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The difference in Gibbs free energy between liquid and solid phases, usually

expressed by authors as )G, appears in several theoretical formulations on

nucleation and crystal growth. Approximations for )G are used extensively to

gain an insight into the solidification phenomenon when thermophysical

parameters are not known. In this work, the most commonly used models are

applied to four bulk metallic glasses at temperatures starting from that of glass

transition. An arithmetic mean of Thomson–Spaepen and Hoffman’s

approximations yield significant improvements over new models incorporating

nonlinear relationships involving undercoolings.
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Introduction

The difference in Gibbs free energy between liquid and solid, usually expressed

by authors as )G, appears in several theoretical formulations in phase transfer

phenomena [1,2].  A notable example is the classical nucleation theory where the

nucleation frequency is expressed as number density in the form

, where kB is the Boltzmann constant and F  is the

solid-liquid interface energy, Vm is the molar volume and I0 is the pre-exponential

factor and ED is the energy threshold for diffusion. Another popular occurrence is

in solidification; crystal growth is shown as , with f,  a

and v being the fraction of attachment sites, jump distance and attempt frequency.

Furthermore, a small driving force at larger undercooling could be indicative of

a large glass forming ability [3].

Measurement of specific heats in highly supercooled liquids is difficult and

often impossible, owing to which the direct determination of )G of a material

from its basic thermodynamic parameters is rare. Approximations of )G are

instead used extensively and to a good effect in thermodynamic and kinetic models

when specific heat data in metastable liquid are not known. However, in heavily

supercooled liquids, encountered in such physical problems as rapid solidification

and in devitrification, significant errors can occur. In this paper, we assess the

model approximations by applying them to four multi-component bulk glass

alloys, Pd40Ni40P20, Zr52.5Cu17.9Ni14.6Al10Ti5, Zr65Al7.5Ni10Cu17.5 and La55Al25Ni20 with

known heat capacities in deeply undercooled region. 

Theory

By definition, the Gibbs free energy difference, )G, between liquid and

crystal/glass is given by

(1)

This can be expanded using the well known expressions for )G and )S

(2)
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While )HL , the enthalpy of fusion, is readily available for most materials, the

differential in solid-liquid specific heats, )Cp, is not, as it is experimentally

difficult to measure for metastable liquids. Hence, often, approximations are used

for a meaningful value of )G.

When )Cp  can be neglected it is simply

(3)

This is the most convenient and widely used of all expressions and is attributed to

Turnbull [4]. Equation (3) also holds at small undercoolings which are

characteristic of conventional solidification processes like casting. It is easy to see

that Eq.(3) overestimates )G. A slight improvement is attributed to Singh and

Holz; the following expression underestimates )G to a less extent [5]

(4)

Another relationship that found profound use by researchers was formulated by

Thompson and Spaepen (TS) [6]. For a linear approximation of )Cp,

, it can be seen that Eq.(2) simplifies to [6]

(5)

TS assumed a constant )Cp for which A = 0 and B = )Cp  and further stated that

for metallic glasses, , which leads to [6]

(6)

Their approximation can be obtained by expanding  as

. Noting the Taylor series expansion, 

, one obtains

(7)
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Hoffman also assumed a constant )Cp and arrived at the following

approximation [7]

(8)

Obviously, an estimation by Eq. (7) is greater than that of Eq. (8). 

More recent attempts involve expansions involving higher powers of

undercooling, and incorporating theoretical quantities like Kauzmann temperature

[8]. A noteworthy example and one that is applied in this work is a simple looking

expression obtained by Lad and co-workers used the series expansion,

 to obtain a parabolic approximation for

)G [3]

(9)

More recently, Ji and Pan [8] obtained

(10)

by incorporating the third order term in the TS approximation [9].

In this work present, the arithmetic mean of TS and Hoffman’s predictions

are used to obtain a new approximation

(11)

Results and Discussion

The models were applied to four different alloys, Pd40Ni40P20,

Zr52.5Cu17.9Ni14.6Al10Ti5, Zr65Al7.5Ni10Cu17.5 and La55Al25Ni20, referred in this section

as alloys A, B, C and D, respectively, with published differential heat capacities

known for a wide supercooling range. Table I shows the bulk metallic glass alloys



Pillai S.K.S., Málek J./Sci. Pap. Univ. Pardubice, Ser. A 20 (2014) 263–272 267

and their relevant physical properties. They are taken from a similar study

involving BMGs [9]. Calculations were performed from Tg to the alloy liquidus

temperature. For each alloy, thermodynamic driving force, , was calculated

as a function of temperature using the experimentally determined )Cp values given

in Table I and then compared to the approximations using the aforementioned

expressions. These comparisons are illustrated in Figs 1-4.

Table I BMGs considered in present study and their thermophysical parameters used for

determination of free energy

Ref. Composition Tm

K

Tg

K

)Cp

J mol–1 K–1

)Hm

kJ mol–1

A Pd40Ni40P20 855 580 39.96 – 3.51×102T 7.95

B Zr52.5Cu17.9Ni14.6Al10T

i5

1072 675 1.98×10–2T + 6.43×106T–2 –

1.68×10–5T2

8.2

C Zr65Al7.5Ni10Cu17.5 1109 657 19.84 – 8.89×10–3T 10.3

D La55Al25Ni20 712 491 2.19×10–2T + 1.24×106T–2 –

1.01×10–5T2

7.48

Fig. 1 Thermodynamic driving force, , as function of melting temperature for

alloy A. Curves were calculated for temperature range from Tg to Tm

Clearly, the Turnbull relationship was rather poor at large undercoolings,

overestimating )G in all cases. Estimations by Eq. (7), SH, also showed large

deviations in all compositions. TS and Hoffman’s relationships offered reasonable

approximations, respectively overestimating and underestimating in all cases. Both
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the newer models, Eqs (8) and (10), offer improved results. Nevertheless, the best

results were obtained by using Eq. (10). 

Fig. 2 Thermodynamic driving force, , as function of melting temperature for

alloy B. Curves were calculated for tempersature range from Tg to Tm

Fig. 3 Thermodynamic driving force, ,  as function of melting temperature for

alloy C. Curves were calculated for temperature range from Tg to Tm

It is also worthwhile to calculate the errors in approximation. Absolute

percentage errors were determined as  for the

temperatures ranging from that of glass transition to melting. The plots, Figs 5-8,

show the maximum errors for the aforementioned conditions varied from 27 % for
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alloy A to 57 % for alloy C. Both the Thompson–Spaepen and Hoffman

relationships yielded less than 16 % error for all compositions. The equations pro-

Fig. 4 Thermodynamic driving force, ,  as function of melting temperature for

alloy D. Curves were calculated for temperature range from Tg to Tm

Fig. 5 Percentage errors determined relative to experimental values for different

approximations for alloy A. The curves were calculated for temperature range

from Tg to Tm

posed by Lad et al., and Ji and Pan increased the accuracy only marginally. The

suggestion by the authors, though without a sound physical foundation, offers the

best results, yielding less than 5% error in all the cases investigated.

The integrals of )Cp, being nonlinear, tend to vary at greater rates at large
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undercoolings.  The satisfactory results obtained by applying Eq. (10) are due to

the fact that both TS and Hoffman’s relationship appear to diverge from the

expected )G values.  

Fig. 6 Percentage errors determined relative to experimental values for different

approximations for alloy B. Curves were calculated for temperature range from

Tg to Tm

Fig. 7 Percentage errors determined relative to experimental values for different

approximations for alloy C. Curves were calculated for temperature range from

Tg to Tm
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Fig. 8 Percentage errors determined relative to experimental values for different

approximations for alloy D. Curves were calculated for temperature range from

Tg to Tm

Conclusion

Different models were considered for the estimation of free enegy between solids

and liquids. For small undercoolings, the simplest form, Turnbull approximation

can be readily used. When the liquid is heavily undercooled, TS or better

approximations should be used. When the liquid is undercooled to the glass

transition temperature or lower, care should be taken in using the appropriate

expression in physical models. The use of Turnbull approximation in such cases

is incorrect and may be avoided. The authors recommend the arithmetic mean

value of TS and Hoffman’s approximation as a possible solution. Of all the

compositions and temperatures studied, the largest relative error obtained was only

6 %, a better result compared to some of the recent models.  The validity of the

proposed approximation for other compositions and a theoretical investigation of

its feasibility are subjects of a future investigation.
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