
Singularity Subtraction in a Multidimensional Fredholm
Integral Equation of the Second Kind with a Singular Kernel

Josef Rak1,a)

1University of Pardubice, Faculty of Electrical Engineering and Informatics, Studentska 95 532 10 Pardubice, Czech
Republic. Some results were obtained by author’s doctoral study in Charles University in Prague, Faculty of

Mathematics and Physics, Department of Numerical Mathematics

a)Corresponding author: josef.rak@upce.cz
URL: http://fei.upce.cz

Abstract. A numerical solution of the Fredholm integral equations can be obtained by many methods. Most of them lead to a
solution of a system of linear equations with fully populated matrices. In the case of collocation or product integration methods,
each element of the matrix is an integral, which needs to be calculated. It causes high computing time in multidimensional problems.
Computing time can be reduced by the Nyström method. It is based on substitution of the integral by a numerical integration rule.
It has the advantage that only diagonal elements of the matrix are integrals. When the kernel function is singular, a singularity
subtraction is needed. However it can not be used for every kernel function and every integration rule. The main point of this paper
is the convergence conditions of the Nyström method as applied to a special multidimensional integral equation. The paper includes
an illustrative example.

INTRODUCTION

Let us have an integral equation of the second kind of the form

λy(x) −
∫

D
k(x, t)y(t)dt = f (x), x ∈ D, λ , 0, (1)

where D ⊂ Rm (m ≥ 1) is a closed, bounded and connected set. Assume that the kernel function k(x, t) is singular
when x = t. Such a kernel function includes k(x, t) = r−1(x, t), where r(x, t) is the Euclidean distance. The existence
and uniqueness of the solution is done by operator calculus and is well described by many books (for example [1]).
Equation (1) is rewritten into an operator form (λI − K)y = f , where the integral operator K is defined by

Ky(x) =

∫
D

k(x, t)y(t)dt. (2)

Assume that the operator K is a compact operator on C(D). Compactness of operator K can be proved for k(x, t) =

r−1(x, t) if m = 1, 2, 3. From the Fredholm alternative theorem (1) has a unique solution if λ , 0 is not an eigenvalue
of operator K .

NYSTRÖM METHOD

One numerical method for solution of (1) is the Nyström method. It is based on the substitution of the integral by a
numerical integration rule. The kernel function k(x, t) is singular when x = t. So the numerical integration rule can not
be used directly. First let us rewrite (1) into the form as in [4][

λ −

∫
D

k(x, t)dt
]

y(x) −
∫

D
k(x, t)

[
y(t) − y(x)

]
dt = f (x). (3)



By replacement of the kernel function k(x, t) with its bounded approximation kn(x, t) in the second integral on the left
hand side of (3), substitution of the second integral in (3) with a numerical integration rule, and running x through
the numerical integration rule node points, we get a system of linear equations for the numerical solution yn(xi) at the
node points xi λ +

n∑
j=1, j,i

ω jkn(xi, x j) −
∫

D
k(xi, t)dt

 yn(xi) −
n∑

j=1, j,i

ω jkn(xi, x j)yn(x j) = f (xi), (4)

where ωi are the integration rule’s weights. The numerical solution at other points x ∈ D is obtained by the interpola-
tion formula

yn(x) =
f (x) +

∑n
j=1 ω jkn(x, x j)yn(x j)

λ +
∑n

j=1 ω jkn(x, x j) −
∫

D k(x, t)dt
. (5)

The integral in (4) and (5) can be calculated analytically or by some special numerical integration rule. Construction
of the bounded approximation kn(x, t) is also important. Convergence of this method requires special conditions for
the kernel function k(x, t) and the numerical integration rule. In a one-dimensional case the construction of kn(x, t)
and convergence conditions were done by Anselone’s theory of collectively compact operators (see [2]) and can be
found in [3]. Generalization to multidimensional problems was done by the author in his doctoral thesis [6]. The most
important results are summarized in the following two sections.

KERNEL FUNCTION CONDITIONS
In this section let us formulate conditions for the kernel function. Assume that there exists a function h ∈ C(D × D)
and the positive non-increasing function g ∈ C(0,∞), which satisfies

lim
t→0+

g(t) = ∞, (6)

such that the kernel function is of the form

k(x, t) = g(r(x, t))h(x, t). (7)

Assume that there exists a constant cD < ∞ such that

max
x∈D

∫
{t,r(x,t)<RD}

g(r(x, t))dt ≤ cD, where RD = max
x,t∈D

r(x, t). (8)

and
lim
ν→0

max
x∈D

∫
{t,r(x,t)<ν}

g(r(x, t))dt = 0. (9)

Then kernel function approximation is defined by

kn(x, t) = gµn (r(x, t))h(x, t), where gµn (u) =

{
g(u), if u ≥ µn
g(µn), if u < µn,

(10)

where µn is a positive decreasing sequence which has

lim
n→∞

µn = 0. (11)

Note that gµn ∈ C[0,∞) is also a positive and non-increasing function for all n.

NUMERICAL INTEGRATION RULE CONDITION

Now let’s formulate important conditions for the numerical integration rule. Assume that it is convergent for all
continuous functions and has positive weights. Let us define

ωn = max
j=1,...,n

ω j. (12)



For the sequence µn assume that
µm

n ≥ ρ
mωn, (13)

where 0 < ρ < ∞. Also assume that there exists µ < ∞ such that

g(µn)ωn ≤ µ for all n. (14)

Finally assume that there exist constants c < ∞ and 0 < ξ < ∞ such that for all positive, non-increasing function
z ∈ C[0,∞) and x ∈ D, it holds ∑

j,r(x,x j)≤ξ

ω jz(r(x, x j)) ≤ c
[
z(0)ωn +

∫
{t,r(x,t)≤ξ}

z(r(x, t))dt
]
. (15)

Now let us formulate two theorems for multidimensional integration rules that satisfy condition (15).

Theorem 1 Let the domain D = {(x1, x2), a ≤ x1 ≤ b, c ≤ x2 ≤ d} be a rectangle partitioned by n1n2 sub-
rectangles (n1 in x1 direction and n2 in x2 direction). Let h1 = (b − a)n−1

1 and h2 = (d − c)n−1
2 . Let z ∈ C[0,∞) be a

positive and non-increasing function. Let the numerical integration rule be the compound mid-rectangular rule and
assume that there exists 1 ≤ α < ∞ such that h1 = αh2. Then there exist constants c and ξ such that (15) is satisfied.

Theorem 2 Let the domain D = {(x1, x2, x3), a ≤ x1 ≤ b, c ≤ x2 ≤ d, e ≤ x3 ≤ f } be a cuboid partitioned by
n1n2n3 sub-cuboids (n1 in x1 direction, n2 in x2 direction and n3 in x3 direction). Let h1 = (b − a)n−1

1 , h2 = (d − c)n−1
2

and h3 = ( f − e)n−1
3 . Let z ∈ C[0,∞) be a positive and non-increasing function. Let the numerical integration rule be

the compound mid-cuboid rule and assume there exists 1 ≤ β ≤ α < ∞ such that h1 = αh3 and h2 = βh3. Then there
exist constants c and ξ such that (15) is satisfied.

Note that the assumptions of type h1 = αh2 can be changed to h2 = αh1 in theorem 1. Similar assumption in theorem
2 can be also changed. These assumption are only technical.

INTEGRAL EQUATION FOR INDUCTION HEATING

Let use the theory above to compute Joule losses in the cuboid metal body Ω1 = {(x1, x2, x3), a ≤ x1 ≤ b, c ≤ x2 ≤

d, e ≤ x3 ≤ f }, which is heated by a coil Ω2. The formula for Joule losses (see [5]) is

ωJ(x) =
1
γ

Je(x)Je(x), (16)

where

Je(x) =

√
[ReJeddy,x1 (x)]2 + [ReJeddy,x2 (x)]2 + [ReJeddy,x3 (x)]2+ι

√
[ImJeddy,x1 (x)]2 + [ImJeddy,x2 (x)]2 + [ImJeddy,x3 (x)]2,

Je(x) is a complex conjugate to Je(x), Jeddy = (Jeddy,x1 , Jeddy,x2 , Jeddy,x3 ) is a phasor of the eddy currents of density. The
eddy currents of density phasor is obtained by

ιJeddy(x) − κ(x)
∫

Ω1

Jeddy(t)
r(x, t)

dt1dt2dt3 = κ(x)Iext

∫
Ω2

dl(s)
r(x, s)

, where κ(x) =
ωγ(T (x))µ0

4π
, (17)

where x, t are points in the heated body, s is a point at the inductor, r(x, t) is the Euclidean distance, ι is a complex
unit, µ0 is the permeability of vacuum, dl(s) is a length element of the inductor, ω denotes angular frequency of the
field current, γ denotes the temperature dependent electrical conductivity of the metal, Iext is field current and T (x) is
the temperature in the body at point x. Equation (17) is of the form (1) with λ = 1, k(x, t) = −ικ(x)r(x, t)−1 and

f (x) = −ικ(x)Iext

∫
Ω2

dl(s)
r(x, s)

.

Using sphere coordinates, the corresponding integral operator can be proved to be a compact operator on C(D). With
1
κ
-weighted inner product, the integral operator is antisymmetric and λ = 1 is not its eigenvalue. So equation (17) has



a unique solution. Let the numerical integration rule be a compound mid-cuboid rule with n sub-cuboids. The kernel
function k(x, t) is of the form (7) with h(x, t) = −ικ(x) and g(u) = u−1. By (10) we have the bounded approximation

kn(x, t) =
−ικ(x)
rn(x, t)

, where rn(x, t) =

{
r(x, t) if r(x, t) ≥ µn
µn if r(x, t) < µn

and µn =
3

√
(b − a)(d − c)( f − e)

n
. (18)

Such a kernel function and its approximation can be proved to satisfy conditions (6)-(11). The compound mid-
cuboid rule and kernel function can be proved to satisfy conditions (13), (14). Finally by theorem 2 the compound
mid-cuboid rule satisfies (15). For detail see [6]. So, conditions for a convergence of the described method are satisfied.

EXAMPLE

A brass cuboid body with the sizes 0.15 × 0.01 × 0.01 m is heated with a stationary inductor starting at a room
temperature of 20 ◦C. The inductor is a coil which turns around the heated body in the x1-direction in 6 loops. The
radius of the coil is 0.015 m, exciting current is 500 A and frequency is 150 kHz. The length of the coil is 0.15 m. The
cuboid is partitioned by 75 elements in x1 direction, 5 elements in x2 and x3 direction. The middle picture in figure
1 shows the Joule losses at the x1 axes with x2 = −0.004. The third picture shows Joule losses at the x1 axes with
x2 = 0. The blue color matches x3 = −0.004, the red color matches x3 = 0 and the black color matches x3 = 0.004.

FIGURE 1. Induction heating example - Joule losses

CONCLUSION

The disadvantage of the Nyström method with singularity subtraction is error analysis. It has special conditions for
the kernel function and the integration rule. However it has lower computing time. If we compare computing time
on Windows 7 operating system with Intel Core i5 and 4GB RAM we get approximately 2 minutes for the Nyström
method and approximately 12 minutes for piecewise constant collocation. This is the goal of described method .
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