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Abstract: Hydrotalcites (HTCs) are promising solid base catalysts to produce advanced biofuels by
aldol condensation. Their main potential lies in the tunability of their acid-base properties by varying
their composition. However, the relationship between the composition of hydrotalcites, their basicity,
and their catalytic performance has not yet been fully revealed. Here, we investigate systematically
the preparation of HTCs with the general formula of Mg6M3+

2(OH)16CO3·4H2O, where M3+ stands
for Al, Ga, Fe, and In, while keeping the Mg/M3+ equal to 3. We use an array of analytical methods
including XRD, N2 physisorption, CO2-TPD, TGA-MS, FTIR-ATR, and SEM to assess changes in
the properties and concluded that the nature of M3+ affected the HTC crystallinity. We show that
the basicity of the HTC-derived mixed oxides decreased with the increase in atomic weight of M3+,
which was reflected by decreased furfural conversion in its aldol condensation with acetone. We
demonstrate that all MgM3+ mixed oxides can be fully rehydrated, which boosted their activity
in aldol condensation. Taking all characterization results together, we conclude that the catalytic
performance of the rehydrated HTCs is determined by the “host” MgO component, rather than the
nature of M3+.

Keywords: hydrotalcites; mixed oxides; aldol condensation; basic catalysts

1. Introduction

The Green Chemistry principles aroused a strong interest in the development of solid
base catalysts for important base-catalyzed reaction, such as transesterification, aldol con-
densation, or alkylation [1–9]. The use of solid base catalysts would allow for reducing
the amount of produced waste waters significantly along with simplifying the product
separation and improving the product quality. Magnesium-containing mixed oxides are
among the most studied materials as they can be prepared rather easily by calcination of
the so-called hydrotalcites (HTCs), i.e., hydroxycarbonates with layered structure and the
general formula [M2+

1−xM3+
x(OH)2]b+[An−]b/n·mH2O, where M2+ and M3+ are divalent

and trivalent metal cations, respectively, and A is an interlayer anion, typically carbon-
ate [1,10,11]. Besides Mg, Zn or Ni are used as divalent cations, whereas the trivalent
cations are represented primarily by Al that can be replaced e.g., by Ga or Fe [1,9,12–17].
Due to the so-called memory effect, the mixed oxides having a Lewis-base character can
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be rehydrated to form hydrotalcites in hydroxide form (instead of the carbonate form)
with a Brønsted-base character [2,3,18]. This opens not only a range of the application
possibilities, but also of the fundamental questions relating to the relationship between
their structure and basicity as well as between their physico-chemical properties and
catalytic performance.

The acid–base properties of HTC-based catalysts for organic reactions can be tailored
by isomorphous substitution of Mg and Al cations with various other di- and trivalent
cations [12,13,19]. The basicity of M2+Al hydrotalcites decreased when Mg was replaced
by Zn or Ni which was reflected in the catalytic performance of the HTC-derived materi-
als [19–22]. However, the effect of Al substitution by another M3+ element in the MgM3+

hydrotalcite-like materials on their acid-base properties and catalytic performance has not
yet been systematically described.

Aldol condensation is currently used to synthesize fine chemicals [5,23,24], and it
holds a promising potential for development of sustainable aviation fuels [25–28] and
bio-based monomers [29,30]. In addition, it is a suitable reaction for probing the acid-base
character of catalysts as only the accessible, i.e., catalytically active basic sites can be reached
by the reactants in both mixed oxides and reconstructed hydrotalcites. In contrast, the
common CO2-TPD method is suitable for probing the basic sites only in mixed oxides as the
rehydrated hydrotalcites react with CO2 and are transformed into hydroxycarbonates [16].
Moreover, CO2 can also reach those basic sites that are not accessible to the reactants, i.e.,
sites relevant to CO2 adsorption and storage, but not to catalysis.

The wide variability of the typically used hydrotalcite synthesis protocols including
their activation by calcination yielding mixed oxides and by calcination followed by re-
hydration affording reconstructed hydrotalcites and their use in different reactions under
varying reaction conditions thwart the fundamental evaluation of the specific influence of
the M3+ cation on the structure and activity of the synthesized materials. Therefore, we
have synthesized a series of MgM3+ hydrotalcites with M3+ being Al, Ga, Fe, and In using
the same synthesis procedure and evaluated the derived mixed oxides and reconstructed
hydrotalcites with respect to their physico-chemical properties and catalytic performance
in aldol condensation of furfural and acetone. This allowed us to elucidate the role of
the trivalent cation on the structure, properties, and catalytic performance (including its
stability) of the synthesized materials.

2. Results and Discussion
2.1. Catalyst Synthesis and Characterization

The ICP and XRD results confirmed that the coprecipitation of magnesium nitrate and
the corresponding M3+ nitrate (M3+ being Al, Ga, In, and Fe, respectively) by the alkaline
solution of Na2CO3 and NaOH resulted in the formation of the respective hydrotalcite
with the targeted Mg/M3+ ratio of 3. The ICP results also proved that sodium that could
interfere in the catalytic studies was removed almost completely during washing of the
precipitates. The Na/M3+ atomic ratio was in the range 0.025–0.033 and did not reveal any
dependence on the M3+ nature.

The measured Mg/M3+ atomic ratios are reported in Table 1 together with the calcu-
lated formula of the as prepared hydrotalcites. The calculation was possible as phase pure
hydrotalcite phases characterized by the diffraction lines at 2θ ≈ 11.3◦, 22.5◦, 34.5◦, 39◦,
46◦, 60◦, and 61.5◦ were formed (Figure 1A) without any admixtures being detectable. The
formation of the phase-pure HTC materials suggested an effective substitution of Mg2+

cations in the brucite-Iike layers by M3+ cations (even in case of In3+ with the largest ionic
radius of 0.8 Å) being in line with the previous studies [16,17,31,32].
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Table 1. Mg/M3+ atomic ratios in the as-prepared samples according to ICP results and the proposed HTC formula.

Sample Ionic Radius of M3+, Å * Mg2+/M3+ by ICP
Proposed Chemical

Formula of Prepared Solids
Theoretical Weight Loss

under Calcination

MgAl-AP 0.535 3.0 Mg6Al2(OH)16CO3·4H2O 43.1
MgGa-AP 0.62 2.8 Mg5.6Ga2(OH)15.2CO3·3.8H2O 34.6
MgFe-AP 0.645 2.9 Mg5.8Fe2(OH)15.6CO3·3.9H2O 38.0
MgIn-AP 0.8 2.9 Mg5.8In2(OH)15.6CO3·3.9H2O 32.2

*—from http://abulafia.mt.ic.ac.uk/shannon/ptable.php (Accessed on 2 July 2021).
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Figure 1. XRD patterns of as-prepared (A), calcined (B), and rehydrated (C) MgAl, MgGa, MgFe, and MgIn samples.

Although all as-prepared samples exhibited the hydrotalcite structure, the intensity of
the reflections in the XRD patterns differed significantly (Figure 1) indicating difference
in crystallinity. The crystallinity was evaluated using the area of the signals attributed
to two different basal reflections (003 and 110) and is reported as relative crystallinity
(Table 2). MgGa-AP and MgAl-AP were the most crystalline among the samples with the
crystallinity close to 100%, followed by MgFe-AP and MgIn-AP with the crystallinity of
32–41% (Figure 1A and Table 2). Such a difference in the crystallinity could either reflect
the impact of M3+ cations on the dimensions of HTC platelets and the existence of local
defects in the layered structure or suggest the presence of X-ray amorphous impurities.

http://abulafia.mt.ic.ac.uk/shannon/ptable.php
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Table 2. Crystallinity, lattice parameters, and crystallite size (L(Å)) of the prepared samples.

Sample Relative
CrystalLinity (%)

HTC Basal
Spacing d003, (Å)

Unit Cell a, (Å)
MgO Crystallite Size, L (Å)

d200, (Å) d003 d110 d200 d220

MgAl-AP 98 7.8 3.063 116 188
MgGa-AP * 100 7.81 3.096 153 231
MgFe-AP 32 7.85 3.111 86 143
MgIn-AP 41 7.83 3.178 98 157
MgAl-C 2.089 30 31
MgGa-C 2.107 40 46
MgFe-C 2.119 33 40
MgIn-C 2.141 39 45
MgAl-R 88 7.83 3.061 57 85
MgGa-R 95 7.78 3.088 78 127
MgFe-R 29 7.85 3.103 62 78
MgIn-R 38 7.81 3.172 54 114

*—the sample with the largest crystallinity taken as a reference.

The diffraction lines assigned to (003) and (110) reflections (i.e., at ≈11.3◦ and 60◦) were
used to calculate the basal spacing between the layers (d003) and the unit cell dimension
a (as a = 2d110), respectively. The d003 value increased from 7.80–7.81 Å to 7.83–7.85 Å
with the increase in the ionic radius of M3+ cations (Table 2), which reflected the change
in the thickness of each hydroxide layer due to the change in the charge density of the
layers [33]. The unit cell dimension increased linearly from 3.063 Å to 3.178 Å with the
increase in the M3+ ionic radius (Table 2). Both diffraction lines were used to calculate the
sizes of the crystallites in the direction of the layers stacking (d003) and of the layers plane
(d110). The dimensions are given in Table 2; they correlate well with the relative crystallinity
values, i.e., the larger the crystallinity, the larger the crystallite size (i.e., the size of the
coherent domain).

The hydrotalcite structure of all samples was completely decomposed because of the
calcination at 450 ◦C and the corresponding mixed oxide phase was formed as evidenced by
the diffraction lines at 2θ ≈ 43.0◦ and 62.5◦ (Figure 1B). These reflections are characteristic
for the periclase structure (MgO). Nonetheless, the presence of M3+ cations in the MgO
structure can be deduced from the increase in the MgO basal spacing in the calcined
samples, d200, from 2.089 Å to 2.141 Å with the increasing ionic radius of M3+. It is
noteworthy that the average crystallite size (L) of the MgM-C samples calculated from
d200 and d220 basal reflections was considerably lower than the crystallite size of the
corresponding as-prepared hydrotalcites (Table 2). Unfortunately, the presence of other
plausible phases, in particular spinel and isolated M3+ oxides, can be neither excluded nor
confirmed by the XRD data.

It is well documented that the HTC-derived mixed oxides, when rehydrated, can be
reconstructed to the original hydrotalcite structure. This has been demonstrated mainly
for MgAl materials [18,34–39], but some examples of successful transformation of MgGa,
MgFe, and MgIn mixed oxides to hydrotalcites exist as well [16,17,31,40]. It worth noting
that rehydrated MgIn HTC was previously obtained only by the hydrothermal treatment
of a corresponding MgIn mixed oxide (140 ◦C, 24 h) in Na2CO3 solution [31]. By using the
same rehydration procedure, we have succeeded in transforming all MgM3+ mixed oxides
to the corresponding hydrotalcites as evidenced by the appearance of the characteristic
HTC diffraction lines at 2θ ≈ 11.3, 22.5, 34.5◦, etc. and disappearance of the mixed oxide
diffraction lines at 2θ ≈ 43.0◦ and 62.5◦ (Figure 1C). In particular, the reconstruction of the
MgIn HTC structure by the treatment of MgIn mixed oxide with pure water at ambient
temperature has not yet been reported. A comparison of the diffractograms in Figure 1A,C
shows that the intensities of the XRD reflexes of the rehydrated samples are much smaller
than those of the as prepared hydrotalcites. However, as demonstrated in Table 2, the
relative crystallinity of the rehydrated samples was not significantly lower than that of the
as-prepared hydrotalcites.
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The unit cell size (Table 2) of the rehydrated materials was only slightly lower than
in case of the as prepared HTC, but it preserved its linear dependence on the M3+ ionic
radius. While the crystallinity and unit cell size were preserved, there was a dramatic
decrease in the size of the coherent domains in both directions, i.e., in the stacking (d003)
as well as in the platelet plane (d110) (Table 2). The results indicate that, although the
crystalline structure was reconstructed and the unit cell size was virtually unchanged due
to rehydration, there were some imperfections due to the rehydration process that resulted
in the observed decrease in the crystallite size, i.e., in the coherent domain size. This can
be plausibly explained by the incomplete insertion of the M3+ cations in their original
positions in the brucite-like layers (which is supported by the observed decrease in the unit
cell size) and the formation MgM3+ spinel or M3+ oxide phases that break the structure
periodicity and thus reduce the coherent domain size. Apparently, the extent is rather
small as neither of these phases was detected by XRD, i.e., their coherent domain sizes
were too small.

The visual inspection of prepared materials using SEM revealed differences in the
morphology of the samples due to the differences in the M3+ element and due to the
calcination-rehydration treatments (Figure 2). Regardless of the M3+ cation in the structure,
all AP-HTCs showed a well-developed layered structure with haphazardly oriented and
intergrown platelets (Figure 2). These agglomerates were several micrometers large and
consisted of differently sized platelets (<1 mm). While MgAl-AP and MgGa-AP had well-
shaped platelets (0.3–0.6 and 0.5–0.8 mm, respectively, (Figure 2), the platelets of MgFe-
AP and MgIn-AP were more heterogeneous and layered character was less developed,
particularly in case of MgIn-AP. These observations are in line with the relative crystallinity
data based on XRD (Table 2), i.e., the samples with higher crystallinity have larger and
well-organized platelets.

Upon calcination and calcination followed by rehydration, the size of the agglomerates
did not change significantly, but the shape and degree of heterogeneity increased because
of the rehydration treatment. This is demonstrated on the MgGa-R, i.e., the sample with
the highest crystallinity among rehydrated samples, in Figure 2 (2R) (enlarged image is
available in Figure S1 in the SI). In great contrast to MgGa-AP, the MgGa-R platelets were
crumbled, and their surface was cracked which supports the observed decrease in the
coherent domain size (Table 2). A similar trend was observed for all the MgM3+ rehydrated
materials. Consequently, the individual platelets of MgIn-R could be barely distinguished
(Figure 2).

The textural properties of the AP hydrotalcites reflected the relative crystallinity of
the samples, i.e., the BET surface area decreased linearly with the increasing relative
crystallinity of the AP-HTCs (Tables 2 and 3), and it also decreased with the increasing
crystallite size (d003 and d110) determined from the XRD data (Table 2). A similar trend was
also observed for the total pore volume. The calcination affording mixed oxides resulted in
a tremendous increase in the BET area (2 to 7 times) and total pore volume (1.5 to 3 times)
in comparison with the AP-HTCs (Table 3). Again, the BET surface decreases linearly with
the increasing crystallite size of the mixed oxides (d200 and d220), proving that the crystallite
size (the coherent domain size) is the decisive structural parameter affecting the specific
surface area of both AP-HTCs and mixed oxides.
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Table 3. BET surface of the as-prepared hydrotalcites (AP), derived mixed oxides (C), and rehydrated hydrotalcites (R), as
well as the basic properties of MgM-C samples.

Material
BET Surface Area (m2/g) Pore Volume (cm3/g)

Concentration of Basic
Sites in MgM-C,

µmol/g

Density of Basic Sites
in MgM-C,
µmol/m2

Calculated Ratio
µmolCO2/µmolMg2+

in MgM-C

AP C R AP C R

MgAl 31 222 5 0.094 0.343 0.013 270 1.2 0.015
MgGa 34 164 4 0.095 0.221 0.011 225 1.4 0.017
MgFe 103 185 12 0.275 0.416 0.031 171 0.9 0.012
MgIn 76 134 19 0.196 0.288 0.039 167 1.3 0.015

On the other hand, the calcination followed by rehydration resulted in very low BET
surface areas (<20 m2/g, i.e., only 12–25% of the BET value obtained for the AP-HTCs) of
the MgM-R materials that is in contrast with the decreased crystallite size of the rehydrated
HTCs in comparison with their AP counterparts. Thus, there has to be an additional
parameter affecting the textural properties. The most plausible explanation is the presence
of anions and water molecules in the interlayer space blocking access or the existence of
local defects. This conclusion is supported by the trend among the MgM-R materials where
the materials with larger platelets (as seen on SEM images, Figure 2) have smaller BET area
and total pore volume (Table 3).

The structural changes due to calcination leading to MgM mixed oxides and due
to calcination and rehydration affording MgM rehydrated hydrotalcites were further
corroborated by the FTIR (Figure S2) and TGA-MS (Figure S3) characterization results that
are presented in detail in the SI. The total weight loss observed in the TGA-MS experiments
decreased logically with the increasing atomic weight of the M3+ cation (Figure S3), and it
agreed with the theoretical weight loss calculated from the MgM-AP HTC composition
(Table 1). It can be thus inferred that the AP hydrotalcites are indeed phase pure HTCs
having the composition reported in Table 1. Moreover, the ratio of the weight loss of a
MgM-R to the weight loss of the corresponding MgM-AP was close to unity (Figure S3),
which provides more evidence that nearly complete reconstruction of the HTC structure by
mixed oxide rehydration was achieved independently on the nature of the M3+ cation.

The structural changes in the MgM materials due to differences in composition as well
as calcination and rehydration treatments also affect the number and character of the acid
and base sites that are essential for the catalytic activity of these materials. The number
of basic sites in MgM-C was determined using CO2-TPD (Figure S4 in the SI) and the
results are reported in Table 3. There is a clear increase in the number of basic sites with the
decrease in ionic radius of the M3+ cation. Nonetheless, it has to be noted that the number
of basic sites is given per one gram of the material, i.e., when keeping the atomic ratio of
Mg/M3+ constant, the relative content of Mg in one gram of sample increases with the
decreasing atomic weight of M3+. As a result, the specific Mg content correlates with the
number of basic sites. Thus, when normalizing the number of basic sites per 1 mol of Mg2+

rather than 1 g of mixed oxide, a constant value of 0.015 mmol of basic sites (adsorbed CO2)
per 1 mmol of Mg atoms is obtained (Table 3). In other words, the number of basic sites is a
function of the Mg content per 1 g of material and, thus, the M3+ cation does not contribute
to the basic character and a simple “spacer” between the Mg-related basic sites can be seen.
In addition, the CO2 desorption profiles were virtually identical for all MgM-C materials
which indicated that the strength of CO2 adsorption, i.e., the strength of the basic sites, was
not influenced by the M3+ cation nature (Figure S3 in the SI).

2.2. Catalyst Performance

The changes in the catalyst properties resulting from the replacement of Al3+ by
other M3+ elements as well as due to the calcination and rehydration treatments were
further characterized by their performance in aldol condensation of furfural with acetone.
The basic scheme of aldol condensation of furfural with acetone is shown in Scheme 1.
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In general, furfural (F) reacts with acetone (Ac) forming a hydrated intermediate, 4-(2-
furyl)-4-hydroxybutan-2-one (FAc-OH) that dehydrates giving a first condensation product,
4-(2-furyl)-3-buten-2-one (FAc). The FAc can react with another F resulting in the formation
of 1,4-pentadien-3-one, 1,5-di-2-furanyl (F2Ac) as the second condensation product. The
plausible self-condensation of acetone over mixed oxides was insignificant corresponding
to acetone conversion <2% and thus did not affect the aldol condensation of F with Ac.
Moreover, the catalyst leaching was also excluded following an approach described previ-
ously [41]. The total carbon mass balance including the reactants and the major reaction
products, i.e., FAc-OH, FAc, and F2Ac always exceeded 95%. Heavier reaction products,
most likely due to consecutive condensation reactions, were observed only at high furfural
conversion. Due to their poor identification and low concentration, they were excluded
from the carbon balance calculation.
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Scheme 1. Basic reaction scheme of aldol condensation between furfural with acetone (from [34]).

In preliminary experiments, the catalytic performance of the four as-prepared materials
was evaluated in aldol condensation of furfural and acetone at T = 50 ◦C and acetone:furfural
ratio of 10. Independently from the origin of M3+, furfural conversion was below 1.5% in all
cases, thus proving the absence of a strong basicity in the as-prepared HTCs.

The furfural conversion and selectivity to all three main products at 50 ◦C over MgM-C
mixed oxides are summarized in Figures 3A and 3B, respectively. The initial reaction rate
decreased in order MgAl-C > MgGa-C > MgIn-C > MgFe-C (Figure 3A). After the initial
rapid increase in F conversion (ca. the initial 40 min), the F conversion continued to grow
only moderately, which can be ascribed to the gradual catalyst reaction either due to the
deposition of heavier products formed by consecutive condensation reactions or due to
the specific blockage of basic sites, e.g., by furoic acid formed by Cannizzaro reaction [42].
The initial reaction rate (reflecting the rate of furfural disappearance during initial 10 min,
mmolF·gcat

−1·min−1) increased linearly with an increase in the number of basic sites per
gram in a catalyst demonstrating the role of basic sites (Figure 4A). From the catalyst
synthesis point of view, it follows that smaller M3+ cations are preferred as they allow
for increasing the number of basic sites per gram of catalysts while maintaining the same
Mg/M3+ ratio. The reaction rate data also exhibit positive correlation with the BET surface
area of the calcined samples, thus indicating the importance of the accessibility of the active
sites (Figure 4B). These two positive correlations at the same time suggest that the surface
density of the basic sites (µmol/m2) does not affect to a great extent in the studied range
(0.9–1.4 µmol/m2, Table 3) the reaction rate.
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Figure 3. The dependence of the furfural conversion on the reaction time observed on MgM-C ((A), Treac. = 50 ◦C, molar
ratio F:Ac = 1:10) and MgM-R (C), Treac. = 25 ◦C, molar ratio F:Ac = 1:5) samples. Yield for the reaction products is observed
on MgM-C (B) and MgM-R (D) as a function of the furfural conversion.
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MgM-C samples.
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The selectivity to the main products was virtually identical at a given conversion regard-
less of the nature of the M3+ and the number and concentration of basic sites (Figure 3B). It
can be, thus, inferred that all MgM3+ mixed oxides possessed the same nature of basic
sites, i.e., that MgO provided the basic sites, with a similar strength as seen by TPD results
(Figure S4 in the SI). In conclusion, the M3+ cation determines the number of available basic
sites (per gram of catalyst) in MgM3+ mixed oxides, but it does not affect either the type or
the strength of the basic sites present. Moreover, the linear relationship between the initial
activity and the number of basic sites also indicates that either all basic sites determined by
CO2 desorption or their same percentage in all MgM3+ mixed oxides are accessible to the
reactants and take part in the reaction.

The rehydration of the MgM3+ mixed oxides has resulted in a significant increase in
the aldol condensation rate as documented in Figure 3C. Despite the aldol condensation re-
action using rehydrated HTCs being performed at only 25 ◦C, significantly higher F conver-
sion was obtained than over the MgM3+ mixed oxide catalysts at 50 ◦C (Figure 3A). While
for MgAl materials successful rehydration resulting in the transformation of the Lewis
basic sites into the more intrinsically active Bronsted basic sites is well known [2,34,43,44],
it has been reported only scarcely for MgGa and MgFe materials [16,17,40]. A successful
rehydration of MgIn mixed oxide is reported for the first time and the rehydrated MgIn-R
HTC was even found to be a more efficient catalyst for aldol condensation of F and Ac. In
line with the aldol condensation over mixed oxides reported here and the previous studies
on aldol condensation, the superior performance of the MgIn-R catalyst should be related
to its superior number of accessible basic sites.

Due to the chemical reaction between rehydrated hydrotalcites, i.e., materials in exclu-
sively hydroxy form, with CO2 resulting in the replacement of some hydroxyls and formation
of the more stable and thermodynamically-favored hydroxycarbonates, TPD-CO2 cannot be
used to determine the number of basic sites. Nonetheless, the catalytic data can be used to
compare the number of basic sites in different rehydrated catalysts. The data in Figure 3C
show that the initial reaction rate decreased in the order MgIn ≈ MgAl > MgFe ≈ MgGa.
As with the MgM3+ mixed oxides, the decrease in catalytic activity was observed at longer
reaction times (>40 min) and the final conversion decreased in the order MgIn > MgFe >
MgAl > MgGa (Figure 3C), which can be concluded to be also the order of the number of
accessible basic sites. As in the case of MgM-C catalysts, all MgM-R have also exhibited a
virtually identical selectivity to the main reaction products (Figure 3D). It suggests that the
upon-rehydration created Bronsted basic sites had similar strength distribution, i.e., the
differences in the observed conversion have to be caused by other catalyst properties than
by their base-sites strength.

The inspection of the specific BET surface areas of the rehydrated MgM-R materials
further supports the significantly higher intrinsic catalytic activity of the Bronsted basic
sites than of the Lewis basic sites as the BET area of the rehydrated materials was 7 to
26 times lower (Table 3) than that of their mixed oxide counterparts. Interestingly, the most
severe drop (20- to 26-times lower BET for MgM-R than for MgM-C) was observed for
MgAl and MgGa, i.e., the most crystalline materials. In contrast, the BET decrease only 7- to
13-times for the less crystalline MgFe and MgIn rehydrated catalysts (Table 3). These results
agree with the observed decrease in catalyst activity at longer reaction times (Figure 3C)
as the rehydrated HTC catalysts with the largest BET surface area (MgIn-R and MgFe-R)
exhibited a weaker decrease in the catalyst activity (i.e., a larger difference between the
final conversion and the conversion after ca. 10 min) than MgAl-R and MgGa-R that had a
similar initial activity as MgIn-R and MgFe-R, respectively (Figure 3C). As discussed above,
the textural data (BET area, total pore volume) are further corroborated by the relative
crystallinity results (XRD) and by the HTC platelets size (SEM). In particular, the decreasing
size of the rehydrated HTC platelets corresponds well to the increasing furfural conversion
(Figure 5). This is in line with the findings of Abello et al. [2] who suggested that only
the active sites located at the edges of the platelets were operative in aldol condensations.
As the formation of smaller platelets inherently increases the number of OH− ions near
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the edges, the reconstructed HTCs with a smaller size of HTC platelets should possess
enhanced catalytic activity.
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Figure 5. A correlation between the size of HTC platelets in rehydrated MgM-R20 hydrotalcites
evaluated by SEM and furfural conversion over these catalysts after 180 min of the reaction.

The stability of the MgM3+ catalysts was assessed in the consecutive catalytic cycles
consisting always of calcination, rehydration, and reaction (Figure 6A). All studied MgM-R
catalysts exhibited stable catalytic performance without any obvious significant change in
furfural conversion during the three catalytic cycles (Figure 6A). In fact, in the consecutive
experiments with MgAl-R and MgGa-R, an increase in the conversion of furfural was
observed in comparison with the first experiment, while MgFe-R and MgIn-R maintained
its conversion in the second and third run on the same level (Figure 6A). The catalyst
stability was further supported by the stable yields of all three main reaction products
as a function of furfural conversion independently on the nature of the M3+ cation and
regardless of the number of consecutive runs (Figure 6B). Once again, this shows the
indirect catalytic role of the M3+ cation, i.e., it was not involved directly in the aldol
condensation reaction.
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Figure 6. (A). Furfural conversion in three consecutive cycles [calcination-rehydration-reaction] in the presence of different
MgM-R materials; (B) the yield of reaction products observed in three reaction cycles. Black symbols—FAc-OH, red
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3. Experimental Materials and Methods
3.1. Catalyst Preparation

MgM3+ hydrotalcite (HTC) samples (where M stands for Al, Ga, Fe, and In) with a
Mg/M3+ atomic ratio in a reactive mixture of 3:1 were prepared based on a coprecipitation
method adopted from [34,41]. Mg(NO3)2·6H2O (99.9%, Lach:Ner, Neratovice, Czech Re-
public), Al(NO)3·9H2O (98.8%, Lach:Ner, Czech Republic), Ga(NO)3·xH2O (99.9%, Sigma-
Aldrich, Prague, Czech Republic), Fe(NO)3·9H2O (98%, Sigma-Aldrich) and In(NO)3·xH2O
(99.9%, Sigma-Aldrich) were used to prepare a salt solution, while NaOH (99.6%, Lach:Ner,
Czech Republic) and Na2CO3 (99%, Penta, Czech Republic) were used to prepare an alka-
line solution. An aqueous solution of Mg and M3+ nitrates (total metal ion concentration of
0.5 mol·L−1) was slowly added to 200 mL of redistilled water. The flow rate of the simul-
taneously added alkaline solution of Na2CO3 (0.2 mol·L−1) and NaOH (1 mol·L−1) was
controlled to maintain the reaction pH at the desired value (10.0 ± 0.1). The coprecipitation
was carried out for 3 h under vigorous stirring (450 rpm) at 25 ◦C. The resulting suspension
was then aged at 25 ◦C under stirring for 1.5 h. The precipitate was then filtered, washed
several times with a plenty of distilled water (at least 2 L), and dried for 12 h at room
temperature and then for 12 h at 60 ◦C. Finally, the as-prepared MgM3+ HTCs (further
denoted as MgM-AP) were calcined in static air at 450 ◦C for 3 h in a muffle oven to produce
the corresponding MgM mixed oxides (further denoted as MgM-C) and transferred into a
desiccator at the end of the calcination procedure to avoid contamination by atmospheric
CO2 during cooling. The rehydration of the mixed oxides was performed by their stirring
at 200 RPM in water (0.5 g of freshly calcined material per 100 mL of redistilled water) at
room temperature for 20 min, followed by filtration of the resulting solid (further denoted
as MgM-R) using a Buchner funnel equipped with a vacuum pump. The MgM-R samples
were immediately transferred into a reactor loaded with furfural and acetone to initiate
aldol condensation.

3.2. Physico-Chemical Characterization

The phase composition of the prepared catalysts was determined by X-ray diffraction
using a diffractometer PANanalytical X’Pert3 Powder and CuKα radiation. The XRD
patterns were recorded in a range of 2θ = 5–70◦. The relative crystallinity (%) of the as-
prepared MgM HTCs and rehydrated HTCs was estimated from the area of signals at the
diffraction angle 2θ ≈ 11.5◦ and 23◦ (basal reflections (003) and (006)), and 2θ ≈ 60◦ (basal
reflection (110)). In this case, the sample with the highest crystallinity was used as the
reference. The average size of coherent domains, further referred to as crystallite size (L),
of the prepared materials was estimated from the X-ray line broadening (the values of the
fullwidth at half-maximum) using the Scherrer equation (L = 0.9λ/β cosθ), considering
different basal reflections: (003) and (110) reflections for the as-prepared and rehydrated
HTCs, or (200) and (220) reflections for mixed oxides. The content of Mg2+, M3+, and Na+

in the samples were analyzed by ICP using Agilent 5100 ICP OES.
Nitrogen physisorption was measured at 77 K for calcined catalysts using a static

volumetric adsorption system (TriFlex analyzer, Micromeritics, Norcross, GA, USA). The
samples were degassed at 473 K (12 h) prior to N2 adsorption analysis to obtain a clean
surface. The adsorption isotherms were fitted using the Brunauer–Emmett–Teller (BET)
method for the specific surface area.

All samples were characterized by the FTIR-ATR (Attenuated Total Reflection) tech-
nique. An infrared spectrometer IRAffinity-1 (Shimadzu, Kyoto, Japan) with Quest ATR
accessory with a diamond crystal (Specac, Fort Washington, PA, USA) was used to record
the FTIR spectra. LabSolution IR software (Shimadzu, Kyoto, Japan) was used as an inter-
face between the spectrometer and the control computer. The spectra were recorded in the
4000–400 cm−1 region using the spectral resolution of 2 cm−1.

TGA-MS examination of the as-prepared and rehydrated HTC samples in an N2
atmosphere was performed using TG-DTA Setsys Evolution (Setaram, Caluire, France)
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instrument in the temperature range of 25–700 ◦C (the molecular ions m/z = 18 and 44
were analyzed).

Temperature programmed desorption (TPD) of CO2 was carried out using a Mi-
cromeritics Instrument, AutoChem II 2920. For desorbed CO2 detection, both a thermal
conductivity detector (TCD) and a quadrupole mass spectrometer (MKS Cirrus 2 Analyzer)
with a capillary coupling system were used. A catalyst sample (0.06 g) was placed in a
quartz U-shaped tube. Prior to adsorption of CO2, the catalyst was heated under a helium
flow (30 mL·min−1) up to 450 ◦C and kept at 450 ◦C for 60 min to remove impurities
from the sample. In the following step, the sample was cooled down to an adsorption
temperature of 40 ◦C. Measured pulses of CO2 (pulse volume, 5 mL) were injected into the
helium gas and carried through the catalyst sample until adsorption saturation. Then, the
sample was purged with helium for 60 min to remove physisorbed CO2. Afterwards, the
linear temperature program (10 ◦C min−1) was started at a temperature of 40 ◦C, and the
sample was heated up to a temperature of 600 ◦C. The amount of the desorbed CO2 was
determined by calibration.

The sample morphology was investigated using scanning electron microscopy (SEM)
with an FEG electron gun (FIB-SEM TESCAN LYRA3GMU, Brno, Czech Republic) at the
acceleration voltage of 10 kV. Prior to the SEM measurement, the sample was placed on a
carbon conductive tape and coated by a 5 nm thin gold layer in a sputter coater (Quorum
Q150R S, Emitech SC7640 Sputter Coater, Polaron, Laughton, UK).

3.3. Catalytic Tests

Acetone (99.98%, Penta, Czech Republic) and furfural (99%, Sigma-Aldrich) were used
as reactants in all catalytic experiments.

It was shown in our recent article [45] that acid impurities in furfural could influence
the performance of solids with basic properties in aldol condensation, and that catalyst was
partially spent for the neutralization of the acid impurities. Moreover, a routine distillation
of an as-received furfural had only a temporary effect on the properties of a furfural source,
which was readily re-oxidized and became acidic even if stored in a dark place at decreased
temperature. Therefore, it was difficult to maintain the stability and reproducibility of
the performance of basic catalysts in aldol condensation. Thus, in the present study,
an as-received furfural was first distilled using a vacuum rotator-evaporator and then
stabilized by 2,6-di-tert-butyl-4-methylphenol (DBMP, 99%, Sigma-Aldrich) using weight
ratio DBMP/Furfural = 0.04). In separate experiments, it was established that the addition
DBMP to furfural preserved the properties of furfural as a reagent for aldol condensation
for at least 3–4 weeks, which was visually observed by the absence of darkening of this
compound during storage. On the other hand, DBMP did not influence the performance of
neither mixed oxides nor rehydrated HTCs catalysts in aldol condensation.

Aldol condensation of the stabilized furfural with acetone was carried out in a 100 mL
stirred batch reactor (a glass flask reactor) at a temperature of either 50 ◦C in case of
mixed oxides or 25 ◦C in case of rehydrated HTCs at ambient pressure. The mixture of
either 37.9 g of acetone and 6.27 g of furfural (acetone to furfural molar ratio 10:1) or
18.95 g of acetone and 6.27 g of furfural (acetone to furfural molar ratio 5:1) was used for
experiments with the mixed oxides or the rehydrated HTCs correspondingly. The catalyst
used in the experiments was prepared on the basis of 1 g of an as-prepared hydrotalcite,
which corresponded to 0.6 to 0.7 g of calcined catalyst (mixed oxide). Prior to the catalytic
tests, the reaction mixture was stirred at 400 rpm and stabilized at reaction temperature.
The loss of acetone during the catalytic experiments was prevented by using a cooler–
condenser above the reactor. After that, the necessary amount of MgM-C (a mixed oxide
powder, freshly calcined in a muffle oven at 450 ◦C and stored in a desiccator) or MgM-R
(a freshly rehydrated HTC, filtered with Buchner funnel) was added, and the reaction
was carried out for 180 min at 400 rpm. It was previously established that the reaction
was limited neither by external nor internal mass transfer under the chosen reaction
conditions (in tests with changing stirring rate and catalyst particle size [34]). Liquid
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reaction products were periodically withdrawn from the reactor during the experiment,
centrifugated, filtered, diluted with methanol (1:25 by volume), and analyzed by Agilent
7820 GC unit equipped with a flame ionization detector (FID), using a HP-5 capillary
column (30 m/0.32 mm ID/0.25 µm). Catalytic results on aldol condensation of furfural
and acetone were described by conversion and selectivity parameters that were calculated
as follows [34,41]:

Reactant conversion (t) (mol%) = 100 × (reactantt=0 − reactantt=t)/reactantt=0, where t
stands for reaction time

Selectivity to product i = 100 × (mole of reactant converted to product i)/(total moles
of reactant converted)

Carbon balance was monitored in all experiments as the total number of carbon atoms
detected in each organic compound with Cn atoms (where n = 3, 5, 8, . . . , etc.) divided by
the initial number of carbon atoms in the F + Ac feed:

C balance (%) = (3 mol C3 + 5 mol C5 . . . + nmol Cn)/(3 mol C3(t = 0) + 5 mol C5(t = 0)).
Each catalytic experiment was repeated several (at least 3) times to prove the repro-

ducibility of the obtained results (with experimental error evaluated as ±5%).

4. Conclusions

To elucidate the impact of the nature of M3+ cation in MgM3+ hydrotalcites (HTCs)
on the physico-chemical properties and the catalytic performance of the corresponding
mixed oxides and rehydrated HTCs, four samples of MgM3+ HTCs (M = Al, Ga, Fe, In)
were prepared by a precipitation method using the same synthesis protocol. XRD data
evidenced that the as-prepared materials were phase-pure HTCs, nevertheless with varied
crystallinity. The characterization of the as-prepared samples indicated that the observed
difference in the crystallinity could be explained by the difference in their crystallite size,
defectiveness, and intergrowth of the layered structure, rather than by the presence of
an amorphous phase. The CO2-TPD study showed that the concentration of the basic
sites in MgM3+ mixed oxides differed, and it gradually decreased with the growth in the
atomic weight of the M3+ element. Nevertheless, all mixed oxides had almost the same
distribution of the basic site strengths. Interestingly, when the total amount of adsorbed
CO2 was expressed per MgO site, it was the same within the experimental error for all
studied mixed oxides. Accordingly, the catalytic performance of the mixed oxides in aldol
condensation of furfural and acetone was determined by their basic characteristics. The
used 20 min rehydration of the mixed oxides resulted in almost complete (>90%) recovery
of the HTC structure with crystallinity values close to those for the as-prepared HTCs.
To the best of our knowledge, the successful formation of rehydrated MgIn HTC using
pure water at ambient temperature was reported here for the first time. The SEM study
evidenced that the rehydration of the mixed oxides resulted in the formation of crystals
with irregular and defective lamellar structure, which could explain the slightly decreased
crystallinity and the decreased crystallite size of the rehydrated HTCs. The activity of all
rehydrated MgM3+ HTCs in aldol condensation of furfural and acetone was much higher
compared to that of the mixed oxides. Moreover, the difference in furfural conversion
observed between the four rehydrated HTCs was obvious, but the observed trend in the
activity of the catalysts correlated neither with their crystallinity nor with the atomic weight
of the M cation nor with the concentration of the basic sites in the mixed oxides used as
precursors. This pointed to the existence of additional factors, for example, the influence
of the rehydration conditions that could determine the amount of accessible active sites
in these materials and, as a consequence, their catalytic performance. A series of three
consecutive experiments with the same catalyst loading demonstrated that the activity
of the rehydrated MgM3+ catalysts in aldol condensation was fully restored after their
separation from the reaction mixture, followed by re-calcination and re-rehydration steps.
The performed experiments suggest that the rehydrated MgM3+ materials (M = Al, Ga, Fe,
In) possess comparable catalytic performance in aldol condensation of furfural and acetone
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in terms of activity, selectivity, and stability, being apparently determined by the properties
of the “host” component, i.e., magnesium oxide.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/catal11080992/s1.
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