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Abstract: In this paper the results of the Neural Networks and machine learning applications for 12 
radar signal processing are presented. The radar output from the primary radar signal processing is 13 
represented as a 2D image composed from echoes of the targets and noise background. The 14 
Frequency Modulated Interrupted Continuous Wave (FMICW) radar PCDR35 (Portable Cloud 15 
Doppler Radar at the frequency 35.4 GHz) was used. Presently, the processing is realized via a 16 
National Instruments industrial computer. The neural network of the proposed system is using 17 
four or five (optional for the user) signal processing steps. These steps are 2D spectrum filtration, 18 
thresholding, unification of the target, target area transforming to the rectangular shape (optional 19 
step), and target board line detection. The proposed neural network was tested with sets of four 20 
cases (100 tests for every case). This neural network provides image processing of the 2D spectrum. 21 
The results obtained from this new system are much better than the results of our previous 22 
algorithm.  23 
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 25 

1. Introduction 26 

The radar PCDR 35 was developed for the Institute of Atmospheric Physics Czech Academy of Sciences. 27 
This radar is based on the industrial computer from the National Instruments company. The memory of this 28 
system is very limited. The secondary processing describes the data and only important information is saved 29 
(number of the targets, distances, reflected powers, Doppler shifts). We are describing the algorithm for the 30 
automatic evaluation of the signal from this radar by using neural networks. After comparison with our previous 31 
algorithm [1], The benefit of this algorithm is its simple implementation on the Field Programmable Gate Array 32 
(FPGA) system and thanks to this, we can analyze signals much faster. 33 

2. FMICW radar description 34 

The FMICW system works as a combination of the pulse radar and FMCW (Frequency 35 
Modulated Continuous Wave) radar. FMCW systems are described for example in [2, 3]. The 36 
principle of the FMICW radar is described in [4], but this system was developed for the 37 
measurement of the ionosphere, and the pulse part of the system does not have a big influence on 38 
the signals. The block diagram of the FMICW radar is shown in figure 1. The signal is generated by 39 
the sweeping generator and connected to the output amplifier. Switching of the system is realized 40 
via PIN diodes; one is for the connection to the transmitting amplifier and second is for the receiver. 41 
A detailed description of the radar PCDR 35 blocks was realized in [5]. The radar PCDR 35 was 42 
developed for the measurement in short distances (less than 10 km) and we must include the 43 
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influence of pulses in this case, as shown in figure 2. Because we have different lengths of the 44 
reflected signals, we must do corrections of the power. This was described for example in [5]. The 45 
distance in FMICW radars is calculated by equation (1).  46 

 47 

Figure 1. Block diagram of FMICW radar. [1] 48 

 49 

Figure 2. Timing diagram of FMICW radar. [6] 50 
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where c0 is the light speed, f is the output frequency, T is the measurement period, f is the sweep 51 
range and e(f) is the measurement error. 52 

Frequencies are obtained during the primary signal processing of the radar. The frequency 53 
analysis can be realized by the non-parametric, or parametric methods [7]. The parametric AR model 54 
is described for example in [8]. More parametric and non-parametric methods are described in [9]. 55 
2D FFT can be used for the estimation of the target velocities, this algorithm is described in [10, 11]. 56 
The principle is shown in figure 3. Measured data are sorted in a matrix, after every measurement is 57 
transformed by the Fast Fourier Transform (FFT). The results from this process are the range profiles 58 
for the times of measurement. The next step is applying the FFT on the time dimension. This 59 
transformation changes the time dimensions to Doppler shift dimensions. The Doppler shift 60 
resolution is defined by equation (2). The testing measurements of the radar PCDR 35 and sensitivity 61 
analysis were presented in [12]. Examples of four cases of 2D spectra are shown in figure 4, where 62 
PSD is power spectral density. The clutter elimination is described in [13], where the static clutter 63 
detection, and the meteorological clutter is canceled by the Airborne Moving Target Identification 64 
(AMTI) filter. It represents selected velocities for all distances in the case of the signal 2D spectrum. 65 
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 66 

Figure 3. Principle of the 2D FFT from the signal. [10] 67 
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where T is the time between measurements (periods), and N represents the number of 68 
measurements. 69 

 70 

Figure 4. 2D spectra of the four situation cases: (a – left top) 2D spectrum of the signals with three 71 
strong echoes, (b – right top) 2D spectrum of the signals with noise only, (c – left bottom) 2D 72 

spectrum of the signal with three weak echoes (d – right bottom) 2D spectrum of the signal contains 73 
one weak and two strong echoes. 74 

3. Neural networks 75 

The neuron model is shown in figure 5. We can see, that the neuron has N inputs ( ) 76 

and one output ( ). Every input is multiplied by the input weight ( ), this value is 77 

changing during the learning process. The output has application function , which decides the 78 
output value. Activation functions can be different and usually are nonlinear (signum function, 79 
limited linear function, standard logistic function, hyperbolic tangents). Examples of these functions 80 

are described in [14]. The neuron bias is represented by the input , and this signal is also multiplied 81 

by weight . If we look at the neuron model, we can see that neuron is based on principles of 82 
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digital filters. The mathematical description of one neuron is in the equation (3). The benefit of this 83 
model is the easy application on the FPGA with faster processing speed. Applications of the neurons 84 
and neural networks on the FPGA are described in [15]. 85 

 86 

Figure 5. Formal neuron with bias. [16] 87 
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where  is the application function of a neuron,  represents i-th neuron input,  represents 88 

the weight for the input (synapse), b represents bias and  represents number of inputs. 89 
The Hebbian learning is based on the increasing and decreasing connections between two 90 

neurons (changing of the input weights). The increasing and decreasing is, in turn, controlled by the 91 
inputs and outputs. Training signals are used in the learning sequence. Results are set by the user 92 
and if an input and an output are related, then the connection strengthens (the weight is increased), 93 
but if they are not related, the connection weakens (the weight is decreased). This style is called 94 
learning with a teacher. If we use all combinations, the system remembers all solutions. 95 

The neural network is composed from the basic neurons. Neurons can be sorted into more 96 
layers. These layers are sorted into groups known as the input layer, hidden layers and output layer. 97 
An example of the neuron network in topology (3-3-4-2) is shown in figure 6. This is the neural 98 
network with more layers. The connection between neurons can skip to any layer or can be realized 99 
as the back loop. 100 
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Figure 6. An example of a multilayer neural network architecture (3-3-4-2). 102 

4. Application of the neural networks for the radar signal processing 103 

The neural network for our algorithm is composed from three, or four layers (optional). Every 104 
layer has a specific function. The input layer is for the 2D spectrum filtration and the thresholding. 105 
The second layer is for the target unification, when any target is split. The third layer can be 106 
transformation of the target area to the rectangular shape (this layer is optional). The last layer is the 107 
target board line detection. 108 

 4.1. Filtration and thresholding 109 

Neurons in this layer transform the 2D spectrum (the original spectrum is represented by the 110 
spectral components sizes) to a binary matrix, where 1 represents the positive detection and -1 111 
represents the negative detection in the tested cell. In this layer there are used two types of neurons, 112 
one type is used for the filtration and the second type is used for the threshold value estimation. This 113 
value is used in the filtration neurons for the activation function. From this, it is obvious that 114 
numbers of neurons for the filtration and the thresholding in the input layer are functions of the 2D 115 

spectrum size. The model of this neuron is shown in figure 7. Input signals are in the input vector . 116 

This vector has  elements and these elements are obtained from the distance profile. Synapses are 117 

saved in the vector , and activation function  is the signum function. The neuron’s model for 118 

the threshold value estimation is shown in figure 8. The activation function  of this neuron is 119 

linear, the input is the matrix of the 2D spectrum from the radar measured data. This neuron has 120 
common weight for all inputs, because all inputs have the same priority. This neuron definition is 121 

shown in equation (4), where  represents the threshold value (5). 122 
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Teaching the neurons is described in the algorithm in figure 9. The 2D spectrum is manually 123 
processed and transformed to the mask, where 1 represents positive detection (target) and -1 124 
represents negative detection (noise). This mask is used for the neural network Hebbian learning. As 125 
described in figure 7, the input vector is obtained from the 2D spectrum. The used vector has 21 126 
elements and all inputs have the same Doppler shifts. Weights are increased in the case of positive 127 
detection 1 and decreased in the case of negative detection -1. The first threshold value is estimated 128 
according to equation (5). At the start of the algorithm, the weight is chosen as 1. The next step is 2D 129 
spectrum processing by using the neural network and the obtained result is compared with the 130 
mask. If results match, the algorithm is finished. If the results do not match, the weight is modified 131 
according to the results. If the neural network does not detect any targets, the weight is divided by 132 
1.4 and if the neural network generates false alerts, the signal is multiplied by 1.4 (this value was 133 
chosen experimentally). The next step is the threshold value recalculation from the new weight and 134 
the 2D spectrum is processed again. 135 

 136 

 137 

Figure 7. Neuron for the filtration and thresholding. 138 

 139 

Figure 8. Neuron for the threshold level estimation. 140 
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 142 

Figure 9. Algorithm for the learning of the input layer of the neural network for the radar signal 143 
processing. 144 

After the input network learning, we will obtain weight parameters for the filtration neurons. 145 
These weights are shown in the graph in figure 10, and these parameters will be set by the equation 146 

(3). Weights are saved in vector  from figure 7. The weight for the neuron threshold value 147 

estimation was estimated from the learning as 113.3817189·10-6. Test of the layer application is 148 
shown in figure 11. The 2D spectrum with three targets was used for input to this layer. 149 

 150 

Figure 10. Synapses weight vector parameters for filtration of the 2D spectra. (20 inputs) 151 
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 152 

Figure 11. Test of the neurons in the input layer (filtration and thresholding of the 2D spectrum): 2D 153 
spectrum with 2 strong echoes and one weak echo is used for input in this figure. 154 

4.2. Unification of the targets 155 

The target can be split during the thresholding process, and we must make target unification in 156 
this case. For this we are using neural sub networks. One of these neural networks is shown in figure 157 
12. Neurons in the first layer are described by the equation (6) and the output layer is described by 158 
the equation (7). For all neurons the activation function signum is used. Input signals are two vectors 159 
of five elements. The first vector has elements placed before the tested element in the range 160 
dimension, and the second input vector has elements following the tested element in the range 161 
dimension. The neuron in the second layer is the OR function with three inputs, where one input is 162 
the cell state before the unification process and the next two inputs are outputs from the first layer 163 
neurons. During the Hebbian learning we used a negative combination twice for the better setting. 164 
Test of this neural sub layer is shown in figure 13, where we can see that both splits were removed, 165 
and the target is again united. 166 
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Figure 12. Neural network for unification of the targets. 168 
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 169 

Figure 13. Test of the neural sub network for unification of the targets: (a) Target is split to three parts 170 
(b) Target was restore via neural sub network. 171 

4.3. Detection of the target board lines 172 

The neurons, with nine inputs in this layer are organized in the 3x3 matrix of elements. Inputs 173 
are connected from layer 1 (inputs can be 1, or -1). The activation function is the signum function. 174 
The model of this neuron is similar to the neuron from figure 8, only another activation function and 175 
different bias is used. This layer is used for the definition of the target board lines. The neuron tests if 176 
the middle element is -1 and around are any elements with 1. If these conditions are not successful, 177 
the output is -1. If conditions are successful, the output is 1. After the Hebbian learning we obtained 178 
an equation, which cannot be used, because in the case when all inputs are -1 the output is wrong. 179 
The layer generated the positive board line of the target and the first condition was not successful. 180 
Then we used this case more times for the Hebbian learning and we trained this neural network 181 
until the neural network started to analyze this case correctly. We obtained equation (8) from this 182 
training. Input x9j represents the middle element in the matrix 3x3, the weight for this element is -8, 183 
the weight for the other elements is 1. This is because these elements have same priority and the 184 
value -0 is for bias (for the Hebbian learning we were using 8 cases for positive detection and 8 cases 185 
for negative detection). Application of this layer is shown in figure 14. Input for testing of this layer 186 
is the output from the thresholding layer, which was shown in figure 11 after unification of the 187 
targets. We can see, that the 2D spectrum was analyzed correctly. 188 
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 189 

Figure 14. Board lines of the targets detected in the output from the unification neural sub network. 190 
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4.4. Marking of the targets position  191 

This part is used for the target marking in the signal. The processing is composed from the two 192 
steps. The first step is transformation of the target area and the settings of the rectangular shape. The 193 
second step is the board lines detection in the rectangular shape. 194 

The neural sub network for the transformation of the area is shown in figure 15. The first layer 195 
is from neurons described by equation (9). This is the OR function which depends on the vector 196 
length. For the Doppler shift dimension a vector where n is 21 elements is used, and for the range 197 
dimension a vector where m is 81 elements is used. The tested element is in the vector middle in both 198 
cases. The equation for the OR neurons which are used for the transformation of the area is 199 
described by (9). It was derived from the Hebbian learning for more lengths of the input vectors. The 200 
output layer is the AND neuron, which is described by equation (10). The signum function is used 201 
for both neuron types in this neural sub network. For the second step the same layer is used as in the 202 
case when we detected the board lines of the targets after the thresholding. Output from the 203 
application of this layer is shown in figure 16. 204 

 205 

Figure 15. Neural sub network for transforming of the area to rectangular shape. 206 
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 207 

Figure 16. Board lines of the targets (rectangular shape) in the output from the proposed system. One 208 
weak and two strong echoes were in the input. 209 

5. Description of the proposed neural network 210 

Proposed parts of the neural network were connected to the final system. This final neural 211 
network is shown in figure 17. Neurons placed in the rectangular shape represents this neuron 212 
matrix, and outputs from the neural network are realized by the marking blocks. The input matrix 213 
size is 665x41 elements (665 elements represents the samples of one measurement, it is the function 214 
of the sampling frequency and radar range. 41 samples represent the realizations, less samples are 215 
not enough for Doppler measurements, more samples make long response time of the system). The 216 
output signal is the matrix with the same dimensions. The processed signals example is in figure 18. 217 
Targets in the 2D spectrum were marked by the red lines. The case in the right top position is only 218 
with noise and no target is marked. 219 

220 
 Figure 17. Neural network proposed for the FMICW radar signal processing. 221 
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 222 

Figure 18. Marking of the targets in 2D spectrum: (a) processing of the signal with three strong 223 
echoes, (b) processing of the signal without echoes, (c) processing of the signal with three weak 224 

echoes and (d) processing of the signal with one weak and two strong echoes. 225 

6. The algorithm test on the training sequence data and discussion 226 

The proposed neural network was tested on the simulated data. These data were created by our 227 
simulator, which is based on the real system PCDR 35. Real measurement data and comparison with 228 
simulated data is shown in [17]. In the results there is a difference, where the measured data contains 229 
a noise level dependent on the distance, and this is not reflected in the simulator. This is caused by 230 
the wrong impedance in the radar output, but this was corrected in cooperation with the BTV 231 
Klimkovice company. 232 

Results of the proposed neural network are presented in table 1. We tested the neural network 233 
in four cases: three strong targets, noise, three weak targets, and one weak with two strong targets. 234 
For every tested case 100 sets of the simulated data were used. From the table 1 we can see very good 235 
results. Table 2 is added for comparison, where the unification layer in the neural network was not 236 
used. We can see, that the results are unacceptable. For the test, the same data were used, which we 237 
used for the validation of our previous algorithm, which is published in [1]. This algorithm results 238 
are in table 3. From comparison of table 1 and table 3 we can see, that the neural network results are 239 
much better than previous algorithm in two cases, and the same results are in the next two cases. 240 

Table 1. Results of the proposed neural network. 241 

Cases Totally right Lost targets False alerts 

3 strong targets 97 0 3 

Noise 100 - 0 

3 weak targets 96 4 4 

1 weak and 2 strong targets 94 0 6 

Table 2. Results of the proposed neural network without unification of the targets. 242 

Cases Totally right Lost targets False alerts 

3 strong targets 33 0 77 

Noise 100 - 0 

3 weak targets 95 4 5 
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1 weak and 2 strong targets 94 0 6 

Table 3. Validation of the previous algorithm published in [1]. 243 

Cases Number of targets Distances Doppler shifts 

3 strong targets 94 94 94 

Noise 100 - - 

3 weak targets 96 96 96 

1 weak and 2 strong targets 84 84 84 

 244 
After revision of the wrongly processed cases, we found that false alerts in the case of three 245 

strong targets were caused by the using of short vectors for the target unification. We tried to extend 246 
these vectors, and we used equation (11) for the input to this neural sub network. After the test, we 247 
obtained results from table 4. We can see that the results are better for this target type, but from the 248 
process we can estimated that in any case the distance between main target and side lobe of this 249 
target can be bigger, then we will obtain wrong results again. Much longer vector length we also 250 
cannot use, because we can do unification of more targets to the one target. We can see, that results 251 
are good, but it can happen that processing can contain errors, but these mistakes are rare. After 252 
checking the wrongly processed cases for the last situation, we can see, that the distance between the 253 
original target position and the detected side lobe is very big and cannot be removed by the neural 254 
sub network for unification. One example is shown in figure 19. When we checked the lost targets, 255 
we observed, that targets were lost, because the simulated target position was only the one point 256 
from the area. This marking causes the target loss, because the area is very small in this case. If we 257 
included board lines to the target area, the target is marked correctly. Thanks to this we can obtain 258 
results in table 5. Targets are detected correctly, only they are not in the middle of the marked area. 259 
From this we can see, that the used neural network has much better results than previous 260 
algorithms. 261 
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Table 4. Modification of the neural network for improving the strong target detections. 262 

Cases Totally right Lost targets False alerts 

3 strong targets 100 0 0 

Noise 100 - 0 

3 weak targets 96 4 4 

1 weak and 2 strong targets 94 0 6 
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263 
Figure 19. False alert in the processed 2D spectrum. 264 

Table 4. Modification of the neural network for improving the weak targets detection. 265 

Cases Totally right Lost targets False alerts 

3 strong targets 100 0 0 

Noise 100 - 0 

3 weak targets 100 0 0 

1 weak and 2 strong targets 94 0 6 

 266 
An example of another work in this field can be found in [18]. These authors measure position 267 

and Doppler shifts of the targets in this research. They are using for detection the CFAR (Constant 268 
false alarm rate) method and tracking of the target. Setting of their algorithm and the evaluation 269 
study are not published. Another approach is used in [19], where other authors use another type of 270 
the algorithm for processing of the velocity measurement. The second group of authors are using 271 
target route tracking for velocity estimation of the targets in this research, but they did not describe 272 
their algorithm exactly. From results which they published, we can see, that they also have problems 273 
with false alerts and losing of the targets. Efficiency of this algorithm was not published. The better 274 
research on this topic is described in [20]. Here, authors describe their algorithm and they made the 275 
evaluation of the success. Their algorithm has, according to tests, very good results. These results are 276 
comparable with our algorithm except for Doppler shifts or velocities. This is because they did not 277 
include these measurements in their research. 278 

7. Conclusion 279 

In this paper we described the neural network for the FMICW radar signal processing. The 280 
neural network can be easily used for implementation on the FPGA with the speed processing 281 
benefit. Use of the neural network improved the threshold level estimation. Before, we used median, 282 
and it was very time consuming in comparison with the neural network, where the sum of elements 283 
is multiplied by the weight. This way is faster for the PC processing in comparison with the previous 284 
way. 285 

The two outputs are from the neural network; one for the precision marking of the targets and 286 
one for the marking by the rectangular shape. The first output is better for extremely big target 287 
detection (the rain cell). The second one is good for the point targets. Because we tested this neural 288 
network with the same data as our older algorithm, we can easily compare these two approaches for 289 
radar signal processing. From the results we can see, that the using of this neural network is much 290 
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better than our previous algorithm, which we used before. In the case of one weak and two strong 291 
targets the improvement is around 10 %. 292 
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