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Abstract. Paper deals with an on-line optimization control method for dynamical 

processes called Model Predictive Control (MPC). It is popular control method 

in industry and frequently treated in academic area as well. The standard predic-

tive controllers usually do not guarantee stability especially for the case of short 

horizons and large control error penalization. Terminal state is one way how to 

ensure stability or at least increase the controller robustness. In the paper, devia-

tion of the predicted terminal state from the desired terminal state is considered 

as one term of the cost function. Effect to the stability and control quality is 

demonstrated on the simulated experiments. The application area for online op-

timization methods is very broad including various logistics and transport prob-

lems. If the dynamics of the controlled processes cannot be neglected the optimi-

zation problem must be solved not only for steady-state but also for transient 

behaviour – e.g. by MPC. 

Keywords: state space model, model predictive control, terminal state, control 

stability and quality. 

1 Introduction 

Minimization of a quadratic cost function is a common method for solving many engi-

neering problems. In the control area this method is fundamental not only for standard 

control design methods like optimal control – e.g. [1] and [2] but also for a state esti-

mation [3]. For example, well known Kalman estimator [4] was published in 1960. 

Current state of HW and SW technology allows us to look back a bit, modify and apply 

some methods well known from the past but not used practically. In the contrary to 

standard PID controllers such methods have potential to increase control quality and 

solve more complicated and complex tasks. Usability, reliability, robustness and of 

course also the price of such a system is the other side of the coin. In the paper we are 

introducing MPC desired terminal state calculated from steady state and we test it by 

simulation for higher order single-input single-output process. 

Paper is structed as follows – standard controller design is described in chapter 2, 

modified method is introduced in chapter 3, simulated control experiments are pre-

sented in chapter 4 and conclusions are given in chapter 5. 
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2 Standard Controller Design 

Under the assumptions of linear controlled system and quadratic cost function it is pos-

sible to formulate the task of the optimal controller design as a standard mathematical 

problem – extreme finding with an analytic solution. A unique solution exists also in 

the case of constrains existence in a form of linear inequalities.  

The key part of the controller design is to incorporate maximum of the known infor-

mation and demands into the properly formulated cost function. It is possible to involve 

various (even conflicting) control demands. Then the controller tuning consists in 

weightings of the particular demands. 

From practical point of view, it is appropriate to formulate the task in discrete-time 

domain with receding (finite) control horizon [5-8]. The length N of the horizon is a 

parameter in the control design. The general formulation of a set-point tracking task is 

given by Eq. (1a) – a state space description of the controlled dynamical linear system 

with state and input variables constraints and by Eq. (1b) – a quadratic cost function J 

(control objective) with three terms. The cost function J depends on the horizon length 

N, the initial state x(k) (initial conditions in time k) and the time course of the future 

set-point wN (vector along the control horizon). The solution consists in computation 

of such a vector of system inputs uN, which leads to the minimum of the cost function 

and simultaneously respects all constrains. 
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where A, B, C, D  are parameters of a discrete-time dynamical process model and 

H, h, G, g are parameters of state and input variables constraints. 
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 (1b) 

uN
T = [ uT (k), uT (k+1), … , uT (k+N)] 

yN
T = [ yT (k), yT (k+1), … , yT (k+N)] 

wN
T = [ wT (k), wT (k+1), … , wT (k+N)] 

eN  = wN - yN 

 

where Qx, Q, R  are weighting matrices of particular terms. 

 

The cost function always contains the fundamental control requirement - the term Je 

– the controlled outputs y of the system should follow the set-points w. This basic re-

quirement is usually followed by another term Ju of the cost function. The term Ju im-

plies the control costs - the set-point tracking is desired but not at the cost of arbitrarily 

large control actions. The term Jx in the cost function can be used only in the case of 

finite control horizon and state space description. It introduces into the cost function a 

dependence on the system state at the end of the control horizon called terminal state. 
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The predictive controller design based on input-output description doesn’t use it in a 

basic formulation of the cost function. The terminal state is obviously introduced in the 

extensions concerning to the stability and robustness – see e.g. [9-15]. The terminal 

state brings into the cost function dependence on all state variables. The standard cost 

function depends only on the system outputs (or control error) and it can be independent 

from some state variables – this is given by matrix C. Thus some states can increase ad 

infinitum even if the cost function is finite. In the case of control design based on input-

output models, where state doesn’t exist in a nature form, the terminal state is replaced 

with a sequence of input and output variables. That approach of the terminal state is 

called in the literature as a “terminal constrains” [16-20]. 

In some cases the terminal state is important from the mathematical point of view. 

In case of LQ control design on finite horizon, the mathematical importance of the ter-

minal state is that the matrix Qx determines the initial value of a working matrix which 

is developing by iterating solution of the discrete Riccati equation. 

In literature the terminal state is obviously mentioned only in the context of the con-

troller stability. The use of the terminal state has also an implication to the controller 

performance. The standard formulation of the terminal state in a form of eq. (1b) leads 

to the permanent steady state control error in case of non-zero set-point. This problem 

can be easily solved by the terminal state in a form of the deviation from a the desired 

terminal state xw.  The desired terminal state is a function of the set-point and/or other 

demands. Additional optimization in steady state can be an integral part of the controller 

due to the desired terminal state concept. Under the “optimization in steady state” we 

understand that controller ensures minimum of the weighted quadratic norm of a vector 

of deviations between desired and calculated terminal state. 

Clear and unique additional requirements can be formulated because the state vector 

contains complete information about the state of the system. The predictive controller 

can ensure e.g. demand of minimum energy cost of a system with more inputs than 

outputs (non-square, over-actuated system). Problem how to determine an optimal 

steady state for such systems is discussed e.g. in [21]. 

Application area of predictive control methods is not limited to refinery, chemical, 

pulp and paper industries but it is becoming very broad. It can be advantageously ap-

plied also in transport industry, as demonstrated in [22] for traffic signal control based 

on traffic density prediction or in [23], where the authors propose the MPC algorithm 

for automatic train operation system. 

3 Modified Controller Design 

The controller design starts from a discrete-time state space model of the controlled 

MIMO (Multi-Input Multi-Output) system with nu inputs, nx state variables and ny out-

puts. The model is in a standard form (2a) – we suppose matrix D = 0. 

 
)()(

)()()1(

kk

kkk

Cxy

BuAxx

=

+=+   (2a) 

where u(k) is vector of inputs with size [nu,1], 
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  x(k) is state vector with size [nx,1] and 

  y(k) is the vector of outputs with size [ny,1]. 

 

Matrix equations (2b) describe vector of predicted system outputs yN on the control 

horizon of length N. Vectors yN and terminal state x(k+N+1) depend on the actual state 

x(k) and on a vector of future inputs uN1. 
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uN1
T =[ uT (k), uT (k+1), … , uT (k+N)] 

yN
T  = [yT (k+1), … , yT (k+N)] 

 

Matrices Sxx, Sxu, Syu a Syu depend on the state space model parameters according to 

(2c). 

 

With respect to a terminal state in the cost function (3) in time instant k+N+1, the 

input vector has to be of length k+N and thus the vector is marked as uN1. On the other 

hand the last item in the vector uN1 doesn’t influence output vector yN. Because of this 

the last column of the matrix Syu (2c) is filled with zeros. 
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The cost function in matrix form (3) changes from (1b) because of the terminal state 

application as a deviation from the desired terminal state xw and the vector of manipu-

lated variable ∆uN1 is calculated as a deviations from the supposed future inputs u0,N1. 
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∆x(k+N+1) = xw - x(k+N+1) 

eN = wN - yN 

wN
T = [wT (k+1), … , wT (k+N)] 

∆uN1 = uN1 - u0,N1 

 

where 

N  is length of control horizon, 

xw  is desired terminal state, 

wN is vector of future set-points with size [N×ny,1], 

u0,N1 is vector of supposed future inputs with size [(N+1)×nu,1], 

uN1 is vector of optimal future inputs with size [(N+1)×nu,1], 
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Qx  is terminal state ∆x weighting matrix with size [nx, nx], 

Q  is control error eN weighting matrix with size [N×ny, N×ny] and 

R  is manipulated variable ∆uN1 weighting matrix with size [(N+1)×nu, 

(N+1)×nu]. 

 

First item of the vector uN1 is applied as a control action u(k) every time instant and 

whole procedure is repeated. Constant vector filled with values of u(k-1) is used as 

supposed future inputs (vector u0,N1) in the following simulations. Another possibility 

how to choose the supposed future input vector u0,N1 is to use shifted vector uN1 from 

the previous calculation step. Both approaches are identical in principle but the control 

response differ because of the effect of changed weighting proportions. 

3.1 Desired terminal state 

Computation of the desired terminal state is trivial in case of the system with identical 

number of inputs and outputs and if we consider steady state. The controlled system 

steady state behaviour is given by 
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The solution for the desired output y0=w0 is 
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4 Simulated experiments 

The aim of the following control simulations is to demonstrate the effect of the terminal 

state in predictive controller design to the control quality and stability. The simulations 

are supposed as an ideal case – controlled system is identical with the process model 

used for the controller design and neither noises nor disturbances are considered. The 

controller is designed for the set-point tracking task. 

Two different controlled systems are treated in the simulations. The first system is a 

standard system of a higher order (5a) and the second one is a system with non-mini-

mum phase (5b) - with unstable zero. Both systems have similar settling time (cca. 50 

s). The step and impulse responses of both systems are in Fig. 1 
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Standard predictive controller described in chapter 2 operates without any modifica-

tions with MIMO or SISO systems. The sampling time and the control period is T = 1 

s. The weighting matrices Qx, Q and R are diagonal. All diagonal elements of the 

weighting matrices are constant and their values are chosen so that the weight of every 

term in the cost function is comparable. From this reason the weighting matrices are 

computed as reciprocal quadratic norms of the corresponding steady state vectors ac-

cording to (6). Tuning parameters of the controller are relative weightings  and x. 
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where 

x0  is steady state vector, 

y0N is vector of constant outputs, 

u0N is vector of constant inputs, 

x  is relative weight of matrix Qx, 

  is relative weight of matrix R and 

I  is identity matrix of appropriate dimensions. 

 

 

Fig. 1. Characteristics of controlled systems 

The set-point shape consists from tree parts. The first part takes the same time as a 

control horizon plus 5 sampling periods and the set-point is constant. The second part 

lasts as a system settling time (50 s) and the set-point linearly increases from the first 
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to third part. The third part is as long as the second one and the set-point is constant 

again. The control quality measure is calculated as an integral of the absolute control 

error 
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where NS is number of samples during the control experiment. 

 

The effect of the terminal state can be observed from IAE measure values for simu-

lated control experiments summarized in Tab. 1 for system (5a) and in Tab. 2 for system 

(5b). The control experiments were simulated for several values of control horizon 

length N and terminal state relative weights x. 

 

Table 1. IAE quality measure for system (5a) 

T = 1 s                     = 0.01 

N x = 0.0 x = 0.1 x = 1.0 x = 10 

15 0.3507 4.0338 27.240 65.718 

20 0.4231 4.6390 28.661 62.632 

35 0.4032 3.0894 16.149 30.107 

50 0.4034 1.3764 5.685 9.295 

 

Table 2. IAE quality measure for system (5b) 

T = 1 s                     = 0.01 

N x = 0.0 x = 0.1 x = 1.0 x = 10 

15 unstable unstable 13.878 10.911 

20 unstable 10.842  7.697  8.017 

35 4.0766  1.769  2.117  3.069 

50 1.2727  0.658  0.807  1.239 

 

The control responses of two selected control experiments are plotted in Fig. 2a – con-

trolled system (5a) and in Fig. 2b – controlled system (5b). Both experiments are con-

sidered with same parameters – the length of the control horizon is N = 35 and the 

relative gain of the terminal state is x = 0.1. 
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Fig. 2a. Control response of system (5a) 

 

Fig. 2b. Control response of system (5b) 
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5 Conclusion 

Effect of the terminal state to the stability of the control is definitely positive. Even in 

the case of wrong choice of the controller parameters (control horizon is too short) the 

terminal state increases dramatically the controller stability. 

Nevertheless the control quality is obvious worse if the terminal state is used. The 

control deterioration is evident even if the terminal state was considered in a form of 

the deviation from the desired terminal state calculated from the steady state. The de-

viation form solves the main problem – permanent control error in the steady state. 

Control quality decrease is caused by stronger effect of the terminal state in the cost 

function then the other two terms (although in one point of the control horizon). This 

statement isn’t true generally because the effect depends on the controlled system and 

on the controller parameters - firs of all on the length of the control horizon. 

This effect was strong especially by the control of the system (5a). The cost function 

minimization leads to a large initial items of the calculated vector ∆uN1 even if only one 

item of the set-point vector wN is changed at the end of the horizon - the last item of the 

vector w(k+N+1). This situation is demonstrated in Fig. 3. The relative weight of the 

terminal state deviation is x = 1.0. The diagonal elements of matrix Qx = 1.6e-8, diag-

onal elements of matrix Q = 2.94e-2 and diagonal elements of matrix R = 2.85e-1. 

 

 

Fig. 3. Prediction along control horizon 
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controller more complicated and we will lose interesting feature for the steady state 

optimisation especially for nonsquare systems. 
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