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Abstract 

The dissertation deals with the mathematical modeling and numerical analysis of 
dialysis accompanied by a second-order chemical reaction that takes place in the 
membrane or in the stripping solution. The study of dialysis accompanied by a chemical 
reaction in the membrane makes use of the analogy with the process of absorption with 
chemical reaction. The effect of the chemical reaction on the transport rate of a solute 
in the membrane is quantified in terms of the enhancement factor. The work also 
includes the comparison of approximate solutions for the enhancement factor available 
in the literature for the case of absorption accompanied by a fast irreversible 
second-order reaction with the results of the exact numerical solution. A continuous 
counter-current arrangement was chosen for the study of dialysis accompanied by 
a chemical reaction in the stripping solution. The effect of a chemical reaction on the 
extraction ratio of the transported solute in a dialyzer was studied with the use of the 
rigorous mathematical model of a continuous counter-current dialyzer and the simplified 
model based on the utilization of the concept of the enhancement factor. 

Abstrakt 

Disertační práce se zabývá matematickým modelováním a numerickou analýzou 
dialýzy, která je doprovázena chemickou reakcí druhého řádu probíhající v membráně 
nebo stripovacím roztoku. Studium dialýzy doprovázené chemickou reakcí v membráně 
je založeno na využití analogie s procesem absorpce s chemickou reakcí. Vliv chemické 
reakce na rychlost transportu složky membránou je kvantifikován pomocí reakčního 
faktoru. Součástí práce je také porovnání přesnosti přibližných řešení pro reakční faktor 
publikovaných v literatuře pro případ absorpce doprovázené rychlou nevratnou reakcí 
druhého řádu s výsledky přesného numerického řešení. Pro studium dialýzy 
doprovázené chemickou reakcí ve stripovacím roztoku bylo zvoleno kontinuální 
protiproudé uspořádání. Vliv chemické reakce na účinek dialyzéru byl studován 
s využitím exaktního matematického modelu kontinuálního protiproudého dialyzéru 
a zjednodušeného modelu založeného na využití konceptu reakčního faktoru. 
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Introduction 
Dialysis belongs to the group of membrane separation processes, which are based on the 
utilization of semipermeable membranes. In dialysis, the transport of solutes through 
the membrane takes place as a consequence of a concentration difference between 
solutions on both sides of the membrane. The main advantage of dialysis are low energy 
requirements for separation, which is related to the fact that the separation is not 
accompanied by a phase change and the process is usually carried out at common 
temperatures and pressures. The main disadvantage of dialysis is a generally low 
intensity of solute transport through the membrane, which is related to the fact that the 
mass transfer is controlled by diffusion of components inside the membrane and the sole 
driving force, i.e., the concentration difference, is often relatively low. 

The mass transfer rate can be increased by the addition of a reactive component into the 
stripping solution, which chemically reacts with the component transported through the 
membrane. The chemical reaction can take place in the membrane or in the stripping 
solution. Practical applications of this concept include dialysis of phenols and anilines 
into the stripping solutions containing sodium hydroxide or inorganic acids, 
respectively, using nonporous hydrophobic membranes [1–5] and neutralization dialysis 
of carboxylic acids [6, 7], phenol [6, 8] and glycine [9] into the stripping solutions 
containing sodium hydroxide using anion-exchange membranes. 

Mass transfer processes accompanied by chemical reactions have received a lot of 
interest from researchers. Up to now, most attention has been paid to the mass transfer 
in gas–liquid systems accompanied by a reaction in a liquid film, namely reactive 
absorption. The effect of a chemical reaction on the mass transfer rate has been 
traditionally expressed in terms of the enhancement factor 𝐸, which is defined as the 
ratio of the mass transfer rate in the presence of a chemical reaction to that in the absence 
of a chemical reaction under otherwise identical conditions. Exact analytical solution of 
these models is available only for a limited number of cases, e.g., for first-order 
or instantaneous reactions. However, a number of approximate analytical solutions are 
available in the literature for the enhancement factor for absorption accompanied by 
a chemical reaction. 

The first part of the doctoral dissertation deals with absorption accompanied by an 
irreversible second-order reaction. Here, a thorough review of the existing approximate 
analytical solutions for the enhancement factor is presented. The second part deals with 
dialysis accompanied by an irreversible second-order reaction that takes place in the 
membrane. A simple scheme, in which component A is transported through a nonporous 
membrane by diffusion and reacts with component B diffusing in the opposite direction, 
is considered. Approximate analytical solutions for the enhancement factor are 
developed based on the analysis of limiting cases and the analogy between the mass 
transfer in the membrane in case of dialysis and that in the liquid film in  case of 
absorption, both accompanied by an irreversible second-order reaction. The third part 
deals with continuous counter-current dialysis accompanied by a second-order reaction 
(both irreversible and reversible) that takes place in the stripping solution. The 
enhancement in the extraction ratio of the transported component due to  a chemical 
reaction in the stripping solution is analyzed here. 
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1. Current state of research 

1.1 Absorption accompanied by irreversible second-order reaction 

Many industrial processes involve reactive absorption, in which mass transfer of the 
absorbed component through the gas–liquid interface is followed by a chemical reaction 
in the liquid phase. The chemical reaction can significantly enhance the rate of 
absorption and increase the capacity of absorbent compared to physical absorption. 
Three mass transfer theories have been traditionally employed to describe mass transfer 
in gas–liquid systems accompanied by a chemical reaction, namely the film, penetration 
and surface renewal theories [10, 11]. Although the film theory represents a rather 
simplified model, its applicability for description of mass transfer in gas–liquid system 
has been proven many times and due to its simplicity, this theory is still preferred by 
many researchers [12, 13]. 

For mass transfer in gas–liquid systems accompanied by an irreversible second-order 
reaction A ൅ ν୆B → ν୔P, the steady-state differential mass balance of the reacting 
components in the liquid film at the gas–liquid interface based on the film theory can be 
written as follows: 

 
𝐷୅

dଶ𝑐୅

d𝑥ଶ െ 𝑘ଶ𝑐୅𝑐୆ ൌ 0 (1)

 
𝐷୆

dଶ𝑐୆

d𝑥ଶ െ 𝜈୆𝑘ଶ𝑐୅𝑐୆ ൌ 0 (2)

where 𝐷௜ is the diffusion coefficient and 𝑐௜ is the molar concentration of the respective 
component in the liquid film (𝑖 = A, B), 𝑥 is the spatial coordinate, 𝑘ଶ is the second-order 
reaction rate constant and 𝜈୆ is the stoichiometric coefficient. The boundary conditions 
for Eqs (1) and (2) are 

 𝑥 ൌ 0: 𝑐୅ ൌ 𝑐୅,଴ 
d𝑐୆

d𝑥
ൌ 0 (3a,b)

 𝑥 ൌ δ୐: 𝑐୅ ൌ 0 𝑐୆ ൌ 𝑐୆,ஔ (4a,b)

where 𝑐୅,଴ is the concentration of component A at the gas–liquid interface, 𝑐୆,ஔ is the 
bulk concentration of component B and δ୐ is the thickness of the liquid film. The 
boundary condition (3b) assumes that component B is present solely within the liquid 
phase and cannot pass through the gas–liquid interface. The boundary condition (4a) 
assumes that component A is completely consumed within the liquid film (fast reaction 
regime). Introducing the dimensionless spatial coordinate 𝑋 ൌ 𝑥 δ୐⁄  and relative 
concentrations of both reacting components in the liquid film ሾAሿ ൌ 𝑐୅ 𝑐୅,଴⁄  and 
ሾBሿ ൌ 𝑐୆ 𝑐୆,ஔ⁄ , Eqs (1) and (2) can be transformed into the dimensionless forms 

 dଶሾAሿ

d𝑋ଶ െ 𝐻𝑎ଶሾAሿሾBሿ ൌ 0 (5)

 dଶሾBሿ

d𝑋ଶ െ
𝐻𝑎ଶ

𝐸ଶ
ஶ െ 1

ሾAሿሾBሿ ൌ 0 (6)



7 

In Eqs (5) and (6), 𝐻𝑎 denotes the dimensionless Hatta number and 𝐸ଶ
ஶ denotes the 

enhancement factor corresponding to an instantaneous irreversible second-order 
reaction A ൅ ν୆B → ν୔P that takes place in the liquid film 

 
𝐻𝑎 ൌ δ୐ඨ

𝑘ଶ𝑐୆,ஔ

𝐷୅
 𝐸ଶ

ஶ ൌ 1 ൅
𝐷୆𝑐୆,ஔ

ν୆𝐷୅𝑐୅,଴
 (7a,b)

The transformed boundary conditions become 

 
𝑋 ൌ 0: ሾAሿ ൌ 1 

dሾBሿ

d𝑋
ൌ 0 (8a,b)

 𝑋 ൌ 1: ሾAሿ ൌ 0 ሾBሿ ൌ 1 (9a,b)

Exact analytical solution of Eqs (5) and (6) with boundary conditions (8a,b) and (9a,b) 
in terms of the enhancement factor is only available for several limiting cases: 

 Very slow reaction – enhancement factor 𝐸ଶ ൌሶ 1 

 Instantaneous reaction – enhancement factor 𝐸ଶ
ஶ given by Eq. (7b) 

 Pseudo-first-order reaction – enhancement factor for the film theory (𝐸ଵ,୤୧୪୫), 
surface renewal theory (𝐸ଵ,ୱି୰) and penetration theory (𝐸ଵ,୮ୣ୬) given as follows 
[10]: 

 
𝐸ଵ,୤୧୪୫ ൌ

𝐻𝑎
tanh 𝐻𝑎

 𝐸ଵ,ୱି୰ ൌ ඥ1 ൅ 𝐻𝑎ଶ (10a,b)

 
𝐸ଵ,୮ୣ୬ ൌ ቀ𝐻𝑎 ൅

π
8𝐻𝑎

ቁ erf ൬
2𝐻𝑎

√π
൰ ൅

1
2

exp ቆെ
4𝐻𝑎ଶ

π
ቇ (11)

As no analytical solution exists for a general case of an irreversible second-order 
reaction, an effort has been made in the past to derive approximate expressions for the 
enhancement factor in order to avoid the necessity of numerical solution of differential 
equations (5) and (6) with boundary conditions (8a,b) and (9a,b). These approximate 
analytical solutions are presented in Tab. 1. 

The literature review has revealed that despite the big effort devoted to the development 
of the approximate solutions, only limited attention had been paid to evaluation of the 
accuracy of these approximate solutions. De Santiago and Farina [18] presented 
a numerical solution of Eqs (5) and (6) with boundary conditions (8a,b) and (9a,b) and 
provided the values of the enhancement factor for 54 combinations of parameters 𝐻𝑎 
and 𝐸ଶ

ஶ, out of which 25 combinations fall into the regions governed by limiting cases, 
i.e., instantaneous and pseudo-first-order reactions for 𝐻𝑎 ൐ 10 ൈ 𝐸ଶ

ஶ and 
𝐻𝑎 ൏ 0.1 ൈ 𝐸ଶ

ஶ, respectively. Wellek et al. [22] used the values of the enhancement 
factor previously published by de Santiago and Farina for evaluation of accuracy of their 
own approximate solution and eight approximate solutions available in the literature at 
that time (see Tab. 1). Such an evaluation was not performed for the approximate 
solutions of Karlsson and Bjerle [23] and Last and Stichlmair [24] as these were 
compared with the results of the approximate solution of van Krevelen and 
Hoftijzer [14] only. 
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Tab. 1: Overview of approximate analytical solutions for enhancement factor for irreversible 
second-order reaction 

Author Expression 
 

Form 
Model a) 
Limitation 

van Krevelen and 
Hoftijzer [14] (1948) 𝐸ଶ ൌ

γ
tanh γ

, where γ ൌ 𝐻𝑎ඨ
𝐸ଶ

ஶ െ 𝐸ଶ

𝐸ଶ
ஶ െ 1

 
Implicit 
Film 
None 

Hikita and Asai [15] 
(1964) 𝐸ଶ ൌ ൬γ ൅

π
8γ

൰ erf ൬
2γ

√π
൰ ൅

1
2

exp ቆെ
4γଶ

π
ቇ , 

 

where   γ ൌ 𝐻𝑎ඨ
𝐸ଶ

ஶ െ 𝐸ଶ

𝐸ଶ
ஶ െ 1

 

Implicit 
Penetration 
None 

Porter [16] (1966) 
𝐸ଶ ൌ 1 ൅ ሺ𝐸ଶ

ஶ െ 1ሻ ቈ1 െ exp ቆെ
𝐻𝑎 െ 1
𝐸ଶ

ஶ െ 1
ቇ቉ 

Explicit 
N/A 
𝐻𝑎 ൐ 2 

Yeramian et al. [17] 
(1970) 𝐸ଶ ൌ െ

𝐸ଵ
ଶ

2ሺ𝐸ଶ
ஶ െ 1ሻ

൅ ඨ
𝐸ଵ

ସ

4ሺ𝐸ଶ
ஶ െ 1ሻଶ ൅

𝐸ଶ
ஶ𝐸ଵ

ଶ

𝐸ଶ
ஶ െ 1

 
Explicit 
All b) 
None 

de Santiago and 
Farina [18] (1970) 𝐸ଶ ൌ െ

𝐻𝑎ଶ

2ሺ𝐸ଶ
ஶ െ 1ሻ

൅ ඨ
𝐻𝑎ସ

4ሺ𝐸ଶ
ஶ െ 1ሻଶ ൅

𝐻𝑎ଶ

𝐸ଶ
ஶ െ 1

൅ 𝐻𝑎ଶ 
Explicit 
Film 
𝐸ଶ ൐ 3 

Kishinevskii et al. 
[19] (1971) 

𝐸ଶ ൌ 1 ൅
𝐻𝑎
α

ൣ1 െ exp൫െ0.65 𝐻𝑎√α൯൧ , 
 

where   α ൌ
𝐻𝑎

𝐸ଶ
ஶ െ 1

൅ exp ቆ
0.68
𝐻𝑎

െ
0.45 𝐻𝑎
𝐸ଶ

ஶ െ 1
ቇ 

Explicit 
N/A 
None 

DeCoursey [20] 
(1974) 𝐸ଶ ൌ െ

𝐻𝑎ଶ

2ሺ𝐸ଶ
ஶ െ 1ሻ

൅ ඨ
𝐻𝑎ସ

4ሺ𝐸ଶ
ஶ െ 1ሻଶ ൅

𝐸ଶ
ஶ𝐻𝑎ଶ

𝐸ଶ
ஶ െ 1

൅ 1 
Explicit 
Surf. renewal 
None 

Baldi and Sicardi [21] 
(1975) 𝐸ଶ ൌ 1 ൅ ሺ𝐸ଶ

ஶ െ 1ሻ ቈ1 െ exp ቆെ
√1 ൅ 𝐻𝑎ଶ െ 1

𝐸ଶ
ஶ െ 1

ቇ቉ 
Explicit 
N/A 
None 

Wellek et al. [22] 
(1978) ൬

1
𝐸ଶ െ 1

൰
ଵ.ଷହ

ൌ ቆ
1

𝐸ଶ
ஶ െ 1

ቇ
ଵ.ଷହ

൅ ൬
1

𝐸ଵ െ 1
൰

ଵ.ଷହ

 
Explicit 
Film 
None 

Karlsson and Bjerle 
[23] (1980) 𝐸ଶ ൌ

ൣ𝐻𝑎ିଷ ଶ⁄ ൅ ሺ𝐸ଶ
ஶሻିଷ ଶ⁄ ൧

ିଶ ଷ⁄

tanhሾ𝐻𝑎ିଷ ଶ⁄ ൅ ሺ𝐸ଶ
ஶሻିଷ ଶ⁄ ሿିଶ ଷ⁄  

Explicit 
Film 
𝐸ଶ

ஶ ൐ 2 

Last and Stichlmair 
[24] (2002) 𝐸ଶ ൌ ቎

1 െ 1
𝐸ଶ

ஶൗ

𝐻𝑎ଷ ଶ⁄ ൅
1

ሺ𝐸ଶ
ஶሻଷ ଶ⁄ ቏

ିଶ ଷ⁄

 

Explicit 
N/A 
𝐻𝑎 ൐ 2 

a) As defined by original authors 
b) Based on expression for E1 used 
N/A Not specifically mentioned or ambiguous 
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1.2 Dialysis accompanied by irreversible second-order reaction in membrane 

Mass transfer through dialysis membranes is usually described by the solution–diffusion 
model [25, 26]. According to this model, transported components dissolve in the 
membrane material and diffuse down a concentration gradient. As the mass transfer 
is controlled by diffusion of components inside the membrane, the separation process is 
generally very slow. The mass transfer rate can be increased by the addition of a reactive 
component into the stripping solution, which chemically reacts with the component 
transported through the membrane. Here, transport of component A is assumed through 
a nonporous membrane from the feed solution (compartment I) to the stripping solution 
(compartment II), which reacts with component B diffusing in the opposite direction 
according to an irreversible second-order reaction A ൅ ν୆B → ν୔P that takes place in the 
membrane. The steady-state differential mass balance of the reacting components in 
the membrane can be written as follows: 

 
𝐷୅୑

dଶ𝑐୅୑

d𝑥ଶ െ 𝑘ଶ𝑐୅୑𝑐୆୑ ൌ 0 (12)

 
𝐷୆୑

dଶ𝑐୆୑

d𝑥ଶ െ ν୆𝑘ଶ𝑐୅୑𝑐୆୑ ൌ 0 (13)

where 𝐷௜୑ is the diffusion coefficient and 𝑐௜୑ is the molar concentration of the 
respective component in the membrane (𝑖 = A, B), 𝑥 is the spatial coordinate, 𝑘ଶ is the 
second-order reaction rate constant and ν୆ is the stoichiometric coefficient. Eqs (12) and 
(13) are formally identical to Eqs (1) and (2) that describe mass transfer in gas–liquid 
systems accompanied by an irreversible second-order reaction in the liquid film, though 
the boundary conditions are different. General boundary conditions for Eqs (12) and 
(13) can be written as  

 𝑥 ൌ 0:  𝑐୅୑ ൌ Ψ୅
୍ 𝑐୅

୍  𝑐୆୑ ൌ Ψ୆
୍ 𝑐୆

୍  (14a,b)

 𝑥 ൌ δ୑:  𝑐୅୑ ൌ Ψ୅
୍୍𝑐୅

୍୍ 𝑐୆୑ ൌ Ψ୆
୍୍𝑐୆

୍୍ (15a,b)

where Ψ௜
௝ (𝑖 = A, B; 𝑗 = I, II) is the partition coefficient, 𝑐୅

୍  and 𝑐୆
୍୍ are the bulk 

concentrations and δ୑ is the membrane thickness. In case of a fast reaction, the 
concentration of the transported component in the stripping solution and that of the 
reactive component in the feed may become negligible and the boundary conditions for 
Eqs (12) and (13) become 

 𝑥 ൌ 0: 𝑐୅୑ ൌ Ψ୅
୍ 𝑐୅

୍  𝑐୆୑ ൌ 0 (16a,b)

 𝑥 ൌ δ୑: 𝑐୅୑ ൌ 0 𝑐୆୑ ൌ Ψ୆
୍୍𝑐୆

୍୍ (17a,b)

Nagy [26] presented a quasi-analytical solution of Eqs (12) and (13) with general 
boundary conditions (14a,b) and (15a,b), which consists in dividing the membrane into 
sublayers and assuming the concentration of the other reactant to be constant in each 
sublayer. Eqs (12) and (13) can then be solved analytically. However, this approach does 
not provide any significant advantage over conventional numerical solution methods for 
the boundary value problems. 
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Introducing the dimensionless spatial coordinate 𝑋 ൌ 𝑥 δ୑⁄  and relative concentrations 
of both reacting components in the membrane ሾA୑ሿ ൌ 𝑐୅୑ Ψ୅

୍ 𝑐୅
୍⁄  and 

ሾB୑ሿ ൌ 𝑐୆୑ Ψ୆
୍୍𝑐୆

୍୍⁄ , Eqs (12) and (13) can be transformed into the dimensionless forms 

 dଶሾA୑ሿ

d𝑋ଶ െ 𝐻𝑎୑
ଶ ሾA୑ሿሾB୑ሿ ൌ 0 (18)

 dଶሾB୑ሿ

d𝑋ଶ െ
𝐻𝑎୑

ଶ

𝐸ଶ୑
ஶ െ 1

ሾA୑ሿሾB୑ሿ ൌ 0 (19)

In Eqs (18) and (19), 𝐻𝑎୑ denotes the dimensionless Hatta number and 𝐸ଶ୑
ஶ  denotes the 

enhancement factor corresponding to an instantaneous irreversible second-order 
reaction A ൅ ν୆B → ν୔P that takes place in the membrane 

 
𝐻𝑎୑ ൌ δ୑ඨ

𝑘ଶΨ୆
୍୍𝑐୆

୍୍

𝐷୅୑
 𝐸ଶ୑

ஶ ൌ 1 ൅
𝐷୆୑Ψ୆

୍୍𝑐୆
୍୍

ν୆𝐷୅୑Ψ୅
୍ 𝑐୅

୍  (20a,b)

The transformed boundary conditions in case of a fast reaction become 

 𝑋 ൌ 0: ሾA୑ሿ ൌ 1 ሾB୑ሿ ൌ 0 (21a,b)

 𝑋 ൌ 1: ሾA୑ሿ ൌ 0 ሾB୑ሿ ൌ 1 (22a,b)

Exact analytical solution of Eqs (18) and (19) with boundary conditions (21a,b) and 
(22a,b) in terms of the enhancement factor is only available for the limiting cases of 
a very slow reaction (𝐸ଶ୑ ൌሶ  1) and an instantaneous reaction (𝐸ଶ୑

ஶ  given by Eq. (20b)). 
Furthermore, an additional limiting case can be considered that is characterized by linear 
concentration profile of reactive component B in the membrane (ሾB୑ሿ ൌ 𝑋). The 
corresponding differential mass balance of component A in the dimensionless form can 
be written as 

 dଶሾA୑ሿ

d𝑋ଶ െ 𝐻𝑎୑
ଶ ሾA୑ሿ𝑋 ൌ 0 (23)

together with the boundary conditions 

 𝑋 ൌ 0: ሾA୑ሿ ൌ 1 (24)

 𝑋 ൌ 1: ሾA୑ሿ ൌ 0 (25)

This case can be regarded as a limiting case of a general second-order reaction that is 
analogous to the case of the pseudo-first-order reaction in the liquid film in reactive 
absorption. The corresponding expression for the enhancement factor 𝐸ଵ୑

ஶ  valid for high 
values of the Hatta number has been derived and published in paper [27] as follows: 

 𝐸ଵ୑
ஶ ൌ 0.729 ൈ 𝐻𝑎୑

ଶ ଷ⁄  (26)

1.3 Counter-current dialyzer with chemical reaction in stripping solution 

A simple mathematical model of a counter-current dialyzer of rectangular cross-section 
is based on the assumption of a constant volumetric flow rate and plug flow of liquid in 
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each compartment with negligible solvent flux and ultrafiltration through the membrane. 
The assumption of plug flow in this type of equipment was proved in earlier study by 
Palatý and Žáková [28]. The balance scheme of a counter-current dialyzer in case of 
transport of a single solute (component A) through the membrane from compartment I 
to compartment II is depicted in Fig. 1. 

z ൌ zTz ൌ 0

M

I

II

z z ൅ dz

dz

JA

A

V  , cA,out

.
II II

V  , cA,in

.
I I

V  , cA,out

.
I I

V  , cA,in

.
II II

 

Fig. 1: Balance scheme of counter-current dialyzer 
 

The differential mass balance of the transported component in both compartments can 
be derived as follows: 

 d𝑐୅
୍

d𝑧
ൌ െ𝐽୅

𝐴

𝑉ሶ ୍𝑧୘
 

d𝑐୅
୍୍

d𝑧
ൌ െ𝐽୅

𝐴

𝑉ሶ ୍୍𝑧୘
 (27a,b)

where 𝑐୅
௝  is the molar concentration of component A and 𝑉ሶ ௝ is the volumetric flow rate 

of liquid in the respective compartment (𝑗 = I, II), 𝑧 is the spatial coordinate, 𝐽୅ is the 
molar flux of component A through the membrane, 𝐴 is the membrane area and 𝑧୘ is 
the height of the compartment. The simplest way to express the molar flux of component 
A is based on the overall dialysis coefficient 𝐾୅ as follows: 

 𝐽୅ ൌ 𝐾୅ሺ𝑐୅
୍ െ 𝑐୅

୍୍ሻ (28)

For the transport of solute A, the extraction ratio ε can be defined as 

 
ε ൌ

𝑐୅,୧୬
୍ െ 𝑐୅,୭୳୲

୍

𝑐୅,୧୬
୍ െ 𝑐୅,୧୬

୍୍  (29)

The extraction ratio represents the actual achieved concentration change of 
component A in the feed solution as a fraction of the maximum attainable concentration 
change. If the fresh stripping solution is free of component A (𝑐୅,୧୬

୍୍  = 0), the extraction 
ratio becomes identical with the recovery fraction of component A from the feed. The 
expression for the extraction ratio for a counter-current dialyzer can be derived as [29] 

 
ε ൌ

1 െ eିே౪ሺଵି௓ሻ

1 െ 𝑍 eିே౪ሺଵି௓ሻ (30)

where 𝑁୲ ൌ 𝐾୅𝐴 𝑉ሶ ୍⁄  is the dimensionless parameter referred to as the number of transfer 
units and 𝑍 ൌ 𝑉ሶ ୍ 𝑉ሶ ୍୍⁄  is the flow ratio. For 𝑍 ൌ 1 (i.e., 𝑉ሶ ୍ ൌ 𝑉ሶ ୍୍) and 𝑍 → 0 (i.e., 
𝑉ሶ ୍୍ ≫ 𝑉ሶ ୍), Eq. (30) reduces to 

 
𝑍 ൌ 1: ε ൌ

𝑁୲

𝑁୲ ൅ 1
 𝑍 → 0: ε ൌ 1 െ eିே౪ (31a,b)
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The extraction ratio of the transported component can be enhanced in the presence of 
a chemical reaction that occurs in the stripping solution. Due to the chemical reaction, 
the concentration of the transported solute can be significantly reduced in the stripping 
solution, hence increasing the driving force. An analytical expression for the extraction 
ratio can only be derived for the limiting case of an instantaneous irreversible reaction 
at an excess of reactive component B in the stripping solution. In this case, the 
concentration of the transported solute is maintained at zero at the membrane boundary 
at the stripping side of the membrane. This effect leads not only to maximizing the 
concentration difference between the solutions in both compartments but also to 
the elimination of the mass transfer resistance located in the liquid film adjacent to the 
membrane in compartment II. Hence, this case represents the maximum possible 
enhancement in the solute flux compared to the case of an infinitely slow reaction or the 
absence of the reactive component in the stripping solution. The molar flux of 
component A can be expressed as follows: 

 𝐽୅
ஶ ൌ 𝐾୅

ஶ𝑐୅
୍  (32)

where 𝐾୅
ஶ is the overall dialysis coefficient, in which the mass transfer resistance in the 

liquid film in compartment II is neglected. Inserting Eq. (32) into Eq. (27a) and 
integrating along the dialyzer height yields 

 
𝑐୅,୭୳୲

୍ ൌ 𝑐୅,୧୬
୍ exp ቆെ

𝐾୅
ஶ𝐴

𝑉ሶ ୍ ቇ (33)

Inserting Eq. (33) into the definition of the extraction ratio given by Eq. (29) results in 
the expression 

 εஶ ൌ 1 െ eିே౪
ಮ

 (34)

Eq. (34) for the extraction ratio in the case of an instantaneous irreversible reaction at 
an excess of reactive component B in the stripping solution is formally identical with 
Eq. (31b) for the extraction ratio in the case of absence of a chemical reaction for the 
value of parameter 𝑍 = 0. 

2. Aims of the doctoral dissertation 

2.1 Absorption accompanied by irreversible second-order reaction 

The mathematical model of absorption accompanied by an irreversible second-order 
reaction A ൅ ν୆B → ν୔P is based on the differential mass balance of reacting 
components A and B in the dimensionless forms (5) and (6) with the corresponding 
boundary conditions (8a,b) and (9a,b). Unfortunately, analytical solution of this problem 
is not available except for several limiting cases. A number of approximate analytical 
solutions for the enhancement factor for an irreversible second-order reaction have been 
published – these are listed in Tab. 1. However, the literature review has revealed that 
a detailed critical comparison of these approximate solutions had not been provided yet. 

In the first part of the doctoral dissertation, the exact numerical solution of Eqs (5) 
and (6) with boundary conditions (8a,b) and (9a,b) is to be provided for a wide and finely 
discretized range of parameters 𝐻𝑎 and 𝐸ଶ

ஶ. The approximate solutions for the 
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enhancement factor presented in Tab. 1 are then to be compared with the results obtained 
by this numerical solution and the accuracy of the approximate solutions is to be 
evaluated. Based on this evaluation, modifications of the existing approximate solutions 
might also be proposed that would result in accuracy improvement. 

2.2 Dialysis accompanied by irreversible second-order reaction in membrane 

The mathematical model of dialysis accompanied by an irreversible second-order 
reaction A ൅ ν୆B → ν୔P that takes place in the membrane is based on the differential 
mass balance of reacting components A and B in the dimensionless forms (18) and (19) 
with the corresponding boundary conditions (21a,b) and (22a,b). Unfortunately, 
analytical solution of this problem is not available except for several limiting cases. One 
of the limiting cases is characterized by linear concentration profile of reactive 
component B in the membrane. The corresponding differential mass balance of 
component A in the dimensionless form is given by Eq. (23) with boundary conditions 
(24) and (25). For this case, analytical expression (26) for the enhancement factor has 
been derived that is only valid for high values of the Hatta number [27]. As a starting 
point of the numerical analysis of dialysis accompanied by a second-order reaction in 
the membrane, this limiting case is to be investigated based on the numerical solution 
of Eq. (23) with boundary conditions (24) and (25) and the expression for the 
enhancement factor 𝐸ଵ୑ valid for a complete range of the Hatta number 𝐻𝑎୑ is to be 
developed. 

In the next step, the exact numerical solution of Eqs (18) and (19) with boundary 
conditions (21a,b) and (22a,b) is to be provided for a wide and finely discretized range 
of parameters 𝐻𝑎୑ and 𝐸ଶ୑

ஶ  and the effect of a chemical reaction on the rate of dialysis 
is to be evaluated in terms of the enhancement factor 𝐸ଶ୑. The results obtained by this 
numerical solution are then to be used for a development of the approximate analytical 
solution for the enhancement factor 𝐸ଶ୑ in the form 𝐸ଶ୑ ൌ 𝑓ሺ𝐻𝑎୑, 𝐸ଶ୑

ஶ ሻ. 

2.3 Counter-current dialyzer with chemical reaction in stripping solution 

A simple model of a counter-current dialyzer is based on the differential mass balance 
of the transported component in both dialyzer compartments given by Eqs (27a,b). 
A second-order reaction A ൅ B ⇌ P of transported component A is to be considered in 
the stripping solution with reactive component B (both irreversible and reversible). Both 
reactive component B and reaction product P are present solely in the stripping solution 
and cannot pass through the membrane. In order to account for the chemical reaction in 
the stripping solution, Eq. (27b) has to be extended to include the reaction term and 
balance equations for other components involved in the chemical reaction in the 
stripping solution have to be added to Eqs (27a,b). Instead of relying on Eq. (28) to 
determine the flux of component A from compartment I to compartment II, transport of 
component A in the membrane and liquid films has to be treated rigorously. 

Based on these considerations, a mathematical model of a counter-current dialyzer with 
a chemical reaction in the stripping solution is to be elaborated and employed to evaluate 
the effect of several key parameters (flow ratio, inlet concentration of reactive 
component B, reaction rate constant, equilibrium constant) on the extraction ratio of 
transported component A in the dialyzer. 
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3. Methods 

3.1 Absorption accompanied by irreversible second-order reaction 

The mathematical model of absorption accompanied by an irreversible second-order 
reaction represents a boundary value problem for a system of two second-order ordinary 
differential equations (5) and (6) with boundary conditions (8a,b) and (9a,b). As no 
analytical solution exists for this problem, the set of Eqs (5) and (6) has to be solved by 
means of an appropriate numerical method. De Santiago and Farina [18] presented 
a numerical solution strategy for the set of Eqs (5) and (6), in which both equations are 
combined into the single second-order equation 

 dଶሾBሿ

d𝑋ଶ െ
1

𝐸ଶ
ஶ െ 1

dଶሾAሿ

d𝑋ଶ ൌ 0 (35)

and integrated with boundary conditions 

 
𝑋 ൌ 0: 

dሾAሿ

d𝑋
ൌ െ𝐸ଶ 

dሾBሿ

d𝑋
ൌ 0 (36a,b)

 𝑋 ൌ 1: ሾAሿ ൌ 0 ሾBሿ ൌ 1 (37a,b)

resulting in the expression for the dimensionless relative concentration of component B 

 
ሾBሿ ൌ

ሾAሿ

𝐸ଶ
ஶ െ 1

െ
𝐸ଶ

𝐸ଶ
ஶ െ 1

ሺ1 െ 𝑋ሻ ൅ 1 (38)

Eq. (38) is finally substituted into Eq. (5), resulting in the final second-order differential 
equation 

 dଶሾAሿ

d𝑋ଶ ൌ 𝐻𝑎ଶሾAሿ ቊ
ሾAሿ

𝐸ଶ
ஶ െ 1

െ
𝐸ଶ

𝐸ଶ
ஶ െ 1

ሺ1 െ 𝑋ሻ ൅ 1ቋ (39)

Prior to numerical treatment, Eq. (39) must be transformed into a system of two 
first-order equations. This system of equations can then be solved using the 
Runge–Kutta fourth-order method. For Eq. (39), the following initial conditions shall 
be considered: 

 
𝑋 ൌ 0: ሾAሿ ൌ 1 

dሾAሿ

d𝑋
ൌ െ𝐸ଶ (40a,b)

As the value of the enhancement factor 𝐸ଶ in Eq. (39), as well as in boundary condition 
(40b) is essentially unknown, Eq. (39) has to be solved by the shooting method, i.e., the 
procedure searching for such value of 𝐸ଶ that satisfies the boundary condition (9a) 
for ሾAሿ. 

The numerical scheme developed was implemented in the object-oriented computer 
programming language. The computer code was written in the Object Pascal language 
implemented in Borland Delphi© Professional. The accuracy of the numerical solution 
was enhanced by using non-uniform integration steps and Richardson extrapolation. The 
calculation of the values of the enhancement factor 𝐸ଶ has been carried out for 12 753 
combinations of parameters 𝐻𝑎 and 𝐸ଶ

ஶ. The values of 𝐸ଶ
ஶ ranged from 1.1 to 1000, 
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while those of 𝐻𝑎 ranged from 0.1 to 𝑚 ൈ 𝐻𝑎 (𝑚 = 10, 20 and 50 for the values of 𝐸ଶ
ஶ 

up to 2, from 2 to 10 and above 10, respectively). Both 𝐻𝑎 and 𝐸ଶ
ஶ were approximately 

evenly spaced on a logarithmic scale within the indicated ranges. 

3.2 Dialysis accompanied by irreversible second-order reaction in membrane 

The mathematical model of dialysis accompanied by an irreversible second-order 
reaction that takes place in the membrane for the limiting case of linear concentration 
profile of reactive component B represents a boundary value problem for a single 
second-order ordinary differential equation (23) with boundary conditions (24) and (25). 
For a general case of an irreversible second-order reaction, Eqs (18) and (19) have to be 
considered together with boundary conditions (21a,b) and (22a,b) that represent 
a boundary value problem for a system of two second-order ordinary differential 
equations. 

As no analytical solution exists for these problems, an appropriate numerical method 
has to be used. While a numerical solution strategy based on the shooting method was 
used for the mathematical model of absorption accompanied by an irreversible 
second-order reaction, here, the finite difference method was used that is based on the 
discretization of differential equations using a set of grid points generated along the 
problem’s domain (interval bounded by points at which boundary conditions are 
provided). At each grid point, the derivatives in differential equations are approximated 
by suitable finite difference formulas. In this way, differential equations can be 
converted into a system of algebraic equations that can be solved by matrix algebra 
techniques. 

Efficient numerical schemes based on the finite difference method were elaborated for 
Eq. (23) with boundary conditions (24) and (25) and for Eqs (18) and (19) with boundary 
conditions (21a,b) and (22a,b). The numerical schemes developed were implemented in 
the object-oriented computer programming language. The computer code was written in 
the Object Pascal language implemented in Borland Delphi© Professional. The accuracy 
of the numerical solution was enhanced by using non-uniform discretization steps and 
Richardson extrapolation. The calculation of the values of the enhancement factor 𝐸ଵ୑ 
was carried out for 501 values of parameter 𝐻𝑎୑ from 0.1 to 10 000 that were evenly 
spaced on a logarithmic scale within the indicated range. The calculation of the values 
of the enhancement factor 𝐸ଶ୑ was carried out for 16 243 combinations of parameters 
𝐻𝑎୑ and 𝐸ଶ୑

ஶ . The values of 𝐸ଶ୑
ஶ  ranged from 1.1 to 1000, while those of 𝐻𝑎୑ ranged 

from 0.1 to 80×ሺ𝐸ଶ୑
ஶ ሻଷ ଶ⁄ . The upper limit of 𝐻𝑎୑ was chosen that is approximately ten 

times higher than the value of 𝐻𝑎୑ that corresponds to the limiting case of an 
instantaneous reaction. Both 𝐻𝑎୑ and 𝐸ଶ୑

ஶ  were approximately evenly spaced on 
a logarithmic scale within the indicated ranges. 

3.3 Counter-current dialyzer with chemical reaction in stripping solution 

A counter-current dialyzer of rectangular cross-section with the identical compartments 
I and II is depicted in Fig. 2. The transport of a single solute (component A) is assumed 
through the membrane from compartment I to compartment II, where a second-order 
reaction A ൅ B ⇌ P takes place. 
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Fig. 2: Balance scheme of counter-current dialyzer with chemical reaction in stripping solution 
 

The steady-state differential mass balance of components A, B and P in compartments 
I and II can be derived as follows: 

 d𝑐୅
୍

d𝑧
ൌ െ𝐽୅

୍ 𝐴

𝑉ሶ ୍𝑧୘
 (41)

 d𝑐୅
୍୍

d𝑧
ൌ െ𝐽୅

୍୍ 𝐴

𝑉ሶ ୍୍𝑧୘
൅

𝑘ଶ𝑆

𝑉ሶ ୍୍
ቆ𝑐୅

୍୍𝑐୆
୍୍ െ

𝑐୔
୍୍

𝐾௖
ቇ ൬1 െ

𝐴
𝑆𝑧୘

δ୐
୍୍൰ (42)

 d𝑐୆
୍୍

d𝑧
ൌ 𝐽୆

୍୍ 𝐴

𝑉ሶ ୍୍𝑧୘
൅

𝑘ଶ𝑆

𝑉ሶ ୍୍
ቆ𝑐୅

୍୍𝑐୆
୍୍ െ

𝑐୔
୍୍

𝐾௖
ቇ ൬1 െ

𝐴
𝑆𝑧୘

δ୐
୍୍൰ (43)

 d𝑐୔
୍୍

d𝑧
ൌ െ𝐽୔

୍୍ 𝐴

𝑉ሶ ୍୍𝑧୘
െ

𝑘ଶ𝑆

𝑉ሶ ୍୍
ቆ𝑐୅

୍୍𝑐୆
୍୍ െ

𝑐୔
୍୍

𝐾௖
ቇ ൬1 െ

𝐴
𝑆𝑧୘

δ୐
୍୍൰ (44)

In Eqs (41)–(44), 𝑐௜
௝ is the molar concentration and 𝐽௜

௝ is the molar flux of the respective 
component related to the liquid bulk in the respective compartment (𝑖 = A, B, P; 
𝑗 = I, II), 𝑧 is the spatial coordinate, 𝐴 is the membrane area, 𝑉ሶ ௝ is the volumetric flow 
rate of liquid in the respective compartment (𝑗 = I, II), 𝑆 is the cross-section of each 
compartment, 𝑧୘ is the height of the compartment, 𝑘ଶ is the second-order reaction rate 
constant, 𝐾௖ is the equilibrium constant and δ୐

୍୍ is the thickness of the liquid film in 
compartment II. 
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The boundary conditions for Eqs (41)–(44) are 

 𝑧 ൌ 0:  𝑐୅
୍ ൌ 𝑐୅,୧୬

୍    (45)

 𝑧 ൌ 𝑧୘:  𝑐୅
୍୍ ൌ 0 𝑐୆

୍୍ ൌ 𝑐୆,୧୬
୍୍  𝑐୔

୍୍ ൌ 0 (46a,b,c)

In order to calculate the fluxes 𝐽୅
୍ , 𝐽୅

୍୍, 𝐽୆
୍୍ and 𝐽୔

୍୍, it is necessary to solve mass transfer in 
the membrane and in the liquid films simultaneously. The fluxes of component A in the 
liquid film in compartment I and in the membrane can be expressed as follows: 

 
𝐽୅

୍ ൌ 𝑘୐
୍ ൫𝑐୅

୍ െ 𝑐୅୧
୍ ൯ 𝐽୅୑ ൌ

𝐷୅୑

δ୑
ሺ𝑐୅୑

୍ െ 𝑐୅୑
୍୍ ሻ (47a,b)

where 𝑐୅୧
୍  and 𝑐୅୑

௝  (𝑗 = I, II) are the concentrations of component A in liquid at the 
solution/membrane interface at the feed side and in the membrane at both boundaries, 
respectively, 𝑘୐

୍  is the mass transfer coefficient in the liquid film in compartment I, 
𝐷୅୑ is the diffusion coefficient of component A in the membrane and δ୑ is the thickness 
of the membrane. The transport of components A, B and P in the liquid film in 
compartment II must be solved simultaneously due to the existence of a chemical 
reaction between the components. The differential mass balance can be formulated for 
the reacting components in the liquid film as follows: 

 
𝐷୅

୍୍ dଶ𝑐୅
୤

d𝑥ଶ െ 𝑘ଶ ቆ𝑐୅
୤ 𝑐୆

୤ െ
𝑐୔

୤

𝐾௖
ቇ ൌ 0 (48)

 
𝐷୆

୍୍ dଶ𝑐୆
୤

d𝑥ଶ െ 𝑘ଶ ቆ𝑐୅
୤ 𝑐୆

୤ െ
𝑐୔

୤

𝐾௖
ቇ ൌ 0 (49)

 
𝐷୔

୍୍ dଶ𝑐୔
୤

d𝑥ଶ ൅ 𝑘ଶ ቆ𝑐୅
୤ 𝑐୆

୤ െ
𝑐୔

୤

𝐾௖
ቇ ൌ 0 (50)

In Eqs (48)–(50), 𝐷௜
୍୍ is the diffusion coefficient and 𝑐௜

୤ is the molar concentration of the 
respective component in the liquid film in compartment II (𝑖 = A, B, P). 

The boundary conditions for Eqs (48)–(50) are 

 
𝑥 ൌ 0: 𝑐୅

୤ ൌ 𝑐୅୧
୍୍  

d𝑐୆
୤

d𝑥
ൌ 0 

d𝑐୔
୤

d𝑥
ൌ 0 (51a,b,c)

 𝑥 ൌ δ୐
୍୍: 𝑐୅

୤ ൌ 𝑐୅
୍୍ 𝑐୆

୤ ൌ 𝑐୆
୍୍ 𝑐୔

୤ ൌ 𝑐୔
୍୍ (52a,b,c)

The mass transfer coefficient 𝑘୐
୍  in Eq. (47a) and the thickness of the liquid film δ୐

୍୍ in 
Eqs (42)–(44) can be estimated from the well-established empirical correlation [30] 

 𝑆ℎ ൌ 𝐶𝑅𝑒଴.ହ𝑆𝑐଴.ଷଷ (53)

where 𝑆ℎ is the Sherwood number, 𝐶 is a constant, 𝑅𝑒 is the Reynolds number and 𝑆𝑐 
is the Schmidt number. The equilibrium relations (54) must be added to the set of 
Eqs (47)–(53) 

 𝑐୅୑
௝ ൌ Ψ୅

௝𝑐୅୧
௝            (𝑗 = I, II) (54)
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where Ψ୅
௝ is the partition coefficient of component A between the membrane and liquid 

in the individual compartments (𝑗 = I, II). At steady state, the flux of component A in 
the liquid film in compartment I is equal to those in the membrane and in the liquid film 
in compartment II at the solution/membrane interface: 

 
𝐽୅

୍ ൌ 𝐽୅୑ ൌ െ𝐷୅
୍୍ d𝑐୅

୤

d𝑥
ቤ

௫ୀ଴

 (55)

The mathematical model of a counter-current dialyzer with a chemical reaction in the 
stripping solution based on the set of differential equations (41)–(44) with boundary 
conditions (45) and (46a,b,c) represents a boundary value problem that can only be 
solved numerically by means of an appropriate numerical method. The solution 
procedure based on the shooting method was proposed as follows: 

1. The initial estimate of the concentration of component A in the stream leaving 
compartment I (𝑐୅,୭୳୲

୍ ) was provided. The boundary condition (45) was replaced 
with the modified boundary condition (56) based on this estimate, thus reducing 
the boundary value problem to the initial value problem: 

 𝑧 ൌ 𝑧୘:  𝑐୅
୍ ൌ 𝑐୅,୭୳୲

୍    (56)

2. The set of differential equations (41)–(44) was integrated from 𝑧 ൌ 𝑧୘ to 𝑧 ൌ 0 
for the initial conditions (46a,b,c) and (56) using the Runge–Kutta fourth-order 
method. 

3. The procedure was repeated until the boundary condition (45) was satisfied with 
the accuracy of 1×10−8 %. The bisection method was used to find the value of 
𝑐୅,୭୳୲

୍ , which would satisfy the boundary condition (45). 

In each elementary step of the Runge–Kutta method, it was necessary to determine the 
fluxes 𝐽୅

୍ , 𝐽୅
୍୍, 𝐽୆

୍୍ and 𝐽୔
୍୍ based on the concentration profiles of all components obtained 

by numerical solution of the system of Eqs (47a,b)–(55). The finite difference method 
was used to solve differential equations (48)–(50) with boundary conditions (51a,b,c) 
and (52a,b,c). 

The mathematical model represented by the set of differential equations (41)–(44) and 
(48)–(50) is applicable to the case of a reversible second-order reaction A ൅ B ⇌ P. For 
an irreversible second-order reaction A ൅ B → P, Eqs (44) and (50) for component P can 

be omitted together with the terms 𝑐୔
୍୍

𝐾௖
൘  and 𝑐୔

୤

𝐾௖
൘  in Eqs (42) and (43) and Eqs (48) and 

(49), respectively. The concentration of component P does not influence the flux of 
component A from compartment I to compartment II and it can be determined by 
a simple material balance in the stripping solution leaving the dialyzer, as well as in any 
cross-section of the dialyzer. 

The numerical scheme developed was implemented in the object-oriented computer 
programming language. The computer code was written in the Object Pascal language 
implemented in Borland Delphi© Professional. The complete list of the variables used 
in numerical treatment is summarized in Tab. 2. 
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Tab. 2: List of specified variables used in numerical treatment 

Variable Value or range Unit 

𝐴 3.31 × 10−2 m2 

𝑆 3.96 × 10−5 m2 

𝑧୘ 0.92 m 

δ୑ 165 × 10–6 m 

𝑐୅,୧୬
୍  1 × 10–3 – 1 kmol m–3 

𝑐୅,୧୬
୍୍ , 𝑐୔,୧୬

୍୍  0 kmol m–3 

𝑐୆,୧୬
୍୍  0 – 2 kmol m–3 

𝐷୅
୍ , 𝐷୅

୍୍, 𝐷୆
୍୍, 𝐷୔

୍୍ 1 × 10−9 m2 s–1 

𝐷୅୑ 1 × 10–12 – 1 × 10–9 m2 s–1 

Ψ୅
୍ , Ψ୅

୍୍ 1 – 

μ 1 × 10–3 Pa s 

ρ 1000 kg m–3 

𝑉ሶ ୍, 𝑉ሶ ୍୍ 5 × 10–9 – 30 × 10–9 m3 s–1 

𝑘ଶ 1 × 10–4 – 10 m3 kmol–1 s–1 

𝐾௖ 0.1 – 1000 m3 kmol–1 

𝐶 1 – 

 

4. Results and discussion 

4.1 Absorption accompanied by irreversible second-order reaction 

The maximum relative deviations of the approximate analytical solutions for the 
enhancement factor for an irreversible second-order reaction A ൅ ν୆B → ν୔P from the 
results of the exact numerical solution are summarized in Tab. 3. From Tab. 3, it is 
evident that all approximate solutions are able to predict the values of the enhancement 
factor with the relative deviations within 10 % compared to the exact numerical solution 
for the film theory. The maximum relative deviation of the approximate solution of 
van Krevelen and Hoftijzer [14] was found to be less than 3 %. This conclusion is in 
complete agreement with earlier communication of de Santiago and Farina [18] and 
Wellek et al. [22]. Despite being the oldest one, the approximate solution of 
van Krevelen and Hoftijzer was proved to be the most accurate existing approximate 
solution for the enhancement factor for an irreversible second-order reaction applicable 
for the entire range of parameters 𝐻𝑎 and 𝐸ଶ

ஶ. However, the main disadvantage of this 
approximate solution is its implicit nature. 
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Tab. 3: Maximum relative deviations of approximate analytical solutions 

Author Maximum relative deviation (%) 

Negative Positive 

van Krevelen and Hoftijzer (1948) −2.8 – 

Hikita and Asai (1964) −1.9 +6.3 

Porter (1966) −3.6 +6.3 

Yeramian et al. (1970) −6.6 – 

de Santiago and Farina (1970) −2.7 – 

Kishinevskii et al. (1971) −2.0 +8.7 

DeCoursey (1974) −1.8 +8.8 

Baldi and Sicardi (1975) – +9.6 

Wellek et al. (1978) −5.6 +4.1 

Karlsson and Bjerle (1980) −8.2 +5.0 

Last and Stichlmair (2002) −4.8 +5.4 

 

The approximate solution of Wellek et al. [22] represents an empirical correlation that 
was derived on the basis of the asymptotic behavior of the function 𝐸ଶ ൌ 𝑓ሺ𝐻𝑎, 𝐸ଶ

ஶሻ in 
the form 

 
൬

1
𝐸ଶ െ 1

൰
௡

ൌ ቆ
1

𝐸ଶ
ஶ െ 1

ቇ
௡

൅ ൬
1

𝐸ଵ െ 1
൰

௡

 (57)

Using the original value of the adjustable parameter (𝑛 = 1.35), the relative deviations 
of the approximate solution from the results of the exact numerical solution were found 
within 5.6 %. Based on the fitting of Eq. (57) to the results of the exact numerical 
solution for 12 753 combinations of parameters 𝐻𝑎 and 𝐸ଶ

ஶ, the optimum value of 
𝑛 = 1.383 was found that results in the maximum relative deviation of 4.7 %. 

The relative deviations of the approximate solution of DeCoursey [20] derived on the 
basis of the surface renewal theory from the results of the exact numerical solution for 
the film theory can be as high as 8.8 %. However, it was found that the peak in the 
relative deviation is basically due to the difference between both theories. A correction 
factor to the original approximate solution of DeCoursey was proposed as follows: 

 
𝐹 ൌ 1 ൅ ሼ1 െ expሾെ0.4 ൈ ሺ𝐸ଶ

ஶ െ 1ሻሿሽ ൈ ൬
𝐻𝑎

√1 ൅ 𝐻𝑎ଶ tanh 𝐻𝑎
െ 1൰ (58)

If the right-hand side of the expression for the enhancement factor is multiplied by the 
correction factor (58), the maximum relative deviation becomes as low as 2.2 %. This 
modification of the existing approximate solution of DeCoursey results in the best 
accuracy that has ever been reported for any explicit approximate solution for the 
enhancement factor for an irreversible second-order reaction. 



21 

4.2 Dialysis accompanied by irreversible second-order reaction in membrane 

Based on numerical solution of Eq. (23) with the corresponding boundary conditions 
(24) and (25), the validity of Eq. (26) for high values of the Hatta number has been 
confirmed. For 𝐻𝑎୑ > 4 and 𝐻𝑎୑ > 6, the relative deviation of Eq. (26) from the results 
of the numerical solution is less than 1 % and 0.1 %, respectively, but it dramatically 
rises for lower values of the Hatta number. In order to obtain the expression for 𝐸ଵ୑ 
valid for a wide range of the Hatta number, Eq. (26) was extended in order to account 
for the condition lim

ு௔౉→଴
𝐸ଵ୑ = 1 as follows: 

 
𝐸ଵ୑ ൌ ሾ1 ൅ ሺ𝐸ଵ୑

ஶ ሻ௡ሿଵ ௡⁄ ൌ ቂ1 ൅ ൫0.729 ൈ 𝐻𝑎୑
ଶ ଷ⁄ ൯

௡
ቃ

ଵ ௡⁄
 (59)

In Eq. (59), the parameter 𝑛 was adjusted in order to minimize the deviation of the 
expression compared to the numerical solution for the entire range of the Hatta number 
under the study (0.1 to 10 000). For 𝑛 = 4, the relative deviation of Eq. (59) was found 
within 1.5 % compared to the numerical solution. Eq. (59) can then be rewritten as 

 
𝐸ଵ୑ ൌ ට1 ൅ 0.282 ൈ 𝐻𝑎୑

଼ ଷ⁄ర
 (60)

The mathematical model of dialysis accompanied by an irreversible second-order 
reaction A ൅ ν୆B → ν୔P that takes place in the membrane is represented by Eqs (18) 
and (19) with boundary conditions (21a,b) and (22a,b). Graphical representation of the 
results of the numerical solution of this model is provided in Fig. 3 that shows the 
enhancement factor 𝐸ଶ୑ as a function of the Hatta number 𝐻𝑎୑ with the enhancement 
factor corresponding to an instantaneous reaction 𝐸ଶ୑

ஶ  as a parameter. 

 
Fig. 3: Enhancement factor for dialysis accompanied by irreversible second-order reaction in 
membrane 
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The asymptotic behavior of the function 𝐸ଶ୑ ൌ 𝑓ሺ𝐻𝑎୑, 𝐸ଶ୑
ஶ ሻ for high and low values 

of 𝐻𝑎୑ is apparent from Fig. 3. For 𝐻𝑎୑ ൐ 8 ൈ ሺ𝐸ଶ୑
ஶ ሻଷ ଶ⁄ , the relative deviation of the 

enhancement factor 𝐸ଶ୑ from the enhancement factor 𝐸ଶ୑
ஶ  corresponding to an 

instantaneous irreversible second-order reaction given by Eq. (20b) is always lower 
than 1 %. 

In order to develop a general correlation (approximate analytical solution) for the 
enhancement factor 𝐸ଶ୑, two expressions were proposed that were based on the analogy 
with the approximate analytical solutions for the enhancement factor for absorption 
accompanied by an irreversible second-order reaction. The first expression is based on 
the general form of the approximate solution of Wellek et al. [22]: 

 
൬

1
𝐸ଶ୑ െ 1

൰
௡

ൌ ቆ
1

𝐸ଶ୑
ஶ െ 1

ቇ
௡

൅ ൬
1

𝐸ଵ୑ െ 1
൰

௡

 (61)

The latter expression is based on Eq. (60), in which the Hatta number is multiplied by 
an auxiliary factor containing the enhancement factor. 

 
𝐸ଶ୑ ൌ ඨ1 ൅ 0.282 ൈ 𝐻𝑎୑

଼ ଷ⁄ ቆ
𝐸ଶ୑

ஶ െ 𝐸ଶ୑

𝐸ଶ୑
ஶ െ 1

ቇ
௡

ర

 (62)

In Eqs (61) and (62), the parameter 𝑛 was adjusted in order to minimize the deviation 
of the respective expression compared to the numerical solution for 16 243 combinations 
of parameters 𝐻𝑎୑ and 𝐸ଶ୑

ஶ . For Eq. (61), the best agreement was found for 𝑛 = 1.95 
(maximum relative deviation of 6.8 %). For Eq. (62), the best agreement was found for 
𝑛 = 1.025 (maximum relative deviation of 1.5 %). However, for 𝑛 = 1.000, Eq. (62) 
becomes a quartic equation 

 
𝐸ଶ୑

ସ ൅
0.282 ൈ 𝐻𝑎୑

଼ ଷ⁄

𝐸ଶ୑
ஶ െ 1

𝐸ଶ୑ െ ቆ1 ൅
0.282 ൈ 𝐻𝑎୑

଼ ଷ⁄

𝐸ଶ୑
ஶ െ 1

𝐸ଶ୑
ஶ ቇ ൌ 0 (63)

The relative deviation of Eq. (63) was found within 2 % compared to the numerical 
solution for the entire range of parameters 𝐻𝑎୑ and 𝐸ଶ୑

ஶ  under the study. According to 
the Descartes rule of signs, Eq. (63) has one positive and one negative root. Only the 
positive root has a meaning, and therefore, represents the enhancement factor. 
Analytical solution of quartic equation (63) is possible, though somewhat laborious. 
Therefore, numerical solution of Eq. (63) is also an alternative. Among various 
numerical methods, especially the Newton’s method is favorable due to its rapid 
convergence for any initial guess 𝐸ଶ

∗ (1 ൏ 𝐸ଶ
∗ ൏ 𝐸ଶ

ஶ). 

4.3 Counter-current dialyzer with chemical reaction in stripping solution 

The effect of the inlet concentration of reactive component B in the stripping solution 
on the extraction ratio of component A for dialysis accompanied by an instantaneous 
irreversible reaction in the stripping solution is presented in Fig. 4a for several values of 
the flow ratio (𝑍 = 0.5, 1, 2) and membrane diffusion coefficient (𝐷୅୑ = 4×10−11, 
5×10−10 m2 s−1). The points F௜ and G௜ (𝑖 = 1, 2, 3) correspond to the absence of 
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component B, while the points Fஶ and Gஶ correspond to an excess of component B in 
the stripping solution. 
 

       (a)       (b) 

Fig. 4: Extraction ratio of component A: (a) dependence upon inlet concentration of reactive 
component B in stripping solution for instantaneous irreversible reaction: 𝑐୅,୧୬

୍  = 1 kmol m−3, 
𝑉ሶ ୍ = 10×10−9 m3 s−1, 𝐷୅୑ (m2 s−1) / 𝑉ሶ ୍୍ (m3 s−1): (1) 4×10−11 / 5×10−9 (𝑍 = 2), 
(2) 4×10−11 / 10×10−9 (𝑍 = 1), (3) 4×10−11 / 20×10−9 (𝑍 = 0.5), (4) 5×10−10 / 5×10−9 (𝑍 = 2), 
(5) 5×10−10 / 10×10−9 (𝑍 = 1), (6) 5×10−10 / 20×10−9 (𝑍 = 0.5); (b) as function of number of 
transfer units according to Eqs (30) and (31a,b) 
 

The points F௜ and G௜ (𝑖 = 1, 2, 3, ∞) are also plotted in Fig. 4b, where the extraction ratio 
is shown as a function of parameter 𝑁୲ ൌ 𝐾୅𝐴 𝑉ሶ ୍⁄  (number of transfer units). The 
enhancement in the extraction ratio is represented by the vertical distance of points 
Fஶ–F௜ and Gஶ–G௜ (𝑖 = 1, 2, 3). The maximum enhancement is achieved due to the two 
factors: (1) maximizing the driving force by maintaining the membrane boundary at the 
stripping side at zero concentration of component A; (2) complete elimination of the 
mass transfer resistance located in the liquid film at the stripping side of the membrane. 
The first contribution can be viewed as the shift of the respective point in the ordinate 
direction towards the curve ε ൌ 𝑓ሺ𝑁୲ሻ for 𝑍 = 0, while the latter contribution can be 
viewed as the further shift of the respective point along the curve ε ൌ 𝑓ሺ𝑁୲ሻ for 𝑍 = 0 
from 𝑁୲ to 𝑁୲

ஶ. 

Both the finite reaction rate constant and reaction reversibility adversely affect the actual 
enhancement in the extraction ratio compared to the case of an instantaneous irreversible 
reaction. Figs 5a and 6a show the dependence of the extraction ratio of component A on 
the inlet concentration of reactive component B for several values of the reaction rate 
constant 𝑘ଶ and equilibrium constant 𝐾௖, respectively, as a parameter. From Figs 5a and 
6a it is evident that the extraction ratio decreases with the decreasing value of the 
reaction rate constant and equilibrium constant, respectively. For slow or reversible 
reactions, the low value of the reaction rate constant and equilibrium constant can be 
compensated by a heavy excess of component B in compartment II as demonstrated in 
Figs 5b and 6b, respectively. 
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       (a)       (b) 

Fig. 5: Dependence of extraction ratio of component A upon inlet concentration of reactive 
component B in stripping solution for irreversible reaction of finite reaction rate constant: 
𝑐୅,୧୬

୍  = 1 × 10−3 kmol m−3, 𝐷୅୑ = 5 × 10−10 m2 s−1, 𝑉ሶ ୍ = 15 × 10−9 m3 s−1, 𝑉ሶ ୍୍ = 10 × 10−9 m3 s−1 
(𝑍 = 1.5), 𝑘ଶ (m3 kmol−1 s−1): (1) instantaneous reaction (𝑘ଶ → ∞), (2) 100, (3) 10, (4) 1, (5) 0.1, 
(6) 0.01; (a) comparable inlet concentrations of A and B; (b) excess of reactive component B 
in stripping solution 

       (a)       (b) 

Fig. 6: Dependence of extraction ratio of component A upon inlet concentration of reactive 
component B in stripping solution for reversible reaction of finite reaction rate constant: 
𝑐୅,୧୬

୍  = 1 × 10−3 kmol m−3, 𝐷୅୑ = 5 × 10−10 m2 s−1, 𝑉ሶ ୍ = 15 × 10−9 m3 s−1, 𝑉ሶ ୍୍ = 10 × 10−9 m3 s−1 
(𝑍 = 1.5), 𝑘ଶ = 10 m3 kmol−1 s−1, 𝐾௖ (m3 kmol−1): (1) irreversible reaction (𝐾௖ → ∞), (2) 10 000, 
(3) 1000, (4) 100, (5) 10, (6) 1; (a) comparable inlet concentrations of A and B; (b) excess of 
reactive component B in stripping solution 
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Conclusion 
The existing approximate solutions for the enhancement factor for an irreversible 
second-order reaction were assessed based on the results of the exact numerical solution 
of the mathematical model of absorption accompanied by an irreversible second-order 
reaction based on the film theory. The maximum relative deviations of all approximate 
solutions did not exceed 10 %. The classical approximate solution of van Krevelen and 
Hoftijzer [14] has traditionally been considered the most accurate expression for the 
enhancement factor applicable for the entire range of parameters 𝐻𝑎 and 𝐸ଶ

ஶ. The 
maximum relative deviation of this approximate solution of 2.8 %  was confirmed but 
the implicit nature of this approximate solution makes its application difficult. 
A modification of the approximate solution of DeCoursey [20] originally based on the 
surface renewal theory was proposed by introducing a correction factor. The maximum 
relative deviation of this modified approximate solution was found to be within 2.2 % 
as compared to the exact numerical solution for the film theory, which is the best 
accuracy that has ever been reported for an explicit expression valid for the entire range 
of parameters 𝐻𝑎 and 𝐸ଶ

ஶ. 

Based on the mathematical model of dialysis accompanied by an irreversible 
second-order reaction that takes place in the membrane, the effect of a chemical reaction 
on the rate of dialysis was analyzed and evaluated in terms of the enhancement factor. 
As a part of the numerical analysis, limiting cases of dialysis accompanied by an 
irreversible second-order reaction were investigated, i.e., dialysis with instantaneous 
reaction and dialysis with linear concentration profile of reactive component B in the 
membrane. Two approximate solutions for the enhancement factor for dialysis 
accompanied by an irreversible second-order reaction were proposed. The first 
approximate solution was based on the approximate solution of Wellek et al. [22] for 
reactive absorption and its maximum relative deviation from the exact analytical 
solution was found within 6.8 %. The latter approximate solution was derived in the 
form of the quartic equation and its maximum relative deviation from the exact 
analytical solution did not exceed 2 % for the entire range of parameters 𝐻𝑎୑ and 𝐸ଶ୑

ஶ  
under the study. 

The mathematical model of a continuous counter-current dialyzer with a second-order 
chemical reaction in the stripping solution, both irreversible and reversible, was 
developed and used to evaluate the effect of the chemical reaction in the stripping 
solution on the performance of the dialyzer in terms of the extraction ratio of the 
transported component. The maximum enhancement in the extraction ratio was 
observed for the instantaneous irreversible reaction with an excess of the reactive 
component in the stripping solution. Both the finite reaction rate constant and reaction 
reversibility can adversely influence the enhancement in the extraction ratio. In certain 
cases, these effects can be compensated by a heavy excess of the reactive component in 
the stripping solution. 
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