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A B S T R A C T

Implementations of person detection in tracking and counting systems tend towards processing of orthogonally
captured images on edge computing devices. The ellipse-like shape of heads in orthogonally captured images
inspired us to predict head centroids to determine positions of persons in images. We predict the centroids using
a fully convolutional network (FCN). We combine the FCN with simple image processing operations to ensure
fast inference of the detector. We experiment with the size of the FCN output to further decrease the inference
time. We compare the proposed centroid-based detector with bounding box-based detectors on head detection
task in terms of the inference time and the detection performance. We propose a performance measure
which allows quantitative comparison of the two detection approaches. For the training and evaluation of
the detectors, we form original datasets of 8000 annotated images, which are characterized by high variability
in terms of lighting conditions, background, image quality, and elevation profile of scenes. We propose an
approach which allows simultaneous annotation of the images for both bounding box-based and centroid-based
detection. The centroid-based detector shows the best detection performance while keeping edge computing
standards.
1. Introduction

Automatic tracking and counting of persons using computer vision
systems is an important task in surveillance of public and private
places [1], and specifically in public transport [2]. Various imaging
technologies including radar sensors [3], laser scanners [4], 3D laser
scanners [5], infra-red sensors [6], and cameras operating in the visible
spectrum of light [2] can be used for this purpose. Selection of the
imaging technology is mainly driven by economic interests of manufac-
turers (low price of a final solution). Cameras operating in the visible
spectrum of light are preferred in practice. However, their utilization
often faces legal obstacles which must be reflected in final solutions.
For example, orthogonal scanning of a scene (camera placed above a
scene, looking directly down on the scene) is preferred at public places
as it prevents unwanted identification of individuals from their faces
(Fig. 1) [2].

One of the key operations performed within person tracking and
counting systems is detection of persons in images [2]. The person de-
tection is a variant of a computer vision task known as object detection.
It comprises localization and class recognition of objects (individuals)
within the images. The localization is the task of determining the
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position of an object in the image. The object class recognition is a
classification problem where a class is assigned to each localized object.

Object localization is usually addressed as prediction of a bounding
box around a detected object [7]. However, other closed plane figures
such as octagon [8] and circle [9] can be used as well. Such an
approach gives us information about the approximate position and
dimensions of the object. Another option is localization of objects using
semantic or instance segmentation [10]. Segmentation maps give us an
accurate notion of the shape and position of each recognized object.
The knowledge of shapes allows us to implement various localization
methods, including the bounding figure-based localization. Information
about the position of one characteristic point of an object is sufficient
for applications such as object tracking and object counting. There-
fore, we can reduce the localization into an estimation of its centroid
position [11].

State-of-the-art bounding figure-based object detection systems, as
well as instance segmentation systems, rely on deep convolutional
networks (deep ConvNets). Deep ConvNets typically consist of convo-
lutional and pooling layers which convert an input image into a series
of three-dimensional feature maps. The maps can be transformed into
vailable online 6 July 2022
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Fig. 1. Examples of orthogonally acquired images for person detection. An image with a small number of persons where the persons are sharply differentiated from the background
(a) promises a higher probability of correct person detection than a crowded image (b). Incomplete heads and variable distances of the heads from a camera lens (b) also complicate
the head detection. In extreme cases, a head can be very close to the lens and cover a large part of the image area (c). If the colour of the head blends significantly with other
objects in the scene and the lack of light makes the overall image unclear (c), the head detection becomes challenging.
a desired output by implementing a fully connected layer at the end
of a network. A network which does not contain any fully connected
layer is referred to as the fully convolutional network (FCN). As FCNs
consist purely of convolutional and pooling layers, they are faster
than ConvNets with fully connected layers. This property of FCNs is
advantageous for dense pixelwise prediction tasks such as instance [10]
and semantic segmentation [12], where outputs of the networks are
generally three-dimensional cubes.

The bounding figure-based object detection methods can either
predict bounding figures directly (one-stage methods) [7,8,13–15] or
they can generate regions of interests at first stage. This is followed by
sending the region proposals to the second stage for object classification
and bounding figure regression (two-stage methods) [16–20]. Two-
stage methods typically reach higher accuracy rates but are slower
than one-stage methods. The well-established one-stage methods such
as YOLO [7] or single shot multibox detector (SSD) [13] use fix-sized
anchor boxes as region candidates. The main drawbacks of the anchor-
based methods are the need of ad-hoc heuristics (determining the
number and dimension of anchor boxes), and the large set of anchor
boxes to be evaluated, which slows down the training of models [14].
These drawbacks are overcome by key-point based methods such as Ex-
tremeNet [8], CornerNet [14], and CenterNet [15]. CornerNet predicts
two key-points for each object of interest: the top-left and the bottom-
right corners of a rectangular bounding box. CenterNet improves the
CornerNet idea by adding a centre of gravity of the object to the predic-
tion of the bounding box coordinates. ExtremeNet predicts coordinates
of four extreme points and of one centre point for each object. These
five coordinates determine an irregular octagon which determines the
position of a detected object in the image.

Dense pixelwise prediction FCNs transform an input image into a
map (segmentation map [10], saliency map [21], optical flow map
[22], etc.). They consist of an encoder (contracting path) and a decoder
module (expansive path), respectively. Convolutional and pooling lay-
ers of the encoder module gradually reduce the resolution of feature
maps (pooling layers) while learning semantic information (convo-
lutional layers). The down-sampling ensured by the pooling layers
increases local receptive fields of neurons in deeper convolutional
layers, thus allowing the learning of more complex features. Once
dilated (atrous) convolution layers are used instead of pooling layers,
the receptive fields are increased without decreasing the resolution.
Note that the processing of high-resolution feature maps results in
high time and space-complexities of such modified networks [23]. The
decoder module, which consists of inverse layers (up-convolution and
up-sampling layers), ensures recovering of output spatial dimensions.
The decoder can be designed either as a mirror of the encoder [24] or
it can be asymmetric to the encoder [12].

The state-of-the-art dense pixelwise prediction FCNs are directed
acyclic graphs with skip connections to transfer pooling indices (Seg-
Net [25]) or feature maps from the encoder to the decoder. The
2

combination of feature maps from the encoder with feature maps pro-
duced by corresponding up-convolution or up-sampling layers can be
ensured, for example, by concatenative skip connections (U-Net [26]),
by attention gates (attention U-Net [27]), by adding an extra full-
resolution stream (full-resolution residual networks (FRRNs) [28]), and
by improving skip connections with higher number or complicated
convolutional units (squeeze U-Net [29], gated feedback refinement
network (G-FRNet) [30], global convolutional network [31] (GCN)).

The bounding figure-based object detectors, likewise dense pixel-
wise prediction FCNs, are trained end-to-end on a set of annotated
images. Annotation of a sufficiently representative dataset is always
time consuming. In the case of the bounding box-based object detec-
tion, an annotator (a domain expert) draws a rectangular boundary
around each object of interest in each image in the dataset, and assigns
them class labels [7]. The annotation of images for dense pixelwise
prediction tasks is even more challenging. For example, in the case of
the instance segmentation, the annotator creates a segmentation map
for each image in the dataset. He/she must assign to each element of the
map a value corresponding to the class of the object which is associated
with the element.

Performance measures such as intersection over union and gener-
alized intersection over union are commonly used for evaluation of
bounding box-based object detectors [32]. These measures take into
account areas defined by ground truth bounding boxes and bounding
boxes predicted by an evaluated detector.

The practical implementation of tracking and counting systems
tends towards data processing on edge computing devices. Their limited
computing power requires the use of time efficient and yet accurate
object detectors. Herein, we propose an approach ensuring fast and pre-
cise detection of persons in orthogonally captured images. We assume
that the position of an object centroid is sufficient for person counting
and tracking. Instead of bounding figure prediction, we predict object
centroids using localization maps. We expect that generation of smaller
localization maps will result in smaller time complexity of the centroid-
based detector, while keeping detection performance at the level of
its full resolution variant. To confirm our hypothesis, we propose
two dense pixelwise prediction FCNs: the first generates localization
maps of spatial resolution equal to spatial resolution of input images,
and the second produces maps of quarter resolution. We compare the
proposed centroid-based person detector for both map resolutions with
YOLO and CenterNet detectors in terms of inference time and detection
performance. We choose YOLO as it is a generally accepted baseline
for real-time bounding box-based object detection, and CenterNet as it
is promising keypoint-based detector with object centroid coordinates
as one of its outputs. As our centroid-based object detector predicts
only points (coordinates of centroids), the commonly used performance
measures cannot be used for its comparison with bounding box-based
person detectors. We propose a total localization error ∑ 𝑒 which allows
quantitative assessment of detection performance of both the centroid
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and the bounding box-based detectors. For the training and evaluation
of the detectors, we form new datasets which consist of images with
orthogonally captured persons in various scenes and with variable
head–lens distances. While annotation of the datasets for bounding
box-based detection requires only delamination of bounding boxes,
pixel-wise annotation is needed in the case of the proposed detector.
To simplify the annotation, we propose an approach which allows
simultaneous annotation of the images for both bounding box-based
and centroid-based detection.

The key contributions of this article are as follows:

• A centroid based person detection technique in visual data is
proposed.

• The technique aims at orthogonal scanning of the scene with
variable head–lens distances.

• An efficient approach to transformation of the scene image into
a localization map is introduced. The positions and sizes of the
persons’ heads are coded into gradient ellipses. These ellipses
afterwards provide centroid locations of each head in the scene
image. A localization map also includes heads that are only
partially represented in the scene image.

• A metric suitable for evaluation of both the centroid and bound-
ing box predictions is proposed. This metric includes inaccuracies
in determining head positions, as well as false positive and false
negative detections.

• New datasets are formed for the training and evaluation of the
detectors. 7000 images at seven different places are acquired for
the training and validation. Additionally, another 1000 images
are captured at a different place from the previous locations in
order to test the generalization capabilities of the proposed person
detection technique.

2. Materials and methods

2.1. Bounding box-based object detection

Let an image 𝐼 contain 𝑛 objects of 𝑘 recognized classes, where
∈ Z0+, and 𝑘 ∈ Z+. A rectangle boundary with edges parallel to

he edges of the image, tightly enveloping the 𝑖th recognized object,
elimits position and dimensions of the object within 𝐼 . The ground
ruth bounding box of the 𝑖th object is a 5-tuple 𝑏𝑖 =

(

𝑥̇𝑖, 𝑦̇𝑖, 𝑤𝑖, ℎ𝑖, 𝑐𝑖
)

,
here 𝑥̇𝑖 and 𝑦̇𝑖 are 𝑥 and 𝑦 coordinates of the left-top rectangle

orner respectively, 𝑤𝑖 and ℎ𝑖 are width and height of the rectangle
espectively, 𝑐𝑖 is the class of the object, and 𝑐𝑖 ∈ {1,… , 𝑘}.

A bounding box-based object detector predicts for 𝐼 a set 𝐵̂ of 𝑚
ounding box predictions 𝑏̂, where 𝑚 ∈ Z0+. In the case of YOLO, the
th prediction is a 5-tuple

̂ 𝑖 =
( ̂̇𝑥𝑖, ̂̇𝑦𝑖, 𝑤̂𝑖, ℎ̂𝑖, 𝑐𝑖

)

, (1)

here ̂̇𝑥𝑖, ̂̇𝑦𝑖, 𝑤̂𝑖, ℎ̂𝑖, and 𝑐𝑖 are predictions of 𝑥̇𝑖, 𝑦̇𝑖, 𝑤𝑖, ℎ𝑖, and
𝑖, respectively. In the case of CenterNet, the 𝑖th prediction is a 7-
uple

̂ 𝑖 =
( ̂̇𝑥𝑖, ̂̇𝑦𝑖, ̂̈𝑥𝑖, ̂̈𝑦𝑖, ̂̄𝑥𝑖, ̂̄𝑦𝑖, 𝑐𝑖

)

, (2)

here ̂̈𝑥𝑖, ̂̈𝑦𝑖, ̂̄𝑥𝑖, ̂̄𝑦𝑖 are predictions of 𝑥̈𝑖, 𝑦̈𝑖, 𝑥̄𝑖, 𝑦̄𝑖 respectively, 𝑥̈𝑖
nd 𝑦̈𝑖 are 𝑥 and 𝑦 coordinates of the right-bottom rectangle corner
espectively, and 𝑥̄𝑖 and 𝑦̄𝑖 are 𝑥 and 𝑦 coordinates of the object
entroid. It holds that 𝑤𝑖 = 𝑥̈𝑖 − 𝑥̇𝑖 and ℎ𝑖 = 𝑦̈𝑖 − 𝑦̇𝑖.

.2. Centroid-based object detection

In the case of the centroid-based object detection, the position of
he 𝑖th object in 𝐼 is given by 𝑥 and 𝑦 coordinates of its centroid 𝑥̄𝑖 and
𝑦̄𝑖, respectively. Let the ground truth centroid of the 𝑖th object be the
3-tuple 𝛾𝑖 = (𝑥̄𝑖, 𝑦̄𝑖, 𝑐𝑖), where 𝑐𝑖 ∈ {1,… , 𝑘}.

A centroid-based object detector predicts for 𝐼 a set 𝛤 of 𝑝 object
centroids 𝛾̂, where 𝑝 ∈ Z0+. The 𝑖th centroid prediction is the 3-tuple
̂𝑖 = ( ̂̄𝑥𝑖, ̂̄𝑦𝑖, 𝑐𝑖), where ̂̄𝑥𝑖, ̂̄𝑦𝑖, and 𝑐𝑖 are predictions of 𝑥̄𝑖, 𝑦̄𝑖, and 𝑐𝑖,
respectively.
3

2.3. Proposed centroid-based object detector

Dense pixelwise prediction FCNs are theoretically capable of trans-
forming an image 𝐼 of width 𝑤𝐼 and height ℎ𝐼 into a three-dimensional
centroid map 𝛯 of width 𝑤𝛯 , height ℎ𝛯 and depth 𝑘 (depth given by
the number of recognized classes). Elements of the map are given as

𝛯(𝑥, 𝑦, 𝑐) =

{

1, if a centroid of the 𝑐-th class is at (𝑥, 𝑦) coordinates,
0, otherwise,

(3)

where 𝑥 ∈ 𝑋𝛯 , 𝑦 ∈ 𝑌𝛯 , 𝑐 ∈ 𝐶𝛯 , 𝑋𝛯 = {0,… , 𝑤𝛯 − 1}, 𝑌𝛯 =
0,… , ℎ𝛯 − 1}, and 𝐶𝛯 = {1,… , 𝑘}.

The centroid maps 𝛯 are theoretically the ideal source for a centr
id-based object detector. In such a detector, a dense pixelwise predic-
ion FCN acts as a map generator. The generator must be complemented
y a localization module which searches for centroid predictions 𝛾̂ in
ap predictions 𝛯̂. We implement the search, as search for positions

f maxima in 𝛾̂. A set of the 𝑝 centroid predictions 𝛾̂ is for the image 𝐼
iven as

̂ =
(

ℎ𝐼
ℎ𝛯

,
𝑤𝐼
𝑤𝛯

, 1
)

⊙ arg max
(𝑥,𝑦,𝑐)∈𝑆𝛯

{

𝛯̂(𝑥, 𝑦, 𝑐)
}

, (4)

where ⊙ denotes an element-wise product, and 𝑆𝛯 = 𝑋𝛯 × 𝑌𝛯 × 𝐶𝛯 .
Due to the limited approximation capability of real FCN models, val-

ues of 𝛯̂ elements can be assigned incorrectly which can result in false
positive and false negative detections, and in incorrect localizations.
We expect that the localization performance of the proposed approach
can be improved once the mass of objects is considered. Rather than
training a pixelwise prediction FCN to predict centroid maps 𝛯, we
train it to predict three-dimensional localization maps  of width 𝑤,
height ℎ and depth 𝑘. Elements of  can take any real value from the
interval [0, 1]. The values correspond to the probability of occurrence
of object centroids at corresponding locations. Elements of the map are
given as

(𝑥, 𝑦, 𝑐) =

{

𝜆(𝑥, 𝑦, 𝑐), for (𝑥, 𝑦) associated with a 𝑐-th class object,
0, otherwise,

(5)

where 𝜆 ∶  → (0, 1], (𝑥, 𝑦, 𝑐) = 1 indicates presence of the centroid
of an object of the 𝑐-th class at the location (𝑥, 𝑦), and the values
decrease towards 0 with increasing distances of the elements from their
centroids.

To take the advantage of localization maps , we must transform
predictions of localization maps ̂ into predictions of centroid maps
𝛯̂. Thus, an object detector based on the localization maps must con-
sist of a localization map generator (a pixelwise prediction FCN), a
centroid counterpoint module, and the localization module (4), respec-
tively (Fig. 2), where the centroid counterpoint module ensures the
transformation of ̂ into 𝛯̂.

2.3.1. Centroid counterpoint module
The module emphasizes centroids and suppresses false detections

by a series of operations. At first, we process each layer of ̂ using a
maximum filter with kernel of size ℎ𝐾 × 𝑤𝐾 . We get a map 𝑀̂ with
elements

𝑀̂(𝑥, 𝑦, 𝑐) = max
(𝑠,𝑡)∈𝑆𝑥𝑦

{̂(𝑠, 𝑡, 𝑐)}, (6)

where 𝑆𝑥𝑦 is a set of spatial coordinates in a rectangular sub-window
of size ℎ𝐾 ×𝑤𝐾 , centred at point (𝑥, 𝑦).

We compare 𝑀̂ and ̂ to highlight local maxima. The result of this
operation is a binary map 𝑀̂1 with elements

𝑀̂1(𝑥, 𝑦, 𝑐) =

{

1, if 𝑀̂(𝑥, 𝑦, 𝑐) = ̂(𝑥, 𝑦, 𝑐),
(7)
0, otherwise.
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Fig. 2. A pipeline of the centroid-based object detector by head detection. A FCN in the localization map generator transforms the input image 𝐼 into a localization map prediction
̂, where objects of interest (heads) are represented as gradient ellipses. The centroid counterpoint module converts ̂ into a centroid map prediction 𝛯̂, where local maxima are
highlighted. The localization module identifies and localizes positions of the objects (heads) using the maxima (white spots) and returns a set of centroid predictions 𝛤 .
Fig. 3. Pipeline of the centroid counterpoint module by head detection. The predicted localization map ̂ for an image 𝐼 of five heads contains six continuous areas with nonzero
values, where the bottom-right area contains two local maxima, and the maximum of the middle-bottom area is noticeably smaller than one. The exclusive disjunction ⊕ of the
eroded mask 𝛺̂⊖ and of the binary map 𝑀̂1 eliminates the redundance in the bottom-right area. The last operation of the pipeline removes the middle-bottom area which does
not correspond to any head.
The map 𝑀̂1 contains the centroids as well as local maxima caused
by noise of background. To suppress irrelevant regions in the map 𝑀̂1,
we form a mask 𝛺̂ with elements

𝛺̂(𝑥, 𝑦, 𝑐) =

{

1, if ̂(𝑥, 𝑦, 𝑐) = 0,
0, otherwise.

(8)

To suppress artefacts in the map 𝑀̂1 caused by the local maximum
filter (6), we erode each layer of the mask 𝛺̂ using a rectangular
structuring element 𝜀 of size ℎ𝐾 ×𝑤𝐾 with the origin in its centre. We
pad the 𝛺̂ by ones to keep the dimensions of the eroded mask 𝛺̂⊖ the
same as dimensions of 𝑀̂1. Elements of 𝛺̂⊖ are given as

𝛺̂⊖(𝑥, 𝑦, 𝑐) = min
(𝑠,𝑡)∈𝜀

{𝛺̂(𝑥 + 𝑠, 𝑦 + 𝑡, 𝑐)}. (9)

Application of the eroded mask 𝛺̂⊖ on 𝑀̂1 results in a map 𝑀̂𝛺 with
elements

𝑀̂𝛺(𝑥, 𝑦, 𝑐) = 𝑀̂1(𝑥, 𝑦, 𝑐)⊕ 𝛺̂⊖(𝑥, 𝑦, 𝑐), (10)

where ⊕ denotes exclusive disjunction.
We identify centroids among the maxima highlighted in the map

𝑀̂𝛺 by considering their values in the localization map prediction
̂. Each element of the predicted localization map ̂ associated with
a centroid must be greater or equal to a threshold value 𝑡𝑚, where
𝑡𝑚 ∈ (0, 1]. This operation results in the centroid map prediction 𝛯̂ with
elements

𝛯̂(𝑥, 𝑦, 𝑐) =

{

1, if 𝑀̂𝛺(𝑥, 𝑦, 𝑐) = 1 ∧ ̂(𝑥, 𝑦, 𝑐) ≥ 𝑡𝑚,
0, otherwise.

(11)

The setting of 𝑡𝑚 is problem dependent and must reflect the quality of
localization map predictions.

We summarize the pipeline of the centroid counterpoint module in
Fig. 3.
4

2.4. Detection of persons in orthogonally captured images

Orthogonal scanning of a scene results in images where individuals
are presented by their heads and shoulders. Their sizes are subject to
the focal length of a camera lens and to distances of individuals from
a pupil of the lens. The distances depend, for example, on heights of
the individuals, elevation profile of the scene (Fig. 4), and the camera
altitude.

The detection of persons in the orthogonally captured images can
be treated as detection of heads and shoulders [33] or as detection of
heads [2]. Detection of heads has proven to be specifically accurate
on datasets with high variability in the sizes [2]. In both cases, any
bounding figure-based object detector can be used for person detection.

In tracking and counting applications, individuals are usually con-
sidered to be members of the same class (𝑘 = 1). Great emphasis
is put on correct localization of individuals in images with minimum
overlooked individuals and with minimum false detections. Dimensions
of persons are not essential unless they predetermine accuracy of the
localization. Considering these facts, we propose using the centroid-
based object detector for the detection of persons. To ensure high
robustness of the person detector, we view the person detection as a
problem of determining positions of heads.

2.4.1. Centroid-based person detection
Our goal is to develop a person detector allowing real time detec-

tion on devices with a single-board computer architecture. To reduce
time complexity of the detector, we consider 288 × 288 pixel (px)
images to be inputs of the detector. Given that heads are defined by
shape and brightness gradient rather than by colour, we use greyscale
images for processing. The only component of the proposed detector
which allows optimization of its inference time is the localization map
generator. Considering this fact, we propose two FCN topologies to
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Fig. 4. Influence of scene elevation profile on variability in size, shape and general appearance of individuals in orthogonally captured images. Stairs in the scene cause the change
of head size. The rotation of the head affects its shape.
be implemented in the person detector as a generator. We base them
on the U-Net architecture [26]. The first topology (full resolution U-
Net) generates localization maps of spatial resolution equal to spatial
resolution of input images (288 × 288). The second one (reduced
U-Net) aims at generation of quarter size localization maps (72 × 72).

The U-Net is a symmetric dense pixelwise prediction FCN (decoder
is the mirror of encoder). U-Net modules (UMs) ensure feature ex-
traction at four levels of the network. UM consists of five consecutive
operations: convolution (Conv), rectified linear unit (ReLU), dropout
(DO), Conv, and ReLU, respectively. Using a short notation, UM can be
written as

Conv(ℎ𝑐 ×𝑤𝑐 , 𝑓 , 𝑠𝑐 ) → ReLU → DO(𝑑) → Conv(ℎ𝑐 ×𝑤𝑐 , 𝑓 , 𝑠𝑐 ) → ReLU,

(12)

where 𝑑 is probability of dropout, 𝑠𝑐 is stride of convolutional filters, 𝑓
is the number of the filters, and ℎ𝑐 and 𝑤𝑐 are their height and width,
respectively. Each UM in the encoder module is followed by max-
pooling (MP) with pools of height and width ℎ𝑝 and 𝑤𝑝, respectively,
and stride 𝑠𝑝 (shortly MP(ℎ𝑝 ×𝑤𝑝, 𝑠𝑝)). Feature maps produced by UMs
in the encoder module are concatenated with feature maps produced
in the decoder module. The transfer of the maps from the encoder to
the decoder is ensured by skip connections.

We summarize topologies of the full resolution and the reduced
U-Nets in Table 1 and Table 2, respectively. The columns outline
operations performed within the encoder and decoder modules. The
operations are arranged in rows with respect to skip connections.
The data flow is symbolized using arrows, where their orientations
indicate data flow directions. Simple arrows denote the main flow of
data, and double ones symbolize skip connections (skip connections
are numbered for clarity). We denote a concatenation of two feature
maps as [⋅, ⋅]. For all UMs in both topologies, we use following setting:
ℎ𝑐 = 3, 𝑤𝑐 = 3, 𝑠𝑐 = 1 and 𝑑 = 0.2. As the only changing parameter is
the number of filters 𝑓 , we use notation UM(𝑓 ) for the description of
the topologies. In the full resolution U-Net, up-sampling (US) precedes
each UM in the decoder module. In the reduced U-Net, we remove
the last two USs. We implement US as the Kronecker product of each
input feature map with ℎ𝑢 ×𝑤𝑢 matrix of all ones (US(ℎ𝑢 ×𝑤𝑢)), where
ℎ𝑢 and 𝑤𝑢 are height and width of the matrix, respectively. In the
full resolution U-Net, feature maps are directly transferred between
corresponding parts of the encoder and decoder. In the reduced U-Net,
feature maps produced by the first and the second UMs in the encoder
are reduced using max-pooling to a quarter and half of their size
respectively, before their concatenations with feature maps produced
within the decoder module. In both variants, the networks are closed
by Conv(1 × 1, 𝑘, 1) followed by a sigmoid activation function (sig),
where 𝑘 is the number of recognized classes. To achieve the required
output dimensions (288 × 288 or 72 × 72 px), we zero-pad inputs of
operations, if necessary.

2.4.2. YOLO person detection
We compare the proposed centroid-based person detector with a

detector based on YOLOv2 architecture [34]. The YOLO-based person
detector expects 288 × 288 px greyscale images at its input, and
it returns, for each image, a set 𝐵̂ of bounding box predictions 𝑏̂,
5

Table 1
Topology of the full resolution U-Net.

Encoder Decoder

↓UM(64)↓
1
⇒ [↑,

1
⇒] →UM(64)→Conv(1 × 1, 𝑘, 1)→sig↑

↓MP(2 × 2, 2)→UM(128)↓
2
⇒ [↑,

2
⇒] →UM(128)→US(2 × 2)↑

↓MP(2 × 2, 2)→UM(256)↓
3
⇒ [↑,

3
⇒] →UM(256)→US(2 × 2)↑

↓MP(2 × 2, 2)→UM(512)↓
4
⇒ [↑,

4
⇒] →UM(512)→US(2 × 2)↑

↓MP(2 × 2, 2)→ →US(2 × 2)↑

The table summarizes operations performed within the encoder and decoder modules.
The operations are arranged in rows with respect to skip connections, where simple
arrows denote the main flow of data, and double arrows symbolize skip connections
(skip connections are numbered). UM(𝑓 ) denotes the U-Net module (12) of 𝑓 filters.
US(ℎ𝑢 ×𝑤𝑢) symbolizes up-sampling, where 𝑤𝑢 and ℎ𝑢 are up-sampling factors in x and
y directions, respectively. We use MP(ℎ𝑝 ×𝑤𝑝 , 𝑠𝑝) for max-pooling with pools of height
and width ℎ𝑝 and 𝑤𝑝, stride 𝑠𝑝. Conv(ℎ𝑐 ×𝑤𝑐 , 𝑓 , 𝑠𝑐 ) represents convolution of 𝑓 filters
of height ℎ𝑐 and width 𝑤𝑐 , stride 𝑠𝑐 . We use sig for the sigmoid activation function.

Table 2
Topology of the reduced U-Net.

Encoder Decoder

↓UM(64)↓→MP(4 × 4, 4)
1
⇒ [↑,

1
⇒] →UM(64)→Conv(1 × 1, 𝑘, 1)→sig↑

↓MP(2 × 2, 2)→UM(128)↓→MP(4 × 4, 2)
2
⇒ [↑,

2
⇒] →UM(128)↑

↓MP(2 × 2, 2)→UM(256)↓
3
⇒ [↑,

3
⇒] →UM(256)→↑

↓MP(2 × 2, 2)→UM(512)↓
4
⇒ [↑,

4
⇒] →UM(512)→US(2 × 2)↑

↓MP(2 × 2, 2)→ →US(2 × 2)↑

Table layout and the abbreviations are identical with Table 1.

where the predictions are 5-tuples (1). As our aim is to compare
the centroid-based person detector with a similar competitor in terms
of inference time, we consider GoogLeNet [35], MobileNet-v2 [36],
and SqueezeNet [37] as backbone models of the YOLO-based person
detector. All the networks have proven to be successful in various
time-critical computer vision applications.

2.4.3. CenterNet person detection
The second competitor of the proposed detector is CenterNet. The

inputs of the CenterNet-based detector are 288 × 288 px greyscale
images. The outputs are sets 𝐵̂ of bounding box predictions 𝑏̂, where
the predictions are 7-tuples (2). To remain consistent with the original
paper [15], we use ResNet101 as the backbone. We also consider
EfficientDET D0 [38], which promises high computational efficiency.

2.5. Datasets

2.5.1. Data acquisition
Quality of datasets predetermines performance of deep ConvNet-

based computer vision systems. To ensure robustness of the person
detectors in the intended setting, we collect data in diverse envi-
ronments which include staircases, corridors, and entries into means
of transport. We capture video streams with the RealSense camera
D435 orthogonally placed above walking persons at eight different
locations. The walking persons are adults with and without headgear.
The head–lens distance varies between 25 and 100 cm depending on
the environment and situation in the scene. This setting results in a
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Fig. 5. Samples of cut-outs from individual locations 1–8. Backgrounds, lighting conditions, and elevation profiles vary among the scenes. The bottom-right image shows the
location which we use by forming the blind test dataset 𝐷𝐵 . The remaining locations are included in the training and test datasets 𝐷𝑇 and 𝐷𝐸 .
𝑥

large variance in the size of the heads and their sharpness. The lighting
conditions differ among the experiments.

2.5.2. Dataset creation
We extract frames from the captured videos to create a set of 8-

bit RGB images. From the frames of seven locations, we cut out 7000
square images with up to nine persons. We randomly split the set
of images in the ratio 6:1 to create training and test datasets 𝐷𝑇
and 𝐷𝐸 , respectively. From the eighth location, we form a blind test
dataset 𝐷𝐵 of 1000 square image crops (Fig. 5). As these images are
captured under different lighting conditions at a different place from
the previous locations, 𝐷𝐵 allows testing the generalization capabilities
of the detectors. We resize images in all datasets to 288 × 288 px.

2.5.3. Data analysis
The images capture persons of various heights at locations of various

elevation profile. Both these aspects contribute to a high variability in
sizes of heads in the images. The shape of heads is elliptical (Fig. 5).
The smallest width and height of the ellipses is about 20 px. The largest
ellipse dimension reaches 200 px. The number of heads in a scene varies
from 0 to 10. Some images contain incomplete heads (persons near
edges of the images in Fig. 5). As the camera has fixed focus, some
of the heads are blurred.

2.5.4. Image annotation
Training and evaluation of the proposed centroid-based person de-

tector requires extension of the image datasets with localization maps
and ground truth centroids. We must create a localization map for
each image, and we must assign a real value from the interval [0, 1]
to each pixel of each localization map, where the non-zero values must
be associated with objects of interests (heads).

To simplify the annotation process, it is reasonable to approximate
the positions of objects in the maps using an appropriate geometric
shape. Considering the elliptic shape of heads, we approximate the
heads by gradient ellipses. We consider ellipse centroids to be identical
with head centroids and ellipse circumferences to be borders between
heads and background. We draw rectangles tightly enveloping complete
heads within an image 𝐼 . To ensure correct approximation of protrud-
ing heads, we estimate shapes of rectangles so that they include visible
and invisible parts of the heads (Fig. 6). In such a way, we create for
𝐼 a set R of 𝑛 rectangles r. The 𝑖th rectangle is an ordered four tuple
r𝑖 = (x𝑖, y𝑖,w𝑖, h𝑖), where x𝑖, and y𝑖 are 𝑥 and 𝑦 coordinates of the left top
rectangle corner respectively, and w𝑖, and h𝑖 are width and height of
the rectangle respectively. The ellipse defining border of the 𝑖th head
in the image 𝐼 is given as

4(𝑥 − x𝑖)2

w2
𝑖

+
4(𝑦 − y𝑖)2

h2𝑖
= 1. (13)
6

Fig. 6. Annotation of an image. For each head in the scene image 𝐼 (left), an annotator
draws a rectangle tightly enveloping the head (red rectangles). He/she estimates shapes
of rectangles for the protruding heads. The rectangles define ground truth centroids and
bounding boxes of the heads, as well as the localization map  for 𝐼 . We approximate
the heads by gradient ellipses that are delimited by the rectangles. Filling the ellipse
areas with non-zero values results in , where head centroids are represented by values
close to 1, background by 0, and values in the ellipse areas linearly decrease to 0 with
increasing distances from the centroids (right).

We use the canonical ellipse equation (13) to define a piecewise
linear function which assigns real values from the interval (0, 1] to
elements of  associated with areas of the ellipses. When applied to
(5), we get

(𝑥, 𝑦, 1) =
⎧

⎪

⎨

⎪

⎩

1 −
√

4(𝑥−x𝑖)2

w2
𝑖

+ 4(𝑦−y𝑖)2

h2𝑖
, for (𝑥, 𝑦) ∈ 𝑆r𝑖

,

0, otherwise,
(14)

where 𝑆r𝑖
is a set of spatial coordinates in an ellipse sub-window

defined by r𝑖 ∈ R. The ground truth centroid of the 𝑖th head 𝛾𝑖 =
(𝑥̄𝑖, 𝑦̄𝑖, 𝑐𝑖) is given as

̄ 𝑖 = x𝑖 + 0.5w𝑖, 𝑦̄𝑖 = y𝑖 + 0.5h𝑖, 𝑐𝑖 = 1. (15)

We form a set 𝐵 of ground truth bounding boxes 𝑏 for the image
𝐼 using the set of rectangles R. The 𝑖th ground truth bounding box
𝑏𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖, 𝑐𝑖) is given as

𝑥𝑖 = x𝑖, 𝑦𝑖 = y𝑖, 𝑤𝑖 = w𝑖, ℎ𝑖 = h𝑖, 𝑐𝑖 = 1. (16)

We make the annotated datasets to be freely available at Kag-
gle [39].

2.6. Evaluation measures

2.6.1. Total localization error
Positions of objects in images are determined by coordinates of

object centroids. Evaluation of the detection performance of centroid-
based object detectors must consider distances of centroids predictions
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to the nearest ground truth centroid. Therefore, each prediction must be
associated exactly with one ground truth label, and each ground truth
label must be associated exactly with one prediction. If the number
of predictions does not match the number of the ground truth labels,
we can add a corresponding number of virtual predictions or ground
truth labels to ensure equality of their numbers. Herein, we expect the
coordinates of the virtual predictions and virtual ground truth labels
to be infinity. Using the above stated principle, we define the total
localization error (a single class detection performance measure) as
follows.

Let a dataset 𝐷 consist of 𝑁 annotated images 𝐼 . The 𝑙th image 𝐼𝑙 is
associated with a set 𝛤𝑙 of 𝑛𝑙 ground truth centroids 𝛾, where 𝑛𝑙 ∈ Z0+.
et the detector predict for 𝐼𝑙 a set 𝛤𝑙 of 𝑝𝑙 object centroids 𝛾̂, where
𝑙 ∈ Z0+. The total localization error ∑

𝑒 of the detector on 𝐷 is given
s

∑

𝑒 = 1
𝑁

𝑁
∑

𝑙=1
𝑒𝑙 , (17)

here 𝑒𝑙 is the localization error of the detector on 𝐼𝑙.
Let the localization error of the 𝑙th image be given as a sum of

he smallest relative distances 𝛿 between ground truth coordinates and
heir closest predictions, where each prediction is associated exactly
ith one ground truth label, and simultaneously, each ground truth

abel is associated exactly with one prediction. The error is given as

𝑙 =
𝑀
∑

𝑟=1
min
𝛾̃𝑗∈𝛤 𝑟

𝑙

{

min
̃̂𝛾𝑗∈

̃̂𝛤 𝑟
𝑙

𝛿𝑙(𝛾̃𝑗 , ̃̂𝛾𝑖)

}

, (18)

here 𝛾̃𝑗 is the 𝑗th ground truth centroid, ̃̂𝛾𝑖 is the 𝑖th predicted
entroid, 𝛿𝑙(𝛾̃𝑗 , ̃̂𝛾𝑖) is a relative distance between 𝛾̃𝑗 and ̃̂𝛾𝑖, 𝛾̃𝑗 ∈ 𝛤 𝑟

𝑙 ,
̃̂
𝑖 ∈ ̃̂𝛤 𝑟

𝑙 , 𝛤 𝑟
𝑙 and ̃̂𝛤 𝑟

𝑙 are multisets of cardinality 𝑀 − 𝑟 + 1, and 𝑀 =
max {𝑛𝑙 , 𝑝𝑙}. For 𝑟 = 2,… ,𝑀 ,

̃ 𝑟
𝑙 =

{

𝛾̃𝑖|𝛾̃𝑖 ∈ 𝛤 𝑟−1
𝑙 ∧ 𝛾̃𝑖 ≠ (𝑥̄∗, 𝑦̄∗, 𝑐∗)𝑟−1𝑙

}

, (19)

here

𝑥̄∗, 𝑦̄∗, 𝑐∗)𝑟−1𝑙 = arg min
𝛾̃𝑗∈𝛤 𝑟−1

𝑙

{

min
̃̂𝛾𝑖∈

̃̂𝛤 𝑟−1
𝑙

𝛿𝑙(𝛾̃𝑗 , ̃̂𝛾𝑖)

}

, (20)

Similarly,

̃̂𝛤 𝑟
𝑙 =

{

̃̂𝛾𝑖| ̃̂𝛾𝑖 ∈
̃̂𝛤 𝑟−1
𝑙 ∧ ̃̂𝛾𝑖 ≠ ( ̂̄𝑥∗, ̂̄𝑦∗, 𝑐∗)𝑟−1𝑙

}

, (21)

where

( ̂̄𝑥∗, ̂̄𝑦∗, 𝑐∗)𝑟−1𝑙 = arg min
̃̂𝛾𝑖∈

̃̂𝛤 𝑟−1
𝑙

{

min
𝛾̃𝑗∈𝛤 𝑟−1

𝑙

𝛿𝑙(𝛾̃𝑗 , ̃̂𝛾𝑖)

}

. (22)

For 𝑟 = 1, the multisets 𝛤 𝑟
𝑙 and ̃̂𝛤 𝑟

𝑙 contain, with multiplicity one, all
lements of the sets 𝛤𝑙 and 𝛤𝑙, respectively; and the element (∞,∞, 0)

with multiplicity max {0, 𝑝𝑙 − 𝑛𝑙} and max {0, 𝑛𝑙 − 𝑝𝑙}, respectively.
The relative distance between the 𝑗th ground truth centroid 𝛾̃𝑗 =

(𝑥̄𝑗 , 𝑦̄𝑗 , 𝑐𝑗 ) and the 𝑖th centroid prediction ̃̂𝛾𝑖 = ( ̂̄𝑥𝑖, ̂̄𝑦𝑖, 𝑐𝑖) in 𝐼𝑙 is given as

𝑙(𝛾̃𝑗 , ̃̂𝛾𝑖) =
min {𝑤𝐼𝑙 ,

|

|

|

𝑥̄𝑗 − ̂̄𝑥𝑖
|

|

|

}

2𝑤𝐼𝑙
+

min {ℎ𝐼𝑙 ,
|

|

|

𝑦̄𝑗 − ̂̄𝑦𝑖
|

|

|

}

2ℎ𝐼𝑙
, (23)

here 𝑤𝐼𝑙 and ℎ𝐼𝑙 are width and height of the 𝑙th image 𝐼𝑙, respectively.
In other words, if the number of predictions 𝑝𝑙 is equal to the

umber of ground truth labels 𝑛𝑙 for the 𝑙th image (Fig. 7(a)), the
rror (18) can be directly calculated as the sum of the smallest relative
istances of the ground truth label–prediction pairs designed according
o (19)–(22). If 𝑝𝑙 > 𝑛𝑙 (Fig. 7(b)), we add (𝑝𝑙 − 𝑛𝑙) virtual ground
ruth labels (∞,∞, 0) to allow calculation of the error (18). If 𝑝𝑙 < 𝑛𝑙
7

Fig. 7(c)), we add (𝑛𝑙 − 𝑝𝑙) virtual predictions (∞,∞, 0).
2.6.2. Relative inference time
Let a relative inference time of a detector be given as

𝜏 =
𝑡𝐷
𝑡𝐵

, (24)

where 𝑡𝐷 is the total inference time of the detector on a set of images,
and 𝑡𝐵 is the total inference time of a baseline detector of this set.

2.7. Experiment conditions

We implement the centroid-based detector in Python 3.6 with Ten-
sorFlow 2.0. We train the full resolution U-Net and the reduced U-Net
map generators from scratch, minimizing a binary cross entropy func-
tion. We use normal distribution initialization with mean and standard
deviation set to 0 and 0.05, respectively. When training the reduced
U-Net, we resize the localization maps to 72 × 72 px (dimensions of
localization maps produced by the reduced U-Net). For both variants
of U-Nets, we rescale values of the images and of the localization
maps to the range [0, 1]. In the centroid counterpoint module, we set
the threshold value 𝑡𝑚 and the size of the maximum filter ℎ𝑘 × 𝑤𝑘 at
0.65 and 10 × 10 px, respectively. The threshold value was estimated
experimentally. The filter size is set with respect to the most common
size of heads in the images.

Since the Computer Vision Toolbox in Matlab offers a YOLO im-
plementation wrapped in a very user-friendly interface including the
possibility of deployment to Jetson NANO, we implement the YOLO
detector (the bounding box-based detector) in MATLAB instead of
the original Darknet framework. We use models pre-trained on the
Imagenet for its training on the person detection task. We replace the
layers after ’out_relu’, ’inception_5b-output’, and ’relu_conv10’ (naming
according MATLAB) in GoogLeNet, MobileNet-v2, and SqueezeNet, re-
spectively, by the last YOLOv2 layers. Moreover, since these backbone
architectures expect a three-channel RGB image as input, we add a
convolutional layer with three trainable filters (3, 3) in front of these
base models to transform a single-channel input into a three-channel
input. We empirically find that the overlap threshold in non-maximum
suppression at 0.75 gives good results, and 7 anchor boxes are a good
balance between performance and time to process. We estimate widths
and heights of the anchor boxes on the dataset 𝐷𝑇 using a 𝑘-means
clustering algorithm and the IoU distance metric [34].

We use PyTorch implementation of CenterNet from GitHub [40]
with its initial setting of all parameters. As backbones, we use ResNet-
101 and EfficientDET D0 models pre-trained on the COCO dataset for
its training on the person detection task. We modify the backbones to
process 288 × 288 px images analogously to the YOLO detector, and
we adjust the CenterNet outputs for the one class problem.

For both the centroid-based and bounding box-based detectors, we
convert the input images into greyscale. We carry out 5 training ses-
sions. Within each session, we train the localization map generators and
all variants of the bounding box-based detectors on an identical training
subset. For each training session, we randomly split up the dataset 𝐷𝑇
at the ratio 17:3 into training and validation subsets, respectively. We
train the generators and the bounding box-based detectors with mini
batches of 8 samples for 300 and 30 epochs, respectively. We save and
validate the models on a validation subset in every epoch. We shuffle
samples in every epoch.

We use the Adam optimizer for the training of the map generators
and of the bounding box-based person detectors. We set up an exponen-
tial decay rate for first and second moment estimates at 0.9 and 0.999,
respectively. For the generators and for the CenterNet detectors, we
use an initial learning rate of 10−3. In the case of CenterNet detectors,
we multiply the learning rate by a factor of 0.96 every 10 epochs.
For the YOLO detectors, we set up the learning rates for the last (the
YOLOv2) layers at 10−3, the preceding layers are not modified during
learning. These settings are adapted from the sources of the individual
architectures, i.e., Computer Vision Toolbox in Matlab for the YOLO

detector, and GitHub source [40] for the CenterNet.
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Fig. 7. Calculation of the localization error for the 𝑙th image (black solid lines) with two ground truth centroids (black crosses) in the case of (a) two, (b) three, and (c) zero
centroid predictions (red circles). In the case of two predictions (a), the number of ground truth and the number of predicted coordinates are equal, and the localization error 𝑒𝑙
is simply the sum of the smallest distances between the ground truth and the predictions (dashed black lines), i.e. the localization error of the 𝑙th image 𝑒𝑙 = 0.20. In the case of
three predictions (b), one of the predictions is redundant. When calculating the localization error, we first find for each ground truth centroid the nearest prediction and calculate
the distance between the prediction and the ground truth. The remaining prediction is the redundant one (in this case ̃̂𝛾2), and we consider its ground truth 𝛾̃3 to be in infinity,
which corresponds to the highest possible distance in the image (i.e. 𝛿𝑙(𝛾̃3 , ̃̂𝛾2) = 1). Thus, the localization error 𝑒𝑙 = 1.15 in this case. In the case of zero predictions (c), two
predictions are missing. We expect the predictions to be in infinity which results in 𝑒𝑙 = 2.00.
We use data augmentation to avoid overfitting by the training of
the map generators. Specifically, we use random rotation (range of a
rotation angle: ±20 degree), random horizontal and vertical flipping
with probability 0.5, random horizontal and vertical translation (up
to ±20 % of image height and width, respectively), random rescaling
(zoom range 0.2) and random horizontal and vertical shear (shear
intensity 0.2). We perform the augmentation in filling mode set to
nearest.

We evaluate performance of the person detectors on the test and
blind datasets 𝐷𝐸 and 𝐷𝐵 , respectively. For both variants of the
centroid-based and all five variants of the bounding box-based detec-
tors, we select the best performing model (a model with the smallest
value of a loss function over a validation subset obtained within the
five training sessions). We calculate the total localization error (17) of
the models on 𝐷𝐸 and 𝐷𝐵 . For each image in a dataset, we convert a
set 𝐵̂ of YOLO predictions 𝑏̂ into a set 𝛤 of centroid predictions 𝛾̂. The
coordinate of the 𝑖th centroid prediction in an image 𝐼 is given as

̂̄ 𝑖 = 𝑥̂𝑖 + 0.5𝑤̂𝑖, ̂̄𝑦𝑖 = 𝑦̂𝑖 + 0.5ℎ̂𝑖. (25)

In the case of CenterNet, we use the centroid coordinate predictions by
its evaluation.

For each person detector, we detect persons in one identical image 𝐼
a thousand times, while measuring total inference time of the detector
𝑡𝐷. We calculate for the detectors frame rates 𝐹 = 𝑡−1𝐷 and the relative
inference time (24), where the total inference time of the centroid-
based detector with the reduced U-Net map generator is the baseline
𝑡𝐵 .

We train and evaluate detection performance of the detectors on a
personal computer with Intel Core i5-8600K (3.6 GHz) CPU, internal
memory 16 GB DDR4 (2666 MHz), video card NVIDIA PNY Quadro
P5000 16 GB GDDR5 PCIe 3.0. For evaluation of the inference time,
we use a NVIDIA Jetson NANO single-board computer with Quad-
core ARM A57 1.43 GHz CPU and 4 GB RAM. To allow the unbiased
comparison of the inference times, we export all detectors into the
TensorRT NVIDIA CUDA parallel programming models.

3. Results

We train the centroid-based detectors as well as the competitive
bounding box-based detectors with the datasets described in Section 2.5
according to the procedure addressed in Section 2.7. In order to show
the performance capabilities of the detectors, we summarize the re-
sulting values of the evaluation measures described in Section 2.6 in
Table 3.

Additionally, we demonstrate absolute frequencies of differences
between numbers of ground truth labels and numbers of predictions
8

Table 3
Evaluation results.

Measure ∑

𝑒,− 𝜏,− 𝐹 , FPS

Dataset 𝐷𝐸 𝐷𝐵 𝐼 × 1000 𝐼 × 1000

Full resolution U-Net 0.1472 0.3712 1.4148 8.62
Reduced U-Net 0.1352 0.3378 1.0000 12.19
CenterNet-D0 1.4659 1.7200 3.9260 3.10
CenterNet-ResNet101 1.2080 1.7090 4.0215 3.03
YOLO-GoogleNet 0.6755 1.2159 1.2074 10.10
YOLO-MobileNetv2 0.3497 1.0016 1.43779 8.48
YOLO-SqueezeNet 1.9441 1.5899 0.93549 13.03

Total localization errors ∑

𝑒, relative inference times 𝜏, and framerates 𝐹 (first row)
of the best performing models (third to ninth rows), on the test and blind datasets 𝐷𝐸
and 𝐷𝐵 (second row), respectively. 𝐼 symbolizes an image which we used a thousand
times within measurement of inference times of the models, and FPS stands for frame
per second. The best result is for each measure in bold.

Table 4
Absolute frequencies of differences between numbers of ground truth labels and
numbers of predictions for the test dataset 𝐷𝐸 .

<−2 −2 −1 0 1 2 >2

Full resolution U-Net 0 9 95 876 19 1 0
Reduced U-Net 0 4 84 885 24 3 0
CenterNet-D0 97 101 148 328 179 50 97
CenterNet-ResNet101 55 68 159 385 218 55 60
YOLO-GoogleNet 27 75 259 503 124 10 2
YOLO-MobileNetv2 1 22 172 700 97 8 0
YOLO-SqueezeNet 317 194 223 248 18 0 0

The test dataset consists of 1000 samples. The frequencies of multiple detections
(columns for negative numbers in the first row), overlooks (columns for positive
numbers in the first row), and correct detections (the column for zero in the first
row) are arranged with respect to the detectors (the first column). The highest value
for the correct detections indicates the best performing detector (in bold).

of the detectors for the test dataset (Table 4) and for the blind dataset
(Table 5). A graphical representation of these differences is depicted
in Fig. 8.

4. Discussion

The evaluation results presented in Table 3 speak in favour the
centroid-based person detection. On both the test dataset 𝐷𝐸 and
the blind dataset 𝐷𝐵 , the localization errors of both variants of the
centroids-based detector are less than half of the localization errors
of the best performing bounding box-based detector (YOLOv2 with
the MobileNetv2 backbone). The centroid-based detector with the re-
duced U-Net map generator shows even 2.6 and 2.9-times smaller error
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Fig. 8. Absolute frequencies of differences between numbers of ground truth labels and numbers of predictions for the test dataset 𝐷𝐸 (left column) and for the blind dataset 𝐷𝐵
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n 𝐷𝐸 and on 𝐷𝐵 , respectively, compared to the YOLOv2 with the
obileNetv2 backbone.

The high localization errors of YOLO detectors (Table 3, YOLO-
oogleNet and YOLO-SqueezeNet on 𝐷𝐸 and 𝐷𝐵 , and YOLO-Mobi-

eNetv2 on 𝐷𝐵) indicate predispositions of the detectors to multiple
etections or to marginalization of persons in the images. The re-
ults summarized in Tables 4–5 and in Fig. 8 confirm this suspicion.
he YOLO-SqueezeNet, which has the highest errors on both datasets
Table 3), shows a clear tendency to overlook persons (Fig. 8). The
OLO-GoogleNet with the second highest errors on both datasets in-
lines to false detections on the blind dataset 𝐷𝐵 . On the test dataset
𝐸 , it leans rather to overseeing persons (Fig. 8). The high error of
OLO-MobileNetv2 on 𝐷𝐵 and the small error on 𝐷𝐸 indicates low
eneralization capability of the detector. The decline in the number of
mages with the correct number of detections confirms this assumption
9

g

compare the histograms for YOLO-MobileNetv2 on 𝐷𝐸 and 𝐷𝐵 in
ig. 8, or the results in Tables 4–5).

The tendency of multiple detections and marginalization of persons
s even greater in the case of the CenterNet detectors. This is most
pparent in the results in Tables 4–5; however, this property of the de-
ectors naturally emerges in the localization errors too. The CenterNet
ith the EfficientDET D0 and ResNet101 backbones have the first and

econd highest localization errors among the tested detectors on both
he test and the blind datasets.

The low values of the error for both variants of the centroid-based
etector point to low numbers of false and miss-detections which also
onfirm the histograms shown in Fig. 8 (see Full resolution U-Net
nd Reduced U-Net). The values of the error on the blind dataset
𝐵 (Table 3, Full resolution U-Net and Reduced U-Net) indicate good

eneralization capability of the centroid-based detector. The detector
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Table 5
Absolute frequencies of differences between numbers of ground truth labels and
numbers of predictions for the blind dataset 𝐷𝐵 .

<−2 −2 −1 0 1 2 >2

Full resolution U-Net 1 27 195 692 83 2 0
Reduced U-Net 2 14 157 719 104 4 0
CenterNet-D0 18 28 80 171 266 276 161
CenterNet-ResNet101 34 43 104 173 277 235 134
YOLO-GoogleNet 20 70 161 266 275 156 52
YOLO-MobileNetv2 51 96 260 343 201 40 9
YOLO-SqueezeNet 182 197 232 238 124 25 2

Table layout and the abbreviations are identical with Table 4.

with a reduced U-Net map generator has the highest number of images
with the correct number of detections on both datasets (Tables 4–5).
Despite the low quality of some images in the datasets, the number of
detections match the number of persons for 88.5% and 71.9% of images
in 𝐷𝐵 and 𝐷𝐸 , respectively.

The utilization of quarter size localization maps instead of the full
resolution ones results in a slight improvement in detections, which is
apparent from the localization errors (Table 3, Full resolution U-Net
and Reduce U-Net) as well as from the numbers of ‘correct detections’
(Tables 4–5). Decreasing the map resolution does not change the dis-
tribution in false and miss-detection frequencies (Fig. 8, Full resolution
U-Net and Reduced U-Net on 𝐷𝐸 and 𝐷𝐵). The results indicate that the
eduction of the map resolution contributes to a better generalization
f the network within the training phase.

The simplification of the U-Net topology which we have made
ithin the development of the reduced U-Net, allows us to reach

nference time comparable to the fastest bounding box-based detector
compare 𝜏 in Table 3 for Reduced U-Net and YOLOv2-SqueezeNet).
t is worth mentioning in this context that the YOLOv2 with the
queezeNet backbone shows one of the highest localization errors
mong the evaluated detectors (14.4-times and 4.7-times higher errors
n 𝐷𝐸 and on 𝐷𝐵 , compared to the centroids-based detector with
he reduced U-Net map generator). When compared with the best
erforming bounding box-based detector, the centroid-based detector
ith the reduced U-Net map generator is about 40 % faster than the
OLOv2 with the MobileNetv2 backbone (Table 3). When using the full
esolution U-Net, the inference times of the centroid-based detector and
f the YOLOv2 with the MobileNetv2 backbone are almost identical.

The presented results confirm our expectations with respect to the
dvantages of the centroid-based detection by the localization of per-
ons in the orthogonally captured images. The low localization errors
f both versions of the centroid-based detector support previously
ublished results, which point to the superiority of the centroid-based
bject detection over the bounding box-based object detection for
ounting small objects [41]. The centroid-based detector also meets the
dge computing standards, especial when using the reduced U-Net as
he map generator.

. Conclusion

We proved that the determination of head centroids position, us-
ng the fully convolutional network (U-net) in combination with the
resented sequence of simple image processing operations (centroid
ounterpoint module), is an efficient way for the fast and precise
etection of persons in orthogonally captured images. The presented
entroid-based person detector meets the edge computing standards,
as good generalization capability, and shows small localization error
ven on low quality images. It efficiently operates in diverse envi-
onments including environments with high variabilities in elevation
rofiles. The utilization of quarter size localization maps instead of the
10

ull resolution ones allowed us to reduce inference time of the detector
by 40 %. A side effect of the reduction is a slight improvement in the
detection performance. Considering all these facts and the low price
of visible spectrum cameras (compared to depth cameras, 3D laser
scanners, etc.), we conclude that the centroid-based detector allows
development of low cost and powerful commercial solutions. These
solutions are particularly aimed at automatic tracking and counting of
persons in public transport. The presented localization error allowed
us to quantitatively compare detection performance of both centroid
and bounding box-based detectors. For the annotation of datasets, we
used the bounding box inspired annotation. Such an approach allowed
us simultaneous annotation of the images for both bounding box-
based and centroid-based detection. This considerably simplified the
annotation process.
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