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Abstract—The goal of this contribution is to determine cor-
relation between an applied sensor for object registration and
the success rate of the bin-picking problem. In most applications
of a bin picking problem in industry, the procedure consists of
two consecutive steps. The first step provides an initial guess of
both position and rotation angle of the object to be registered,
while the second one improves the exact pose accuracy, as
required in following tasks. The second step can be, among others,
implemented by the Iterative Closest Point Algorithm (ICP). It
is well known that the ICP algorithm is very sensitive to the
initial guess of the position and rotation angle of the object.
Another interesting feature, especially from the technicians point
of view, is the sensitivity of the ICP algorithm in relation to the
applied sensor. Therefore, one particular bin picking application,
involving complex irregular objects, is examined in this paper.
Various kinds of sensors for 3D scene reconstruction are em-
ployed and, as a result of this contribution, a comprehensive
set of relations between sensor quality and the ICP algorithm
sensitivity is formulated.

Keywords—Bin Picking;
Robotic Arm.

Point Clouds; Pose Estimation;

I. INTRODUCTION

With the increasing interest in regards to industrial automa-
tion, many results of fundamental research related to robotics
are being applied to industrial production. The automotive
industry is a great example of this procedure [1], since
this sector is irrepressibly forced into automation by both
great demand for products and lack of adequate manpower.
Many problems, that are not particularly interesting from an
academic point of view, arise as a natural result of automation.
On the other hand, the mentioned problems are very relevant
for engineers, who implement the systems of automation into
assembly lines.

The bin picking problem is, without any question, one of the
typical instances. Although a theoretically solved issue, it still
offers many practical problems to deal with [2]. Generally, a
bin picking problem solution provides a robotic arm(s) capable
of grabbing a particular object and placing it in a defined
position. It should include any initial position and rotation
angle of the object as well as possible obstacles and barriers
in an operating area. A very detailed survey of bin picking
implementation and applications can be found in [3].
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This contribution deals with the first challenge of the bin
picking problem chain. In order for successful performance,
the object of interest has to be precisely registered, i.e. its
position and rotation angle of the particular object has to be
estimated among other objects, considering various limitations.
Many different techniques have been proposed during the last
decades [4], [5], [6]. Almost every proposed approach uses
some sort of computer vision. However, due to an increasing
availability of laser scanners, point clouds are more frequently
being implemented for object registration [7]. Consequently, a
new set of registration algorithms becomes available, Iterative
Closest Point (ICP) algorithm being one of them [8].

One of the crucial features of the ICP algorithm is its
sensitivity to an initial guess of a position and rotation angle
of the registered object [9]. Apparently, the sensitivity rate
depends on an immense set of features, including size and
complexity of the object or the resolution of the point cloud
[10]. Thus, it is not possible to analytically determine the
required initial guess accuracy for arbitrarily shaped objects of
interest. Therefore, a sensitivity rate relevant to the particular
conditions of the application should be estimated in order to
develop a robust bin picking application.

This contribution follows the article published in [11],
where the authors investigate the relationship between the
initial guess accuracy and the ICP algorithm convergence for
one particular bin picking application, involving a PhoXi 3D
laser scanner as a source of point cloud. The Phoxi 3D scanner
family of laser scanners by Photoneo is a cutting edge set of
sensors designed directly for bin picking. However, acquisi-
tion and installation costs are enormous compared with less
accurate, but much cheaper 3D sensors. Therefore, the goal
of this contribution is to determine the correlation between an
applied sensor for object registration and the success rate of
the bin-picking problem. Still, the investigation is performed
in the framework of [11], i.e. the same bin picking problem
is considered.

The paper is structured as follows. The problem is formu-
lated in Section II. Then, a set of experiments suitable for the
problem solution process is introduced in Section III and the



Fig. 1: UR3 by Universal Robots.

Fig. 2: Object of interest.

results are discussed in Section IV. Eventually, the paper is
concluded in Section V.

II. PROBLEM FORMULATION

A long-term contractor of the University of Pardubice asked
for the improvement of an existing pick and place system. A
UR3 type robotic arm by Universal Robots (see Fig. 1) is used
to pick an object of interest and place it to a defined position
for subsequent processing.

The aim of the setting is to find a position of an optimally
located object (see Fig. 2) in a box of scattered pieces (see
Fig. 3), grab it and move to a desired position. The object
registration, as a part of the pick and place procedure, is used
as follows [11].

o Get the 3D point cloud of the object of interest and the
3D point cloud of the scene as the inputs to the procedure;

« get the initial guess of the optimal position and rotation
angle;

o use the ICP algorithm for iterative accurate registration
of the object.

The ICP algorithm is an iterative method to align two
objects using point clouds. Hence, if the position and rotation

Fig. 3: Bin with components.
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Fig. 4: ICP algorithm.

angle of one point cloud is set, it iteratively searches for a par-
ticular operation composed of translation and rotation, which
transforms the other point cloud to the pose which minimizes
differences between each couple of corresponding points found
in both point clouds. The process of the ICP algorithm is
depicted in Fig. 4, see [8] for a detailed description of each
step. Practically speaking, the aim is to find a compromise
between the accuracy and the acquisition cost of the 3D sensor.

Since the ICP is the iterative algorithm, an initial guess is



| S
A

O
3D sensor

120cm——»

Bin

<4“—30cm—»

Fig. 5: Settings of experiment.

required to be set. Much like other iterative methods, the ICP
algorithm can diverge with an inappropriately selected initial
guess. The safe distance (uncertainty) of the initial guess in
both position and rotation angle, suitable enough for the ICP
algorithm to converge, is dealt with in [11]. However, just one
type of 3D sensor is considered in the cited source. Therefore,
the idea to be examined in this contribution is the affect of
the safe uncertainty of the initial guess on the quality and
features of the 3D sensor. In the engineering point of view,
the goal is to find sufficiently accurate 3D sensor, which is
simultaneously as low-cost as possible.

Thus, a set of experiments is performed in order to achieve
the goal. In the following subsections, the particular setting
of the pick and place system is described. Then, the list
of possible 3D sensors is provided and, finally, the set of
experiments to accomplish the goal is defined.

III. EXPERIMENTS

A. Setting of the system

An experimental stand is prepared to emulate the situation
in an industrial environment. It consists of a UR3 robotic
arm with a payload of 3 kg, a 360-degree rotation on all
wrist joints, and an infinite rotation on the end joint. Its reach
exceeds 50 cm. Moreover, the stand is equipped with a 3D
sensor situated above the scene. A bin with the objects of
interest is located near the base of the robotic arm. The floor
dimensions of the bin are 45 x 30 cm, the maximum thickness
of the layer of objects is 10 cm. The setting is shown in Fig. 5.

B. Possible 3D sensors

Three types of 3D sensors, which are currently available for
testing, are considered as possible sources of 3D point clouds.

1) Phoxi 3D scanner L: Phoxi 3D scanners by Photoneo
are 3D scanners based on the parallel structured light. PhoXi
3D Scanner L is able to scan the volume of 110 x 80 x 90 cm
with point to point distance less than 0.6 mm. The standard
price of PhoXi 3D Scanner L according to the price list is
12,450.00 €. More information can be found in [12].

Fig. 6: Phoxi 3D scanner L.

Fig. 7: Intel RealSense Depth Camera D415.

2) Intel RealSense Depth Camera D415: Intel RealSense
technologies provide computer vision capabilities by equip-
ping devices with the ability to see, understand, interact with,
and learn from their environment. The Intel RealSense Depth
Camera D415 is based on Active IR Stereo technology. It
provides up to 1280 x 720 active stereo depth resolution with
minimum depth distance of 16 cm and maximum range more
than 10 m. The frame rate is up to 90 fps. Its price starts
at 208.00 € according to a worldwide comparison of e-shops.
More information is available in [13].

3) Microsoft Kinect v2 sensor: Microsoft Kinect family of
devices is a well-known group of sensors especially due to
their application for home gaming systems. However, it has
been applied for many other purposes, too. Kinect v2 sensor
is based on Infra Red Time of Flight principle. It provides
512 x 424 pixels resolution with a field of view 70 x 60 degrees
and 30 frames per second. Operative measuring range is from
0.5 to 4.5 m. Microsoft Kinect can be acquired for less than
200 € according to the worldwide e-shops comparison. It is,
however, no longer produced and is expected to be replaced
with a new version. More information can be found in [14].

For a preliminary comparison, the point clouds acquired by
all the sensors are depicted in Figs. 9, 10 and 11. The figures
demonstrate the accuracy of the point clouds, which should
illustrate the shape of the object of interest. Apparently, there
are big differences between the qualities of the sensors.

Fig. 8: Microsoft Kinect v2 sensor.



Fig. 9: Point cloud of object of interest gained using Phoxi 3D scanner L
(172800 points).

Fig. 10: Point cloud of object of interest gained using Intel RealSence
Depth Camera D415 (3271 points).

C. Settings of experiments

A comprehensive set of many scenarios has been performed
in order to achieve enough information for the suitable 3D
sensor selection. In the following paragraphs, three types of
Monte Carlo testing scenarios are presented, since, according
to the authors’ opinion, they are considered as the most
representative ones.

1) Scenario 1:

o The position and rotation angle of the object of interest
in a bin is known;

o The initial guess is put to a random position according
to the following rules:

Fig. 11: Point cloud of object of interest gained using Microsoft Kinect v2
sensor (7434 points).

— The rotation angle « of the initial guess is equal to
the rotation angle of the object of interest;

— The x, y and z coordinates of the initial guess are
moved to a random position relative to the position of
the object of interest. The maximum distance in the x
and y coordinates is 200 mm, in the z coordinate 100
mm, uniform distribution of probability is applied;

o The ICP algorithm for iterative accurate registration of
the object is used.

2) Scenario 2:

o The position and rotation angle of the object of interest
in a bin is known;

o The initial guess is put to a random position according
to the following rules:

— The x, y and z coordinates of the initial guess are
equal to the position of the object of interest;

— The rotation angle « of the initial guess is set to a
random value between 0° and 90° from the rotation
angle of the object of interest. Uniform distribution
of probability is applied. Counter-clockwise rotation
is defined using the right hand rule in reference to
the direction vector v = [uj,us,us], where each
element of the vector u is generated randomly using
the uniform distribution, u; € [0, 1].

e The ICP algorithm for iterative accurate registration of
the object is used.

3) Scenario 3:

o The position and rotation angle of the object of interest
in a bin is known;

o The initial guess is put to a random position according
to the following rules:

— The x, y and z coordinates of the initial guess are
moved to a fixed position relative to the position of



the object of interest. The position in the x and y
coordinates is moved by 150 mm, in the z coordinate
by 100 mm;

— The rotation angle « of the initial guess is set to
75° from the rotation angle of the object of interest.
Counter-clockwise rotation is defined using the right
hand rule in reference to the direction vector v =
[u1, ua,us], where each element of the vector u is
generated randomly using the uniform distribution,
u; € [0, 1].

e The ICP algorithm for iterative accurate registration of
the object is used.

For all experiments, 10 000 samples are applied in order
to achieve a statistically significant number of data. The
parameters of the ICP algorithm are set as follows: the
maximum number of iterations is set to 1 000 epochs and
the stopping criterion is defined as the 2-element vector
d = [81,02] = [0.001,0.01], that represents the absolute differ-
ence in translation and rotation estimated in two consecutive
iterations. d; measures the Euclidean distance between two
translation vectors, do represents the angular difference in
degrees.

IV. RESULTS OF EXPERIMENTS

1) Scenario 1: This testing scenario is performed using
all three sensors and settings shown in Fig. 5. The ratio of
correctly registered objects of interest against the number of
samples (success rate) is examined. In addition, more detailed
features are determined, too. Namely, the correlation of the
success rate and the absolute distance D between the object
of interest and initial guess position.

TABLE I: Success rate according to the scenario 1

Success rate
Sensor Overall | D<5cm | D<10cm | D<20cm
Phoxi 3D scanner L 0.7076 0.9765 0.8613 0.7384
Intel RealSense D415 | 0.6817 0.9663 0.8345 0.7188
Microsoft Kinect v2 0.0608 0.0816 0.0643 0.0628

Considering the results in Table I as well as the evident
Fig. 11, Microsoft Kinect v2 is obviously ineligible for this
particular application. However, both remaining sensors pro-
vide surprisingly similar results.

A. Scenario 2

This scenario is performed using Phoxi 3D scanner L and
RealSense D415, since Microsoft Kinect v2 was excluded after
scenario 1 testing. The overall success rate, as well as the
success rates in correlation to the maximal absolute rotation
angle are summarized in Table II.

TABLE II: Success rate according to the scenario 2

Success rate
Sensor Overall | o <45° | a <60° | a <75°
Phoxi 3D scanner L 0.9504 1.0000 1.0000 0.9988
Intel RealSense D415 0.9306 1.0000 1.0000 0.9943

B. Scenario 3

This scenario is performed using Phoxi 3D scanner L and
RealSense D415. The ratio of correctly registered objects of
interest against the number of samples is again examined.
This experiment considers both translation and rotation, while
the rotation direction is variable. The results are shown in
Table III.

TABLE III: Success rate according to the scenario 3

Sensor Overall success rate
Phoxi 3D scanner L 0.6676
Intel RealSense D415 0.5643

V. CONCLUSION

An accurate registering of defined complex objects, depend-
ing on the sensor for 3D scene reconstruction, was dealt with
in the paper. It is necessary to emphasize, that the results
achieved in the experiments presented above are strongly
connected to the specific setting demanded by a contracting
authority. However, the findings can be roughly generalized
into a category of similar situations. Particularly, a precise
registration of complex components is significantly dependent
on the quality of the 3D sensor. Nevertheless, the dependency
is far from being linear. While the Phoxi 3D scanner provided
the most accurate data, it turned out, that for our particular
application, the Intel RealSense D415 camera provided suit-
able enough information, too. Apparently, the resolution of the
point cloud provided by the RealSense camera was limited.
However, it was accurate enough for the ICP algorithm to
achieve results close to the results gained with the Phoxi
RealSense sensor. Microsoft Kinect v2, on the other hand,
proved itself to be absolutely ineligible for this situation.

Generally, the absolute tolerance of an initial guess un-
certainty for the ICP algorithm needs to be known in order
to achieve the overall stability of the bin picking problem
solution. It is affected by the shape of the object of interest,
its material, light condition and many other features. Thus, for
industrial applications, it is still necessary to perform many
testing experiments (like those mentioned above) apart from
an analytic approach.
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