Comparison of ReLLU and linear saturated activation
functions 1n neural network for universal
approximation

Dominik Stursa
Faculty of Electrical Engineering and Informatics
University of Pardubice
Pardubice, Czech Republic
dominik.stursa@student.upce.cz

Abstract—Activation functions used in hidden layers directly
affect the possibilities for describing nonlinear systems using a
feedforward neural network. Furthermore, linear based activa-
tion functions are less computationally demanding than their
nonlinear alternatives. In addition, feedforward neural networks
with linear based activation functions can be advantageously
used for control of nonlinear systems, as shown in previous
authors’ publications. This paper aims to compare two types
of linear based functions - symmetric linear saturated function
and the rectifier linear unit (ReLU) function as activation
functions of the feedforward neural network used for a nonlinear
system approximation. Topologies with one hidden layer and the
combination of defined quantities of hidden layer neurons in the
feedforward neural network are used. Strict criteria are applied
for the conditions of the experiments; specifically, the Levenberg-
Marquardt algorithm is applied as a training algorithm and the
Nguyen-Widrow algorithm is used for the weights and biases
initialization. Three benchmark systems are then selected as
nonlinear plants for approximation, which should serve as a
repeatable source of data for testing. The training data are
acquired by the computation of the output as a reaction to a
specified colored input signal. The comparison is based on the
convergence speed of the training for a fixed value of the error
function, and also on the performance over a constant number
of epochs. At the end of the experiments, only small differences
between the performance of both applied activation functions
are observed. Although the symmetric linear saturated activation
function provides the lesser median of the final error function
value across the all tested numbers of neurons in topologies, the
ReLU function seems to be also capable of use as the activation
function for nonlinear system modeling.

Index Terms—Feedforward neural network, linear saturated
activation function, rectified linear activation function, nonlinear
system identification

I. INTRODUCTION

Various successful applications of artificial neural networks
exist these days. For instance, neural networks are applied in
process identification, function approximation, pattern recog-
nition, time series prediction and many other examples through
the various fields, as summarized in [1] or in [2],

Generally, an artificial neural network is a complex structure
with many parameters needed to be selected in order to find
the best behavior and results. For example, topology, method
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of weight initialization, particular activation function selection,
and training algorithm implementation.

New various topologies of neural networks have been pro-
posed and tested recently. However a classical feedforward
neural network still remains as one of the most popular archi-
tectures. One of the main advantages of the feedforward neural
network architecture is the huge set of methods for training,
starting with a well-known backpropagation training algorithm
introduced by [3] and Levenberg-Marquardt algorithm, which
is considered as one of the most effective algorithms for batch
training, as presented in [4]. In addition, the process of the
selection of suitable topology is well examined and naturally
causes better efficiency of specific applications.

Every neuron in an artificial neural network is characterized,
among others, by its own activation function. For the learning
process, most of algorithms need to know a derivation of the
activation function in order to work sufficiently. Thus, it is a
good practice to implement continuous and smooth types of
activation functions. However, authors in [5], [6] showed that
a particular selection of the activation function can provide
a very suitable tool for control of nonlinear systems. To be
more specific, if a piecewise linear activation function is used,
the neural network is able to provide a linear model of the
nonlinear system in a very effective way. This model can be
then used for local tuning of any type of controller.

Another significant effect to the performance of the network
is caused by the initialization of weights at the beginning of the
training. Since sophisticated methods mostly do not provide
stable performances generally, the initial weights are settled
either randomly, or using some simple methods as can be
found in [7].

The main idea of article is based on possibility for nonlinear
system approximation by an artificial neural network with
linear based activation functions. Specifically, the concept was
introduced in [5] and [6], where symmetric linear saturated
functions as activation functions are proposed. However, other
possibilities are available, too. Thus, the application of ReLU
activation is naturally suggested, since ReLLU functions are
often used in various other topologies of neural networks with



positive results.

The paper is structured as follows. Firstly, the problems to
be solved are formulated in next section. Then, the conditions
and parameters of the experiments are comprehensively de-
fined and, at the end of the paper, the results are discussed.

II. PROBLEM FORMULATION

As an addition to the approximation procedure with
piecewise-linear feedforward neural network introduced in [6],
where a symmetric linear saturated activation function is used
in hidden layer, a ReLU activation function is considered in
this contribution, since it can be used for a nonlinear system
approximation in a very similar way. In addition, its evaluation
is probably even more efficient in comparison to a symmetric
linear saturated activation function. The performance results
between both approaches are then compared.

The standard multilayer feedforward neural network with
only one hidden layer is capable of approximating any math-
ematical function with a specified accuracy as proven in [8].
According to that source, hidden layer neurons need to contain
squashing activation functions and the output layer neuron
should contain a non-squashing activation function. In the use
of practical applications, monotonic and continuous functions
in hidden layer neurons are mostly used, as recommended
in [9]. For the purposes of this research, a symmetric linear
saturated activation function and the ReL.U activation function
are considered for neurons in the hidden layer, and the linear
identical activation function is always used in the output layer.
Therefore, the mentioned premises are fulfilled, although the
ReLU function is just squashed from below.

The results published in [6] indicate that the approximations
of a nonlinear system with a feedforward neural network,
when linear based activation functions are implemented, are
achievable. In the mentioned research, only the symmetric
linear saturated activation function is considered. The aim
of this paper is to propose an approach with the ReLU
activation function instead of the symmetric linear saturated
activation function, since it seems to be even less computation-
ally demanding. However, its approximation qualities for the
purposes of modeling of nonlinear dynamical systems need
to be examined. Therefore, as the initial step in this field,
a comparison of their efficiency and performance for three
benchmark systems is considered.

A. Tested activation functions

As mentioned above, two linear based activation functions
for the purposes of approximation of benchmark systems are
examined in this paper. Although these activation functions are
not as robust and suitable for approximation as some smooth
nonlinear activation functions, they are less computationally
demanding and the main reasons for using them in automation
and process control are described in [5] and [6].

1) Symmetric linear saturated activation function: This
activation function is proposed in [5] as a crucial part of
the artificial network called a piecewise-linear neural network
(PWLNN).

The symmetric linear saturated activation function is defined
as follows.

1 for Ya,i > 1
Yi =94 Yo for 1<y, <1 (D
-1 for Ya,i <1

where y; is the output from the activation function while y, ;
is its input.

2) ReLU activation function: Rectified linear unit (ReLU)
used as an activation function performs a threshold operation
for every input value, where any values less than zero is set
to zero. For the input value bigger or equal to zero it acts as
a linear identical function. The ReLU activation function is
defined as follows.

Yaq,i for

in{ 0 for

where y; is the output from the activation function while ¥, ;
is its input.
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B. Experiment procedure

The neural network and its design is a complex procedure,
which involves initialization of weights and biases, training
and testing data set acquisition, and pruning and validating of
a neural network.

Initialization of weights and biases can significantly affect
the training speed and even a final state of the trained neural
network. In our experiments, the Nguyen-Widrow method is
implemented as defined in [7].

The data sets for our experiments consist of input and output
values of three nonlinear benchmark systems and they are
described in the following section.

Generally, neural network training means using a set of
observations to find optimal (in some sense) values of weights
and biases of a trained neural network. In this paper, the
Levenberg-Marquardt training algorithm is used, since it is
broadly considered as one of the most effective algorithms for
a lot of the applications as described in [10].

Optimization of the topology is not considered here and
various topologies are presented below. In addition, feedfor-
ward neural networks with just one hidden layer and a set of
specified numbers of neurons are used for the purposes of our
experiments, since this type of topology is, in general, capable
enough to approximate any mathematical function.

Two sets of experiments are performed - speed during train-
ing for a fixed error function value and a training performance
over a defined constant number of epochs.

1) Performance: Feedforward neural networks, settled with
mentioned approaches, are trained over a defined number of
epochs and the final error function value is observed at the
end of the training procedure.

2) Convergence speed: In this type of experiment, various
network topologies are trained to achieve a defined goal, (a
specific error value), while the number of epochs needed to
achieve the goal is measured.



III. CONDITIONS OF THE NUMERICAL EXPERIMENTS
A. Data for training

Three benchmark nonlinear systems (adapted from [11]),
each with one input and one output, are chosen as systems for
identification. These nonlinear systems are described by the
following equations.

y(n) = 0.9z(n) + 0.8sin(rz(n))+
0.5cos(rz(n — 1)) + 0.1sin(rz(n — 2))
+ 0.08cos(ma(n — 4)) — 0.3cos(mxz(n — 15)), (3)

y(n —1)

_ 3

y(n)

y(n) = 0.6sin®(x(n)) — 0.1cos(4rz(n — 4)) +1.21.  (5)

The training data for each system are acquired by the
computation of the output in reaction to a specified colored
input signal. The colored input signal is generated by passing
white noise with zero mean and variance equal to 0.001
through the following model (used in [11])

1405271 4+0.81272
- 1-0.59z71 + 04272

Experiments are performed with three datasets where each
one is composed by the set of input values and corresponding
set of output values. In the first and the third system, only
previous and actual values of the input signal in combination
with the actual output value are used. The second system
output depends on the previous output value and the actual
input value.

The data from the datasets are divided into three subsets
for neural network training process purposes. The training set
contains 70 % of the samples, while both testing and validation
sets contain 15 % of the data.

M(z) (6)

B. Used topologies

Feedforward neural networks with one hidden layer are used
for training. The exact topologies are shown in Fig. 1. The
number of hidden layer neurons is variable for all sets of
trainings. The number of hidden layer neurons is continuously
being increased in the sequence of 2, 3, 4, 6, 8, 10 and 15
neurons for every dataset. Thus, for example two neurons in
the hidden layer are used for the first training set for each
system.

C. Parameters for the experiments

The Levenberg-Marquardt algorithm is used for all trainings
and the Nguyen-Widrow algorithm is implemented to set the
initial weights and biases of the networks.

Both types of experiments are related to the mean square
error, defined as follows.

1 N
Eual = N Z[O(l) - y(l)]27 (7)
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Fig. 1. Topologies used in experiments

where N is the number of the samples in the validation set,
o(i) is the 7*" desired output and (i) is the actual output from
the net.

As mentioned above, two types of experiments are con-
sidered in this research. The parameters of the first type
(performance) are summarized in Table I, while the second
type experiment (convergence speed) parameters are shown in
Table II.

IV. RESULTS AND DISCUSSION

The experiments according to the information summarized
in the previous section are performed using a special hardware
suitable for parallel processing. In particular, the Jetson AGX
Xavier Developer Kit is used - see Fig. 2.

As a development tool, Python 3.6 with TensorFlow library
(see [12]) is implemented. The results of the experiments are
shown in Figs. 3 to 8 below. The central lines in the box
graphs, shown in the figures, are medians; the edges of the
boxes are 25t and 75" percentiles; and the whiskers extend to

TABLE I
PARAMETERS FOR THE PERFORMANCE EXPERIMENTS

Training algorithm
Initialization

Levenberg-Marquardt algorithm
Nguyen-Widrow method

Number of experiments 200
Number of samples 10000
Maximum epochs 1000

Desired value of E, 4 0
Stopping criterion Maximum epochs reached

Adaptive coefficient p 0.001
Increment g 10
Decrement 0.1




Fig. 2. Jetson AGX Xavier Developer Kit

the most extreme data points (except outliers). In the captions
of the figures, SLS means symmetric linear saturated activation
function, ReLU means rectified linear unit activation function.

The results of the performance experiments are also summa-
rized in Table III. Medians for each system and both activation
functions are showed there. Looking at the results, one can say,
that both activation functions lead to the successful approxi-
mation of every system. For the first and second system, the
error decreases with a higher number of hidden layer neurons.
Comparing medians in these two systems, the symmetric linear
saturated function provides slightly better results. Medians of
the third system, through all topologies and both activation
functions, are very similar.

Table IV summarizes the results of the second set of the
experiments. Medians for each system and both activation
functions are shown in the table. The required goal is not
always met only for the third system, where epochs needed to
train the FFNN are increasing with more neurons in the hidden
layer. For other systems both activation functions provide very
similar results.

V. CONCLUSION

The complexity of training of the neural networks with
linear based activation functions is discussed in this paper.
To be more specific, a comparison of symmetric linear sat-
urated and rectified linear unit activation functions for the
purposes of nonlinear system approximation is examined. The
experiments indicate that there are only small differences in
both performance and convergence speed between the results

TABLE I
PARAMETERS FOR THE CONVERGENCE SPEED EXPERIMENTS

Training algorithm Levenberg-Marquardt algorithm

Initialization Nguyen-Widrow method
Number of experiments 200

Number of samples 10000

Maximum epochs 1000

Desired E,,; for system (3) 9.10—6

Desired E,,; for system (4) 1-10-6

Desired E,,; for system (5) 8.10~%

Stopping criterion Desired E,,; reached
Adaptive coefficient p 0.001

Increment g 10
Decrement p 0.1

of the compared activation functions. Therefore, the ReLU
function seems to be capable of nonlinear system modeling
as appropriately as the symmetric linear saturated activation
function. This observation could bring a decent computational
complexity decrease in process control and automation appli-
cations.
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TABLE III
MEDIANS OF RESULTING E,,,; FOR PERFORMANCE EXPERIMENTS

Neurons 2 3 4 6 8 10 15 15
System (3) with SLS 7.59E-05 | 2.92E-05 1.82E-05 1.09E-05 | 6.97E-06 | 4.37E-06 1.99E-06 1.99E-06
System (3) with ReLU 1.07E-04 | 6.40E-05 | 2.70E-05 1.22E-05 | 7.61E-06 | 4.71E-06 | 2.19E-06 | 2.19E-06
System (4) SLS 3.09E-06 | 2.44E-06 | 7.05E-07 | 2.49E-07 1.06E-07 | 5.18E-08 1.77E-08 1.77E-08
System (4) with ReLU | 2.11E-05 | 2.82E-06 | 9.29E-07 | 7.01E-07 | 2.56E-07 | 2.08E-07 | 5.70E-08 | 5.70E-08
System (5) with SLS 8.84E-04 | 8.77E-04 | 8.77E-04 | 8.75E-04 | 8.78E-04 | 8.75E-04 | 8.73E-04 | 8.73E-04
System (5) with ReLU | 8.80E-04 | 8.76E-04 | 8.79E-04 | 8.72E-04 | 8.72E-04 | 8.74E-04 | 8.78E-04 | 8.78E-04
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Fig. 3. Final values of E,,; for system (3). Neural networks with SLS (left) and with ReLU (right).
104 10
oo I +
10° 10
@ i [ B
W 10°E é i et : _ +
. L L
¥ i i . T
107 L El i ;L L T E| jf
i E 107 | ! E| ]
i I
1 E| L ‘
108 |
. . 108 . . I
2 3 4 6 2 3 4 6 8 10 15
Topology Topology

Fig. 4. Final values of E,,; for system (4). Neural networks with SLS (left) and with ReLU (right).
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TABLE IV

MEDIANS OF RESULTING NUMBERS OF EPOCHS FOR CONVERGENCE SPEED EXPERIMENTS

Neurons 2 3 4 6 8 10 15
System (3) with SLS 42 | 51 | 67 76 13 9 8
System (3) with ReLU | 42 | 53 | 59 70 17 10 8
System (4) with SLS 32 | 21 10 8 7 7 6
System (4) with ReLU | 28 | 28 | 17 10 7 7 6
System (5) with SLS 72 | 88 | 102 | 114 | 152 | 190 | 254
System (5) with ReLU | 44 | 49 | 65 77 111 | 159 | 295
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Fig. 6. Final numbers of epochs for system (3). Neural networks with SLS (left) and with ReLU (right).
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