6513.47 163168293 203213.10

3

16 793 176046 3168.9 1.94 207.27 402.09 1274152 6922.76
32 1789 397158 7148.9 2.836 315.61 895.07 6398664 20274.13
64 3581 794982 14309.7 4.628 510.55 2362.79 33810682 66225.19
128 7165 1590630 28631.4 8.212 900.41 7394.16 211704601 235120.57

4

16 1005 223110 4016.0 2.04 230.33 469.87 1886952 8192.60
32 2013 446886 8044.0 2.936 339.98 998.17 8029180 23617.04
64 4029 894438 16099.9 4.728 559.28 2644.26 42572125 76120.26
128 8061 1789542 32211.8 8.312 997.88 8294.35 267175315 267744.12

5

16 1117 247974 4463.6 2.14 242.51 518.97 2316420 9551.96
32 2237 496614 8939.1 3.036 364.35 1106.14 9887833 27138.97
64 4477 993894 17890.1 4.828 608.01 2935.47 52515702 86373.37
128 8957 1988454 35792.2 8.412 1095.35 9214.03 329789817 301083.76

6

16 1229 272838 4911.1 2.24 254.70 570.51 2801808 11000.83
32 2461 546342 9834.2 3.136 388.71 1218.99 11987709 30839.92
64 4925 1093350 19680.3 4.928 656.75 3236.43 63693759 96984.52
128 9853 2187366 39372.6 8.512 1192.81 10153.20 399757489 335139.47

7

16 1341 297702 5358.7 2.34 266.88 624.49 3346389 12539.21
32 2685 596070 10729.3 3.236 413.08 1336.71 14341893 34719.89
64 5373 1192806 21470.6 5.028 705.48 3547.13 76158641 107953.72
128 10749 2386278 42953.1 8.612 1290.28 11111.86 477287716 369911.28

8

16 1453 322566 5806.2 2.44 279.06 680.90 3953433 14167.10
32 2909 645798 11624.4 3.336 437.45 1459.31 16963473 38778.88
64 5821 1292262 23260.8 5.128 754.21 3867.59 89962694 119280.96
128 11645 2585190 46533.5 8.712 1387.75 12090.02 562589881 405399.16

9

16 1565 347430 6253.8 2.54 291.25 739.76 4626213 15884.50
32 3133 695526 12519.5 3.436 461.81 1586.78 19865534 43016.90
64 6269 1391718 25051.0 5.228 802.95 4197.78 105158264 130966.24
128 12541 2784102 50113.9 8.812 1485.21 13087.68 655873366 441603.13

Maximum cumulative degree is (2 × 128) = 256, (3 × 128) = 384, (4 × 128) = 512, (5 × 128) = 640, (6 × 128) = 768, (7 × 128) = 896,
(8× 128) = 1024, (9× 128) = 1152, PDP = power-delay-product, PDAP = power-delay-area-product, ADP = area-delay-product.

Table 8 presents a detailed physical aspect of the pro-
posed multiplier. In this table, overall transistor count,
area, delay, power, power-delay product (PDP), power-delay-
area product (PDAP), and area-delay product (ADP) are stated.
Transistor count can easily be estimated using the total
slice count and other resource utilization indicators. For the
total area estimation of the proposed multiplier, first, we
consider the area of a single 22-nm transistor based on the
Intel Standard library [41], and then multiply it by the total
number of transistors. This provides a close estimation of
actual ASIC implementation. Power and delay are estimated
by employing synthesis reports of the proposed multiplier.
It is to mention that delays shown in Table 8 are the
cumulative delay of the logic path and net delays only. Due
to hardware resource constraints, the HDL analyzer may
generate different delays for different underlying hardware
architectures because of the distinctive performance of its
synthesis, placement, and routing algorithms.

For an FPGA implementation, block-level logic path
delays can be estimated using TMP = 0.9ns, TMS = 0.1ns
and TAS = 0.056ns, obtained using a synthesis report of
FPGA realization. These can also be used to compute generic
delays. The total delay can be formulated from Figure 2 as
mentioned in equation 8, where TMP , TMS and TAS are the
total delay of the individual polynomial multiplier, delay
of individual vector-matrix multiplier, and delay of vector
addition unit, respectively. It can be observed that FPGA-
based implementation matches the analytical observations.

TMP + (V − 1)× TMS + [logD2 ]× TAS (8)

In Table 9, a comparison with recent multipliers is pre-
sented. It is found that our proposed multiplier is faster
as well as power efficient and utilizes lesser resources as
compared to other multipliers. The experimental results
presented in [9] are for a 4-bit power array of two variables.
They have implemented single variable NIST polynomials
to showcase the performance of their proposed multiplier.
In [16], the vector-matrix multiplier is explicitly imple-
mented for DSP and communication applications, whereas
in [17], the Toeplitz matrix-vector product-based method
is proposed. In [17], a single digit is represented by 2-
bits to perform polynomial multiplication in every clock
cycle. In [18], flexible architecture for the large binary poly-
nomial multiplier is demonstrated by combining iterative
Karatsuba and Comba algorithms. Lastly, in [13], number
theoretic transform (NTT) and inverse-NTT (INTT) based
multiplication techniques are presented, which exploit the
concept of the nth root of unity to find multiplication and
are only optimized for the NIST finalist CRYSTALS-KYBER
PQC scheme. It can be observed that the proposed mul-
tiplier’s experimental results are better than the methods
mentioned earlier. The multiplier proposed in this paper
can be efficiently utilized to design state-of-the-art Learning-
with-Errors (LWE) and Ring-LWE (RWE) cryptographic ho-
momorphic encryption algorithms.

Figure 3 shows the depiction of vector-tensor-vector
multiplier architecture in the proposed method. This ar-
chitecture enables the multiplication of r columns of Tx in
parallel, where r ≤ n, and can be performed in ((2× n

r )+2)
steps. The cumulative computational complexity employing
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TABLE 9
Comparison of Existing Multipliers with the Proposed Multiplier

Work Platform Resource Comparative
Utilization

Clock
(MHz)

Power
(W)

Delay
(nS)

Latency
(µs/CC)LUT/REG/MUX/DSP/BRAM

Proposed*

1-PCM Zynq-XC7Z020 8993/6479/6/-/6 1.345X 100 0.205 8.734 5.22/522
Artix-7-200T 8982/2497/7/-/25 X 197 0.492 4.52 2.65/522

4-PCM Zynq-XC7Z020 9099/6544/6/-/6 1.360X 100 0.216 8.734 1.38/138
Artix-7-200T 9088/2562/7/-/25 1.015X 194 0.511 4.61 0.72/138

16-PCM Zynq-XC7Z020 9659/6496/6/-/6 1.405X 98 0.227 8.82 0.43/42
Artix-7-200T 9648/2514/7/-/25 1.059X 192 0.518 4.65 0.22/42

Toeplitz [17]** Virtex-5 14701/∼/∼/∼/∼ 1.277X 301.41 ∼ 23.065 13.791/∼
Alshawi et al.-I [16]* Virtex-5 16207/12760/∼/∼/∼ 2.516X 81.71 ∼ 12.24 ∼/∼
Alshawi et al.-II [16]* Virtex-5 8594/4700/∼/∼/∼ 1.155X 65.47 ∼ 15.27 ∼/∼

Karatsuba [9]** Stratix II ∼/∼/∼/∼/∼ ∼ 86.80 3.216 41.52 ∼/∼
LBPM [18]* Artix -7 10768/21536/-/-/183 2.822X 143 ∼ 4000 27/∼

Yaman et al.
[13]*** 16 BTFs Spartan-6 9898/3688/-/16/70 1.188X 115 ∼ ∼ ∼/256Artix-7-200T 9508/2684/-/16/35 1.064X 172 ∼ ∼

Polynomial coefficients in the form of * x256 + · · · + 1 and, ** denotes pentanomial and trinomial polynomials x163 + x7 + x6 + x3 + 1 and
x233 + x74 + 1, ***x256 + 1, respectively. “∼” and “−” denote “Data not specified” and “Resource not utilized”, respectively.

tensor generation and r-PCM is log2n+ (2× n
r ) + 2. Along

with a sequential implementation, two parallel implemen-
tations, 4-PCM and 16-PCM, are realized to compare the
performance of the proposed modulo multiplier with state-
of-the-art methods available in the literature. This compari-
son is presented in Table 9 for reference. It can be observed
that the overall latency of the multiplier proposed in [13]
are 3359, 864, and 256 clock cycles using 1-BTFs, 4-BTFs,
and 16-BTFs, respectively. The multiplier proposed here
takes 522, 138, and 42 clock cycles only while employing 1-
PCM, 4-PCM and 16-PCM, respectively. BTF is the butterfly
architecture proposed for polynomial multiplication in [13].
The proposed implementations are 6.43×, 6.26× and 6.09×
faster than the hardware realizations proposed in [13] for
1-BTFs, 4-BTFs and 16-BTFs.

For an irreducible input polynomial mentioned in Table
9, tensor matrix generation consumes an average {8649-
LUT, 6367-REG, 6-DSP, 6-BRAM} and {8638-LUT, 2412-
REG, 7-DSP, 25-BRAM} resources in Zynq-XC7Z020 and
Artix-7-200T FPGAs, respectively, which is approximately
94% of the total resource utilization. Further, the vector-
tensor-vector multiplier consumes fewer resources than the
tensor generation module. Its parallel implementation, i.e.
r-PCM blocks, slightly increases overall resource utilization
but reduces computation steps by a factor of r. It can be
observed that the resource utilization increases by 0.059×
for r-PCM in our proposed multiplier, whereas resource
utilization escalates by 9.39× for r-BTF in [13] when r
changes from 1 to 16. It can be stated that the performance
of our proposed multiplier increases with an increase in r
at the minimal expense of resources. It is to mention that
the work presented in [13] and our proposed work report
latencies (computational steps) excluding the steps taken in
loading data into BRAM. Note that each generated tensor
is sparse when the multiplier is implemented practically on
the hardware platform. Its sparsity is exploited by the EDA
tools during design synthesis. Thus, the complete design
becomes not only resource optimized but comparable to
other multipliers as well. For a single variable, the space
complexity of the proposed multiplier for a particular poly-
nomial realization on the hardware is comparable to the
existing methods and is showcased in Table 9.

As shown in Table 9, total LUT logic slices, flip-flops,

TABLE 10
Comparison of Delay and Area and Cycle Requirement of Proposed

Multiplier With Existing Multipliers

Multiplier m Delay Area Cycle
(ns) (µm2) (no.)

Proposed

163 3.046 9029 334
233 3.266 10998 474
283 3.426 12430 574
409 3.816 15921 826
571 4.326 20486 1150
1223 6.366 38747 2454

Chen at el. [7]

163 439 13544 4458
233 4032 19448 6108
283 4576 19692 7596
409 7392 20670 12908
571 21216 127450 22100
1223 50656 270214 91762

Hua at el. [8], [15]

163 90 4481 1203
233 161 4715 2337
283 204 4883 3331
409 425 5442 6923
571 816 6186 13163
1223 3832 9195 60181

Chiou at el. [19]

163 5 61637 32
233 7 78893 45
283 7 100112 53
409 11 133779 77
571 14 202323 105
1223 34 262175 227

Polynomial expression applied is xm + xm−1 · · ·+ 1

MUX, and BRAM utilized during implementing our pro-
posed multiplier on the Zynq-7000-Z020 board are 8993,
6479, 6, and 6, respectively, at 100 MHz. Similarly, total
LUT logic slices, total flip-flops, MUX, and BRAM utilized
realizing the same design on Artix-7-200T FPGA board are
8982, 2497, 7, and 25, respectively, at 197 MHz. Comparative
resource utilization of all the multipliers is presented in
Table 9. It can be observed that the resource utilization of our
proposed multiplier is optimal, and its average critical path
is also reduced, resulting in higher operating frequency. Its
total power consumption is estimated to be approximately
0.2W and 0.492W at 100 MHz and 197 MHz, respectively,
which are a minimum 6.5× less compared to the existing
multipliers. For further power reduction in ASIC, input
clock frequency and supply voltage can be reduced.

The static power consumption is higher in our proposed
implementation because of storing initial polynomial coeffi-
cients and tensors. It is also found that on the Artix-7 series
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FPGA board with XC7A200T, the latencies of our multiplier
and the multiplier based on [13] are 2.65µs and 2.31µs at the
clock frequencies of 197 MHz and 172MHz. It can be seen in
Table 9 the multiplier proposed in [13] employs DSP blocks,
while our proposed design does not use it. Also, the mul-
tiplier proposed in [13] utilizes the FFT type of operations,
which can be performed easily using DSP blocks [42]. This
helps in reducing the overall latency of the design. Thus,
there is a marginal difference in the latencies of both the
multipliers. It can also be observed in Table 9 that the power
consumption of the proposed multiplier is the least among
all the other multipliers, even in the worst-case scenario.
Thus, our proposed multiplier can be considered area and
power optimal with respect to other multipliers and can be
utilized in a wide range of applications, including lattice-
based PQC algorithms, drone-based surveillance systems,
etc.

Table 10 compares three more well-known multiplica-
tion schemes over parameters, such area delay and la-
tency in clock cycles with varying polynomial degrees.
A multiplier based on the dual systolic basis is depicted
in [7]. In [8] and [15], low complexity systolic multi-
pliers based on the Hankel matrix and Karatsuba algo-
rithm are presented, respectively. In [19], the multiplication
unit is decomposed into four mutually independent sub-
multiplication units, which improves the performance com-
pared to the prior methods. In Table 10, a comparison of
specific polynomial multipliers having polynomial degrees
m = {163, 233, 283, 409, 571, 1223}, is presented. It is ob-
served that the reduction of area-delay product (ADP) with
respect to Chiou’s method [19] are 91%, 93.5%, 93.9% 95.8%,
96.8%, 95.5% for different m, while average reduction in
ADP is 94.42%. It can also be seen that the delayed improve-
ment for different m is 39.1%, 53.3%, 51.1%, 65.3%, 69.1%,
81.3%, and an average delay improvement is 59.87%.

The subsequent section demonstrates an application of
our proposed polynomial modulo multiplier. A polynomial-
based lattice homomorphic encrypting scheme utilizing the
proposed tensor method to calculate modulo operations
is realized. The detailed formulation and implementation
with security parameter analysis are elaborated in the next
section.

6 APPLICATION OF PROPOSED MULTIPLIER

Lattice-based PQC is one of the alternatives to building
a strong resistance against various malicious intrusions.
Lattices are subgroups of Rm. A lattice L is a set of linearly
independent basis vectors (b1, . . . , bn) in Rm, such that
L(b1, . . . , bn) =

∑n
i=1 xibi, xi ∈ Z, ∀ integer linear combina-

tions of bi. Here, n is the dimension of L. If φ represents the
function evaluated over plaintexts m1 and m2, then a ho-
momorphic encryption scheme computes φ(m1,m2) using
encryption Enc(m1) and Enc(m2), without the knowledge
of m1 and m2.

The modulo polynomial operations are employed to
formulate a lattice homomorphic encryption scheme [43]
and are summarized in the following steps.

• First, a message m ∈ F, is mapped to p(m), i.e., a
polynomial in the polynomial ring Fq[x1, ..., xn].

• Second, the coefficient vector of the polynomial ob-
tained in the above step is mapped to a ciphertext

matrix C , where F is a field, and Fq is a field of
cardinality q and a prime number.

Considering Fq as a plaintext space, n ∈ N is the number of
variables and c = f(λ), where λ is the security parameter.
m ∈ Fq is mapped to p(m) as depicted in equation 9.

p(m) = m+
n∑
i=1

rigi (9)

where ri ∈ Fq[x1, . . . , xn] and gi are chosen randomly
from Fq[x1, . . . , xn]. The coefficients of p(m) are mapped
to matrix C as described below.

• A random matrix C̃ of dimension N × N is chosen,
where N = (d + 1)n, and d is the size of the
vector space. One column is chosen randomly at a
time, using a column shift operator δ. Thereafter, δth

column of the matrix C̃ is replaced with a coefficient
vector.

• Later, two random invertible matrices (M , R) are
chosen to construct the final ciphertext C =M.C̃.R

The homomorphic scheme employing the same value of δ
is used to evaluate ciphertexts. While encrypting zeros with
this δ, the resulting ciphertext can span an entire subspace of
FN×Nq . The upper limit of ciphertexts during homomorphic
encryption is equal to the dimension of this subspace. For
homomorphic multiplication, the product of ciphertexts is
computed using a bilinear map. The public evaluation key
and linear maps, M and R, comprise this bilinear map. The
product of two ciphertexts, C1, and C2, is determined using
a bilinear map B and is represented by equation 10.

B[p(m1), p(m2)] = p(m1).p(m2) mod fpk (10)

To calculate fpk, a chain of rings is constructed. R0 ⊆ R1 ⊆
. . . Rn−1 and the ith term can be expressed as equation 11.

Ri = Ri−1[xi]/〈fi〉, 1 < i < n− 1 (11)

The polynomials, pi(m), in all the stages are the members
of a ring. Considering all symbols with their usual meaning,
the product of two ciphertexts, C1 and C2, based on the pro-
posed tensor matrix method, can be expressed as equations
12 and 13. c1i and c1i are the columns vectors of C1 and C2.

T (C1, C2) = [T1(C1, C2), T2(C1, C2) . . . TN (C1, C2)] (12)

Ti(C1, C2) = [c11
T
. . . c1N

T
]Ti


c21
.
.
.
c2N

 (13)

The security of such encryption schemes depends on an
arithmetic field in which ciphertexts are mapped and per-
form operations. If the number of variables increases along
with their degree of polynomials, i.e., field, it enhances the
security. The relationship between field and security is illus-
trated in Table 11. The relationship of security parameters is
expressed in equation 14.

q ≈ λb+µ;α = 1/(λµlogλ
√
λ

b ) (14)

The description of various parameters in Table 11 is as
follows. λ is the parameter to generate polynomials over a
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TABLE 11
Security Parameters Comparison [44] for Different Field Sizes (for

b = 2; k =
√

2log(100))

λ µ n N α q
αq >
2
√
N

32 1 16 140 0.0041666666667 3277 False
32 3 28 344 4.069010416667E-06 3355444 False
64 1 18 160 0.0017361111111 26215 True
64 3 26 575 4.238552517361E-07 107374183 False
128 1 24 310 0.0007440476191 209716 True
128 3 28 378 4.541306268602E-08 3435973837 True
256 1 39 790 0.0003255208333 1677722 True
256 3 45 1003 4.967053731283E-09 109951162778 True
512 1 66 2225 0.000144675926 13421773 True
512 3 70 2598 5.518948590314E-10 3518437208884 True

finite field of prime size q(λ), where q is a prime number,
n is the number of variables, α is the parameter to generate
discrete Gaussian distribution (α > 0), µ states levels of
multiplication, and N is the number of elements in the
polynomial ring. False in the last column states that the
scheme based on the parameters in a particular row is not
strong enough against quantum computer-based attacks,
whereas True shows a good measure of resistance against
such attacks.

All the polynomial multiplications mentioned above are
modulo operations and integral parts of lattice cryptosys-
tems. Therefore, polynomial modulo multipliers proposed
in this paper can be utilized to implement a secure and
efficient lattice homomorphic encryption scheme. Therefore,
the proposed multivariate polynomial modulo multiplier
can be used efficiently to realize lattice-based homomorphic
post-quantum cryptography algorithms [43], which can be
utilized in cryptographic hardware accelerators [45].
7 CONCLUSION

The paper presents a novel design methodology of multi-
variate polynomial modulo multiplication based on tensors.
The proposed multiplier is realized on a hardware platform
and is compared with other state-of-the-art multipliers.
Our proposed multiplier outperforms other multipliers in
terms of resource utilization and power consumption. An
embarrassingly parallel and scalable architecture of the pro-
posed multiplier is described in this paper, which performs
linearly for single variable polynomial multiplication and
quadratically for multivariate polynomial multiplication in
the worst case. However, its average and best case com-
putational complexity are linear for both the single variable
and multivariate polynomials. The proposed multiplier con-
sumes 6.5× less power for single variable polynomial mul-
tiplication and is more than 6× faster than other polynomial
modulo multipliers. As per our knowledge, a multivariate
polynomial modulo multiplier is realized for the first time
on the hardware platform. Its performance is analyzed with
the multivariate polynomial of nine variables, where the
maximum degree of each variable is 128. For this polyno-
mial, chip area, power, and delay estimated by our proposed
multiplier are 50113.9µm2, 1.485 W , and 8.812 nS, respec-
tively. It is found that the performance of our multivariate
multiplier is linear with respect to the parameters men-
tioned above. The proposed multiplier is validated using an
LWE-based lattice multivariate encryption scheme to mea-
sure its efficacy. This indicates that our proposed multiplier
may be ideal for efficiently implementing homomorphic
encryption algorithms on various platforms.
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