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Abstract. Forecasting time series is an important problem addressed
for years. Despite that, it still raises an active interest of researchers.
The main issue related to that problem is the inherent uncertainty in
data which is hard to be represented in the form of a forecasting model.
To solve that issue, a fuzzy model of time series was proposed. Recent
developments of that model extend the level of uncertainty involved in
data using intuitionistic fuzzy sets. It is, however, worth noting that ad-
ditional fuzziness exhibits nonlinear behavior. To cope with that issue,
we propose a time series model that represents both high uncertainty
and non-linearity involved in the data. Specifically, we propose a fore-
casting model integrating intuitionistic fuzzy sets with neural networks
for predicting metal prices. We validate our approach using five financial
multivariate time series. The results are compared with those produced
by state-of-the-art fuzzy time series models. Thus, we provide solid ev-
idence of high effectiveness of our approach for both one- and five-day-
ahead forecasting horizons.

Keywords: Fuzzy time series · Fuzzy neural network · Intuitionistic
fuzzy sets

1 Introduction

Despite spectacular achievements in the field, forecasting time series still raises
an active interest among researchers. Their efforts’ main goal is to design a
forecasting model that would be able to capture the uncertainty involved in
data and, thanks to that, produce more accurate forecasts.
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One of the most essential approaches models time series using fuzzy sets.
The method consists of three main stages. First, time series are partitioned and
fuzzified. Then, the prediction model is created using fuzzy logic relations (fuzzy
if-then rules). The model is used to predict future values of the fuzzified time
series (fuzzy time series). Finally, if the knowledge of their crisp values is required
for the considered application, the predictions are defuzzified.

In the literature, for data partitioning, equal-sized intervals were typically
used [2–4]. However, if the data distribution were not uniform over the universe
of discourse, the equally distributed fuzzy sets did not represent the underlying
data effectively. This in turn led to higher forecasting errors [1]. To address
this issue, the parameters of fuzzy time series were determined using different
methods, including mathematical optimization and clustering-based methods.
Due to their robustness and capacity to solve global optimization problems,
evolutionary algorithms were frequently used to optimize the parameters of fuzzy
sets. In this case, the limitation is the susceptibility to over-fitting. Clustering-
based methods, in turn, usually provided a good trade-off between computational
demand and forecasting accuracy [5, 6]. It is, however, worth noting that the
existing fuzzification methods are not capable of modeling the dynamic behavior
of time series. To overcome this problem, we propose in this paper a fuzzification
method that assigns membership and non-membership values of fuzzy sets by
incorporating variance in the time series.

To perform forecasts, fuzzy logic relations between previous and forecasted
values were traditionally produced from the historical time series. The relations
were generated and selected using the fuzzy sets with the highest membership
values. The weighted and polynomial constructions were introduced for each
fuzzy logic relationship to assign larger weights to recent time series observations
(compared with the latter) [7] or to those with higher empirical probabilities [8].
The fuzzy trend of the forecasted value was also incorporated into the final
forecasts [9, 10]. The main problem with the construction of traditional fuzzy
logic relationships is their poor generalization capacity, this is poor out-of-sample
forecasts. Moreover, for many observations, no matched fuzzy logic relations are
available and, hence, no reliable forecast can be performed [11]. To address these
issues, neural networks were employed to learn the relationships using different
strategies.

Several studies used neural networks to predict the consequences of the rela-
tionships based on the index numbers of input fuzzy sets (antecedents) [12, 13].
Central values of fuzzy sets were used for the same purpose [14]. Alternatively,
input and output membership degrees were used to represent the fuzzy sets [2,
15]. Multilayer perceptron neural networks were employed in the above studies.
Pi-Sigma neural network used by [16] represents an a higher-order alternative
with a fewer number of units, leading to enhancement in convergence speed.
However, this neural network model is more susceptible to over-fitting. Support
vector regression was applied to produce predictions for unrecognized multivari-
ate fuzzy logic relationships [17]. In an adaptive neuro-fuzzy inference system
(ANFIS) [18, 19], hidden units of neural network represent the if-then rules given
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in advance, and neural network is used to learn the consequent parameters of
the rules. Another layer can be used to represent the parameters of fuzzy sets.
Interval type-2 (intuitionistic) fuzzy sets were used in ANFIS to represent the
additional uncertainty in financial time series [20–23].

Hesitant fuzzy sets and probabilistic fuzzy sets represent other extensions of
fuzzy sets used for fuzzy time series forecasting [4, 24, 25]. To avoid the over-
fitting problem of single prediction models, several studies introduced combina-
tions of fuzzy neural networks utilizing both interval type-2 fuzzy sets [26] and
intuitionistic fuzzy sets [27]. The main drawback of the presented interval type-2
(intuitionistic) fuzzy neural networks is their use of static membership functions
(lower, upper, or non-membership functions). This is, the degree of hesitancy
does not consider volatility in the time series data.

We propose an intuitionistic fuzzy neural network that incorporates this con-
cept. In addition, it utilizes intuitionistic fuzzy operators to calculate the firing
weights of if-then rules and a defuzzification method designed for intuitionis-
tic fuzzy sets to aggregate the outcomes of the rules. Gradient descent is used
as a training algorithm for the intuitionistic fuzzy neural network. The pro-
posed model is also highly computationally efficient because only consequent
parameters of the rules are adapted while the parameters of fuzzy sets and rule
antecedents are generated using a clustering algorithm.

As far as we know, this is the first extension of a fuzzy neural network that
considers the volatility in the time series to assign the degree of hesitancy to
observations in the data partitioning stage. For the first time, a generalization
of a neuro-fuzzy system is used for predicting metal prices.

The rest of this paper is organized in the following way. Section 2 outlines the
proposed intuitionistic fuzzy neural network for time series forecasting. Section 3
presents the metal price datasets. Section 3 shows the results of the experiments
and comparisons with existing time series methods. Section 4 concludes this
paper and discusses future research.

2 Intuitionistic Fuzzy Neural Network for Time Series
Forecasting

Let us remind at first the definition of an intuitionistic fuzzy set A which is [28]:

A = {〈x, µA(x), νA(x)〉 |x ∈ X } , (1)

where µA(x) and νA(x) respectively is the membership and a non-membership
degree of element x to the set A, X is the universe of discourse. It holds that
0 ≤ µA(x) ≤ 1, 0 ≤ νA(x) ≤ 1 and 0 ≤ µA(x)+νA(x) ≤ 1. The hesitation degree
πA(x) denotes an additional degree of uncertainty, πA(x) = 1− µA(x)− νA(x).

Here we propose an intuitionistic fuzzy neural network which is based on
that outlined in [29] and consists of six layers (Fig. 1).

Input layer : The first layer is used to forward the crisp inputs xt1, x
t
2, . . . , x

t
n

to the next layer.
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Fig. 1. Intuitionistic fuzzy neural network for time series forecasting.

Fuzzification layer : Neurons in this layer represent antecedent intuitionistic
fuzzy sets for the i-th input attribute xti. To fuzzify the crisp values, the input
attributes are first compared with the membership functions. Here, we use the
Gaussian membership function defined as follows:

µ(xti) = e−
(xti−c)

2

2σ2 , (2)

where c is the center and σ is the width of the membership function. The values
of these parameters are obtained automatically using the subtractive clustering
algorithm [30]. To obtain the intuitionistic fuzzy sets, the following fuzzification
method is used [31]:

µA(xti) = µ(xti)× (1− δD), (3)

νA(xti) = 1− µ(xti)× (1− δD)− δD,where (4)

D = (max(µ(xti), µ(xt−1
i ), . . . , µ(xt−4

i ))−min(µ(xti), µ(xt−1
i ), . . . ,

µ(xt−4
i )))

(5)

and δ is set to 1 in agreement with [31]. Hence, intuitionistic fuzzy sets are given
as A = {〈xti, µA(xti), νA(xti)〉 |xti ∈ Xi }, where Xi is the universe of discourse for
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the i-th input attribute. Note that the fuzzification parameter D considers the
volatility of the last five observations in the time series. Still, this number can
be adapted to the needs of the specific forecasting problem.

If-then rules layer : Neurons in this layer represent the if-then rules of the
first-order Takagi-Sugeno-Kang type. The j-th rule Rj , j = 1, 2, . . . , N , can be
defined as follows:

Rj : if xt1 is A1,j and xt2 is A2,j and . . . and xti is Ai,j and . . . and

xtn is An,jthen yt+hj = a0,j + a1,jx
t
1 + · · ·+ ai,jx

t
i + · · ·+ an,jx

t
n,

(6)

where Ai,j is antecedent intuitionistic fuzzy set for the i-th input attribute xti and
j-th rule Rj , y

t+h
j is the predicted output for the j-th rule, h is the forecasting

horizon, and a0,j , a1,j , . . . , ai,j , . . . , an,j are the consequent parameters.
To calculate the firing weight wj of the j-th rule Rj , Gödel t-norm operators

are used as follows:

wµj = min
j=1,2,...,N

(µA(xt1), µA(xt2), . . . , µA(xtn)), (7)

wνj = max
j=1,2,...,N

(νA(xt1), νA(xt2), . . . , νA(xtn)), (8)

wj = wµj − w
ν
j , (9)

where wµj and wνj denote the membership and non-membership degrees of the
firing weight Wj , respectively. Note that only positive firing weights are consid-
ered (with acceptance degree higher than non-acceptance degree) in agreement
with [32].

Normalization layer : Neurons in this layer calculate the normalized values of
the firing weights wnormj .

Consequent layer : Consequent parameters a0,j , a1,j , . . . , an,j are represented
by neurons in this layer by calculating the outputs of the rules as yt+hj = a0,j +

a1,jx
t
1 + · · ·+ ai,jx

t
i + · · ·+ an,jx

t
n.

Defuzzification layer : One output neuron in this layer calculates the weighted
average of outputs from the preceding layer to obtain the defuzzified forecast as
follows:

yt+hIFWA =

∑N
j=1 y

t+h
j wnormj∑N

j=1 w
norm
j

. (10)

To train the synapse weights of the intuitionistic fuzzy neural network, the
gradient descent algorithm was used due to its stable convergence reported in
earlier studies [23, 29]. The algorithm can be defined as follows:

wi+1 = wi−η∇θJ
(
wi;x

(t); y(t+h)
)
, (11)

where w is synapse weight, η is learning rate, i denotes the iteration index,
J is the objective function (root mean square error (RMSE)), x(t) and y(t+h)

represent the input and output for the t-th observation in the time series.
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3 Model Validation

In this section, we validate the proposed intuitionistic fuzzy neural network for
time series forecasting (IFNN-TS).

3.1 Experimental Setup

The data used in this study are the closing prices of five major metals, namely
gold, silver, palladium, platinum, and rhodium. The dataset covers the period
from 2007 to 2017, including 3,949 trading days. Specifically, daily spot prices in
USD per ounce were collected from the Kitco database. The prices are depicted
in Fig. 2. To evaluate the proposed forecasting model’s robustness, two datasets
were generated for each metal price, the one-day-ahead (daily) and five-day-
ahead (weekly) forecasting. Sequential validation was used by partitioning data
into the training set immediately followed by the testing set in ratio 9:1 following
earlier relevant studies [33]. This is, the first 3,554 samples represented training
data, and the following 395 samples were used as testing data.

Fig. 2. Metal price data.

We followed earlier research [34–36] and consider the technical indicators
of respective metal prices, previous oil price (Brent crude oil price, BRN), ex-
change rate (US Dollar to Chinese Yuan, USDCNY), and news sentiment in-
dicators as input attributes. More precisely, 20-day technical indicators were
calculated, including exponential moving average (EMA, trend-type indicator),
relative strength index (RSI, oscillator-type indicator), and rate of change (ROC,
volatility-type indicator):
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EMAt =
2

21
(SMAt − EMAt−1) + EMAt−1, (12)

RSIt = 100− 100

1 +RS
,ROCt =

Pt − Pt−20

Pt−20
× 100, (13)

where SMAt is 20-day simple moving average, RS is the ratio of smoothed
average of 20-day upward / downward ROC, and Pt is the metal price at day t.

The previous day’s closing prices were used for BRN and USDCNY, and
the data for these inputs were obtained from the MarketWatch database. To
consider the information effects on metal prices, we calculated the intensity of
positive and negative news sentiment using SentiWordNet publicly available at
https://github.com/aesuli/SentiWordNet. The Thomson Reuters newswire ser-
vice was used to obtain the news related to metals for the respective period. In
total, 266,165 news articles were collected, and the mean values of SentiWordNet
sentiment indicators were calculated for each day.

The following state-of-the-art models were considered for comparison:

– ANFIS-GA [37], initialized using the subtractive clustering algorithm with
the same settings as in IFNN-TS and trained using the genetic algorithm
with the parameters adopted from [37].

– INFN-PSO [29], an intuitionistic neuro-fuzzy network trained using particle
swarm optimization. Again, we used the subtractive clustering algorithm to
initialize the parameters of the model and trained it in agreement with the
settings recommended in [29].

– IT2FLS-EKM [38], the interval type-2 fuzzy logic system with the enhanced
Karnik-Mendel algorithm, generated in fuzzy logic toolbox as the interval
type-2 Sugeno FIS and tuned using the gradient descent algorithm.

– ES (exponential smoothing) [39], represented by triple ES (Holt-Winters)
model with smoothing factors of 0.2.

– ARIMA [40], adopting the ARIMA(1,1,0) model found by [40] using the
Hyndman and Khandakar algorithm.

– RF [41], random forest trained using 100 random trees.
– MLP [40], multilayer perceptron NN with the settings adopted from [40] as

follows: one hidden layer of 24 sigmoidal neurons, the momentum of 0.5, and
the learning rate of 0.001.

– LSTM [42], long short-term memory NN with an LSTM layer of 200 neurons
followed by a dense layer of 32 neurons (the structure was adopted from [42])
trained using stochastic gradient descent.

Forecasting performance was evaluated using RMSE and mean absolute error
(MAE) on the testing data separately for the 1-day-ahead and 5-day-ahead fore-
casting horizon. In addition, we present the mean directional accuracy (MDA)
to evaluate the proposed system’s capacity to predict the correct forecast di-
rection (upward or downward) and investigate the financial performance of the
constructed precious metals portfolio in terms of its return and risk. All the
experiments were carried out in the Matlab Fuzzy Logic Toolbox in Matlab
R2020a.



8 P.Hajek, V.Olej et al.

3.2 Experimental Results

First, we used the subtractive clustering algorithm to generate the antecedent
intuitionistic fuzzy sets and the rule base. Note that the use of the subtractive
clustering algorithm to generate the if-then rules enabled us to substantially re-
duce the complexity of the rule base. Experiments were performed for different
values of the radius of influence (resulting in different numbers of antecedent in-
tuitionistic fuzzy sets and rules) to prevent under-fitting and over-fitting. More
precisely, we examined three settings with N = {3, 5, 7} rules and antecedent
intuitionistic fuzzy sets. Due to space limitations, we only show the performance
of IFNN-TS for N=3 and N=5 rules (Table 1) because the performance for N=7
deteriorated substantially. Obviously, N=3 was a preferable setting in terms of
both forecasting accuracy and interpretability at the rule base / fuzzy partition
level. In all experiments, we used the gradient descent algorithm (with 100 iter-
ations and the learning rate η = 0.01) to train the IFNN-TS. For the example
of the gold price, the obtained rule base is as follows:

R1 : if EMAt is medium and RSIt is medium and ROCt is high and BRN t is

low and USDCNY t is medium and POSt is low and NEGt is high then

yt+1
1 = 0.11 + 0.97 × EMAt − 0.09 ×RSIt + 6.18 ×ROCt − 0.17 ×BRN t

+6.82 × USDCNY t + 0.0006 × POSt − 0.04 ×NEGt,

R2 : if EMAt is high and RSIt is low and ROCt is low and BRN t is

high and USDCNY t is low and POSt is high and NEGt is low then

yt+1
1 = 0.06 + 1.06 × EMAt − 0.002 ×RSIt + 11.72 ×ROCt − 1.18 ×BRN t

+1.08 × USDCNY t + 0.003 × POSt + 0.04 ×NEGt,

R3 : if EMAt is low and RSIt is high and ROCt is medium and BRN t is

medium and USDCNY t is high and POSt is medium and NEGt is

medium then yt+1
1 = −0.14 + 0.92 × EMAt + 0.12 ×RSIt − 6.83 ×ROCt

+1.38 ×BRN t − 8.02 × USDCNY t − 0.03 × POSt + 0.04 ×NEGt.

Experimental results in Table 1 show the effectiveness of the proposed IFNN-
TS by comparison with three models of fuzzy neural networks and five other
benchmark forecasting models used previously for metal price prediction. The
results of the comparisons show that IFNN-TS was highly competitive regarding
all metal prices in terms of both forecasting horizons. Best performance in terms
of RMSE was achieved for one-day-ahead forecasting of gold, silver and plat-
inum prices. A non-parametric Friedman test was used to compare the results of
the models statistically. The average ranks of the IFNN-TS models were as fol-
lows: 2.2 for MAE and one-day-ahead forecast, 2.0 for RMSE and one-day-ahead
forecast, 2.0 for MAE and five-day-ahead forecast, and 2.4 for RMSE and five-
day-ahead forecast. Significant differences were observed for the average ranks
of the compared methods at p < 0.05, indicating significantly different perfor-
mance across the error measures and forecasting horizons. In the next step, the
Holm–Bonferroni posthoc procedure was used to compare the performance be-
tween the best forecasting model and the other models. For the one-day-ahead
forecasting, IFNN-TS significantly outperformed ARIMA, ES, RF, MLP, and
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LSTM at p < 0.05. For the five-day-ahead forecasting, IFNN-TS performed sig-
nificantly better than RF, MLP, LSTM, and ANFIS-GA at p < 0.05. These
results were consistent for MAE and RMSE.

Table 1. Results of metal price forecasting (the best result is in bold).

IFNN-TS IFNN-TS ANFIS-GA INFN-PSO IT2FLS-EKM
N=3 rules N=5 rules N=3 rules N=3 rules N=3 rules

Metal Forecast MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
gold 1-day 6.687 9.689 10.248 13.426 7.045 9.994 6.684 9.764 9.731 13.067
gold 5-day 15.408 19.680 18.022 22.962 16.980 21.335 16.058 20.497 18.011 22.820
silver 1-day 0.155 0.223 0.268 0.340 0.175 0.243 0.177 0.246 0.194 0.257
silver 5-day 0.364 0.474 0.435 1.453 0.461 0.602 0.369 0.483 0.379 0.502
palladium 1-day 7.843 10.978 11.617 15.291 7.976 10.997 7.792 10.811 7.993 10.917
palladium 5-day 16.873 21.681 19.973 25.187 19.306 24.697 17.611 22.643 17.365 22.480
platinum 1-day 8.658 11.550 11.830 14.973 8.635 11.579 9.670 12.536 9.698 12.800
platinum 5-day 18.968 25.000 19.973 25.187 21.537 27.881 19.340 25.186 19.468 25.430
rhodium 1-day 16.766 23.574 10.814 21.852 12.605 18.007 13.460 21.996 15.723 22.537
rhodium 5-day 24.100 38.365 22.623 42.414 33.144 47.137 22.204 36.562 24.543 39.459

ES ARIMA RF MLP LSTM
Metal Forecast MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
gold 1-day 16.092 20.665 9.949 12.538 11.434 14.933 10.936 13.697 23.845 26.618
gold 5-day 17.066 21.485 10.747 13.431 18.630 23.104 11.851 14.659 40.757 44.271
silver 1-day 0.376 0.471 0.305 0.377 0.239 0.311 0.422 0.484 0.331 0.386
silver 5-day 0.389 0.499 0.567 0.683 0.369 0.471 0.607 0.674 0.514 0.581
palladium 1-day 19.008 24.491 8.117 10.997 28.084 44.407 13.240 16.733 23.173 28.449
palladium 5-day 18.628 23.833 11.789 15.408 39.000 52.530 19.293 23.892 32.040 40.103
platinum 1-day 19.954 25.342 15.398 18.626 15.986 21.408 18.385 21.249 19.900 25.642
platinum 5-day 20.185 26.426 19.387 23.135 23.957 31.448 24.599 27.542 27.569 35.163
rhodium 1-day 19.948 32.646 35.700 46.425 100.64 126.57 56.930 67.615 65.726 87.358
rhodium 5-day 19.532 35.204 125.17 178.98 104.28 127.36 103.62 120.43 95.874 130.39

In addition to the error measures, we evaluated the performance of the model
in predicting MDA. Fig. 3 shows that IFNN-TS consistently exceeded 55% across
metal prices. Correct forecast of upward/downward direction is important for
generating ‘buy’, ‘hold’ and ‘sell’ signals. Therefore, we further investigated the
financial performance (return and risk) of the precious metals portfolio con-
structed based on signals generated using the IFNN-TS-based trading strategy
(‘buy’ (‘hold’) signal for upward price forecast, and ‘sell’ signal for downward
price forecast). The closing metal prices were used for trading, and the weights
of the five metals in the portfolio were equal. We obtained an average return
of 54.63% (for one-day-ahead forecasting) and 87.91% (for five-day-ahead fore-
casting) for the testing period. The forecasting-based trading strategy was more
profitable than the traditional buy-and-hold strategy (with an average daily re-
turn of 41.29% and weekly return 41.17%). However, it should be noted that our
trading strategy was associated with a higher portfolio risk. The standard devia-
tion of returns was used to calculate the risk, obtaining σ = 6.32% and σ = 7.22%
for the one-day-ahead and five-day-ahead IFNN-TS forecasting strategies, hence
exceeding those for the buy-and-hold strategy (σ = 4.36% and σ = 6.44%).
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Fig. 3. Mean directional accuracy of IFNN-TS.

4 Conclusion

In this study, we proposed an efficient forecasting model that incorporates intu-
itionistic fuzzy sets to consider uncertainty present in the time series volatility
in the fuzzification process. To defuzzify the forecast, an intuitionistic fuzzy
weighted averaging operator was proposed. In the learning process, the model
utilizes the capability of neural networks to minimize forecasting error. Good
interpretability at the fuzzy partition and rule base level is ensured using a
clustering algorithm in the initialization process.

We validated the proposed model using five time series of major metal prices.
The proposed model outperformed existing fuzzy neural networks, but it was
also competitive compared to existing models used for forecasting metal prices.
In addition to low forecasting errors, the model provides investors with an in-
terpretable set of trading rules. Compared with the buy-and-hold strategy, the
trading strategy based on our model directional forecasts achieved a higher av-
erage return (and risk) of the metals portfolio.

A limitation of the proposed model is that a high degree of hesitancy (caused
by high volatility in the time series data) may negatively affect the rules’ firing
weights. Consequently, no matched if-then rules are available in the rule base.
Future research should investigate alternative approaches to generate the rule
base to overcome this limitation, such as evolutionary rule selection. The param-
eters of membership functions and fuzzification could also be adapted in further
investigation. Further research might also explore comparisons with recent time
series forecasting methods such as Bi-LSTM.
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