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A comprehensive two phase non-linear mathematical model has been presented with special reference to
particle geometry and pore radius of particles. Model equations have been divided into bulk fluid phase
and particle phase. Bulk fluid phase is characterized by external fluid whereas particle phase signifies the
intraparticle solute concentration and solute concentration adsorbed on particle surface. Interparticle
solute concentration and the concentration of solute adsorbed on particle surface are related by
Langmuir adsorption isotherm. Model equations have been discretized numerically by Hermite colloca-
tion method with quintic basis. Effect of different parameters has been shown via breakthrough curves.
Model predicted values have been compared to experimental values given in literature to check the appli-
cability of the model.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Problems of heat and mass transfer during flow through packed
bed of porous particles are of great interest for mathematicians as
well as engineers. From Brenner (1962) to Arora et al. (2017), num-
ber of models have been developed to characterize the fluid flow
through packed beds of porous particles.

There exists a chemical system which consists of a single solute
flowing through the packed bed and passes through a transient
period or for short time period such that sudden changes occur
in the influent concentration of the solute. The mechanism is con-
trolled by the rate at which the material in the solute is taken up by
the particles in the packed bed (Rosen, 1952). The main motive of
the study is to consider a liquid containing a solute moving with a
constant linear velocity ‘u’ through a packed bed of length ‘L’. The
rate determining factor is the process of solid diffusion in the
particles and the delay in the system is introduced by the thin film
surrounding the particles. Behaviour of the system during the
transient period is determined by diffusion process. During this
process, the solute present in the irregular void channels of the
bed diffuse out of particle pores. Displacement of solute from these
pores is associated with diffusion like dispersion of external fluid in
the direction of flow.

Main purpose of the present study is to develop a mathematical
model for washing of packed bed of solid and semi solid particles
with the help of external fluid passing through the bed. The
removal of soluble and insoluble impurities adsorbed on the parti-
cle surface with the help of external fluid is called washing. Due to
the porous nature of particles, the solute present in intraparticle
voids diffuses out when it comes in contact with external fluid.
Mass transfer takes place from particle pores to particle surface
and then to external fluid (Arora and Potuček, 2009). Present paper
is fabricated with six sections starting from introduction. Model for
washing of particles is given in second section. The experimental
procedure is presented in third section whereas fourth section
describes the numerical technique and application to the model.
In fifth section the results obtained from the study are summarized
and finally the conclusions of present study are given in sixth
section.
2. Mathematical model

Number of mathematical models has been developed from the
past few decades to study the washing of porous structure of
particles. From Brenner (1962) to Arora et al. (2017), different
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Nomenclature

Bi Biot number, dimensionless ð¼ kfbR=KDF)
c concentration of solute in the liquor (kg/m3)
C dimensionless concentration ð¼ c=C0Þ
C0 solute concentration in the vat ðkg=m3Þ
C1 dimensionless parameter ð¼ C0=CFÞ
Ce exit solute concentration, dimensionless
CF fiber consistency ðkg=m3Þ
DF intrafiber diffusion coefficient ðm2=sÞ
DL axial dispersion coefficient ðm2=sÞ
K volume equilibrium constant, dimensionless
k� mass transfer coefficient, dimensionlessð¼ k2=k1Þ
k1; k2 mass transfer coefficient ð1=sÞ
kf film mass transfer coefficient ðm=sÞ
L thickness of packed bed (m)
n concentration of solute adsorbed on the fibersðkg=m3Þ
N dimensionless concentration of solute adsorbed on

fibersð¼ n=N0Þ
N0 initial concentration of solute adsorbed on the

fibersðkg=m3Þ

N1 dimensionless parameter ð¼ KN0=C0Þ
P1 dimensionless parameter ð¼ k1R

2=DFÞ
Pe Péclet number, dimensionless ð¼ uL=DLÞ
Q dimensionless pore liquid concentrationð¼ q=C0Þ
q pore liquid concentration ðkg=m3Þ
R fiber radius ðmÞ
r radial position in particle ðmÞ
t timeðsÞ
u interstitial fluid velocity through bed ðm=sÞ
z distance from point of introduction of solvent ðmÞ
b particle porosity, dimensionless
e porosity of cake, dimensionless
g dimensionless radial coordinate ð¼ r=RÞ
h 2ð1� eÞðeÞ
n dimensionless axial coordinate ð¼ z=LÞ
s dimensionless time ð¼ tDF=R

2Þ
w dimensionless parameter ð¼ KRu=kfbLÞ.
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investigators have developed different models time to time to
study the displacement washing of porous particles. Most of them
have developed linear models to study the washing process. How-
ever, Arora et al. (2006) to Arora et al. (2017) have presented two
phase flow of fluid through packed bed of solid particles by a non
linear model involving particle diffusion and axial dispersion coef-
ficient. In present study, two phase non linear mathematical model
involving particle diffusion, axial dispersion coefficient, pore radius
of particles, bed porosity and film resistance mass transfer coeffi-
cient has been discussed. Interparticle solute concentration and
solute concentration adsorbed on particle surface have been
related by Langmuir adsorption isotherm. External fluid concentra-
tion is taken to be a function of axial distance and time whereas
interparticle solute concentration and solute concentration
adsorbed on particle surface have been taken as function of pore
radial distance, axial distance and time. In Fig. 1, schematic repre-
sentation of packed bed is presented whereas the representation of
different zones of packed bed is given in Fig. 2. Model equations
have been studied under certain assumptions given in Arora
et al. (2015). To avoid the complexities of change of temperature,
system is assumed to be isothermal. Bed is taken to be macroscop-
ically uniform and particles are assumed to be porous and of uni-
form size. Axial distance of the bed is comparatively large from
particle diameter and length. Movement of solute within particle
Fig. 1. Schematic representation of fibers.
pores is described by Fick’s law. Dispersion of solute is defined
by axial dispersion coefficient and diffusion in particle pores is
described by intraparticle diffusion coefficient. Both are assumed
to be independent from axial and radial distances. Two phases of
the model have been studied in terms of particle phase and exter-
nal fluid phase.

2.1. Model for particle phase

Movement of solute through the particle pores is defined by a
transient equation mentioned in Arora et al. (2015):

@w
@t

¼ DF
@2w
@r2

þ 1
r
@w
@r

 !
ð1Þ

where ‘w’ is the local intraparticle solute concentration. Since, ‘w’
does not distinguish between intraparticle solute concentration
and the solute concentration adsorbed on particle surface, there-
fore, surface diffusion effects are assumed to be negligible. Trans-
port equation is described by a diffusion equation involving
intraparticle solute concentration and solute concentration
adsorbed on particle surface. Intraparticle solute concentration
Fig. 2. Schematic representation of different zones.



116 S. Arora et al. / Journal of King Saud University – Engineering Sciences 31 (2019) 114–121
gradient acts as driving force for diffusion. Therefore, the resulting
equation for particle phase is:

@q
@t

þ K
1� b
b

@n
@t

¼ DF
@2q
@r2

þ 1
r
@q
@r

 !
ð2Þ

with w ¼ bqþ Kð1� bÞn. By assumption, local equilibrium prevails
in intraparticle pores.

2.2. Adsorption isotherm

Number of investigators (Brenner, 1962; Sherman, 1964;
Pellett, 1966; Potuček, 1997; Arora et al., 2014) have followed lin-
ear adsorption isotherm to simplify the mathematical complexi-
ties. However, under practical situation intraparticle solute
concentration and solute concentration adsorbed on particle sur-
face are related to each other by non linear kinetics. Therefore,
these are related by Langmuir kinetics (Arora et al., 2006, 2015)
and the following equation is obtained.

@n
@t

¼ k1
q
CF

ðN0 � nÞ � k2n ð3Þ

where k1 and k2 are deposition and detachment rate constants.

2.3. External fluid phase

Transport phenomenon in the porous media having void frac-
tion e is described by one dimensional axial dispersion model
involving axial dispersion and molecular diffusivity. Since molecu-
lar diffusivity is negligible as compared to axial dispersion and is
therefore ignored. The model for external fluid is represented by
an axial dispersion model given in Arora et al. (2006, 2015) involv-
ing accumulation term and dispersion term as follows:

DL
@2c
@z2

¼ u
@c
@z

þ @c
@t

þ ð1� eÞ
e

@q̂
@t

ð4Þ

where q̂ is defined as the volume average concentration in particles.
Basically, there are two types of rate mechanisms in packed bed

of particles. First one describes @q̂
@t explicitly in terms of c and q and

is already discussed in Arora and Potuček (2009). In second type of
rate mechanism, q̂ is defined in terms of an integral equation dis-
cussed below:

q̂ ¼ 2
R2

Z R

0
qðr; z; tÞrdr ð5Þ

Eq. (4) provides a link between particle phase and external fluid
phase. Neretnieks (1974), Raghvan and Ruthven (1983), Arora
et al. (2015) have related the particle phase and external fluid phase
by defining a condition at particle boundary to obtain the following
term:

@q̂
@t

¼ 2kfb
KR

ðc � qjr¼RÞ ð6Þ
2.4. Initial and boundary conditions

Particle phase model has one boundary condition at center of
the particle (at r = 0) and the other at the surface of the particle
(at r = R). By assumption, concentration gradient is taken to be zero
at the center of the particle, therefore, a Neumann type condition is
obtained, i.e.,

@q
@r

¼ 0 at r ¼ 0 ð7Þ

Transport of solute between particle surface and its surrounding is
assumed to take place in a thin film surrounding the particle (Arora
et al. (2006)). On particle surface, there exists external mass transfer
resistance kf due to the diffusion of solute. Transport between the
surface of the particle and interior of the particle is a diffusive pro-
cess. Hence mass balance on the surface of the particle gives:

kfb

K
ðqjr¼R � cÞ ¼ �DF

@q
@r

at r ¼ R ð8Þ

It is assumed that there is no step change in the solute concentra-
tion and there will be no loss of solute from the bed through the
plane at which the displacing fluid is introduced. Concentration gra-
dient is taken to be zero at the outlet of the bed, to avoid the fact
that fluid will pass through the maximum or minimum in the inte-
rior of the bed (Brenner, 1962; Arora et al., 2006). Therefore, exter-
nal fluid phase is subjected to the following boundary conditions at
inlet and outlet of the bed, respectively.

uc � DL
@c
@z

¼ 0 at z ¼ 0 ð9Þ
@c
@z

¼ 0 at z ¼ L ð10Þ

Initially, it is assumed that intra-particle, inter-particle and bulk
fluid concentrations are equal to initial solute concentration.

c ¼ q ¼ C0 and n ¼ N0 at t ¼ 0 ð11Þ

System of equations from Eq. (2) to Eq. (11), is converted into
dimensionless form. The given system of equations is similar to
the system of equations discussed in Arora et al. (2015).

@2Q
@g2 þ 1

g
@Q
@g

¼ @Q
@s

þ ð1� eÞ
e

N1
@N
@s

ð12Þ
@N
@s

¼ P1ðC1Qð1� NÞ � k�NÞ ð13Þ
@C
@s

¼ wBi
Pe

@2C

@n2
� wBi

@C
@n

� hBiðC � Q jg¼1Þ ð14Þ
@Q
@g

¼ 0 at g ¼ 0 and s > 0 ð15Þ
@Q
@g

¼ BiðC � Q jg¼1Þ at g ¼ 1 and s > 0 ð16Þ
C � 1
Pe

@C
@n

¼ 0 at n ¼ 0 and s > 0 ð17Þ
@C
@n

¼ 0 at n ¼ 1 and s > 0 ð18Þ
C ¼ Q ¼ N ¼ 1 8n 2 ð0;1Þ and g 2 ð0;1Þ ð19Þ
3. Experimental procedure and properties of pulp bed

The stimulus–response experiments, using a step input, have
been carried out in the displacement washing cell given in Fig. 3.
Details of the washing cell and other experimental apparatus have
been described in Potuček (1997). Permeability, Porosity, Intersti-
tial fluid velocity and axial dispersion coefficient have been
explained in Arora and Potuček (2009, 2012). Physical properties
of pulp bed were determined through experimental output using
the parameters given in Table 1.



Fig. 3. Schematic representation of the system of washing cell.

Table 1
Experimental values for pulp bed.

Parameter Value Unit

Pe 12.25–20.81 –
e 0.5561–0.8120 –
u (1.25–4.23)�10�4 m=s

Consistency 7.96–16.60 %
DL (1.816–9.074)�10�7 m2=s
b 0.7246 –
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4. Quintic hermite collocation method (QHCM)

Orthogonal collocation is one of the weighted residual meth-
ods used to discretize the boundary value problems. It is one of
the simplest methods to discretize the boundary value problems.
In this method an interpolating polynomial is chosen as a base
function to approximate the trial function and then the trial func-
tion is adjusted in the given problem to get the residual. The
residual is defined over its region and is set equal to zero at col-
location points.

Quintic Hermite collocation is one of the collocation techniques
in which the base function is chosen to be the quintic Hermite
interpolating polynomials. In this technique the trial function is
approximated by Hermite interpolating polynomials of order 5. It
is the generalization of Lagrange interpolation with polynomials
that not only interpolate function at each node point but also its
consecutive derivatives. Quintic Hermite interpolating polynomi-
als can be expressed in the following form:

X6
j¼1

pðnjÞPjðnÞ þ p0ðnjÞPjðnÞ þ p00ðnjÞPjðnÞ; ð20Þ

Details of PjðnÞ; PjðnÞ and PjðnÞ can be taken form Arora and Kaur
(2018)

Collocation is applied within each sub-domain in radial and
axial direction by introducing new variables g� and n�, respectively

in such a way that n� ¼ n�nc
hc

where hc ¼ ncþ1 � nc; n
� ¼ 0 when n ¼ nc

and n� ¼ 1 when n ¼ ncþ1. g� ¼ g�g‘
h‘

where h‘ ¼ g‘þ1 � g‘;g� ¼ 0
when g ¼ g‘ and g� ¼ 1 when g ¼ g‘þ1. After rearranging the terms

PjðnÞ; PjðnÞ and PjðnÞ can be written in simplified form as:
H1ðn�Þ ¼ ð1� 10n�3 þ 15n�4 � 6n�5Þ
H2ðn�Þ ¼ hcðn� � 6n�3 þ 8n�4 � 3n�5Þ
H3ðn�Þ ¼ h2

cð0:5n�2 � 1:5n�3 þ 1:5n�4 � 0:5n�5Þ
H4ðn�Þ ¼ h2

cð0:5n�3 � n�4 þ 0:5n�5Þ
H5ðn�Þ ¼ ð10n�3 � 15n�4 þ 6n�5Þ
H6ðn�Þ ¼ hcð�4n�3 þ 7n�4 � 3n�5Þ

ð21Þ

The symmetry property in quintic Hermite polynomials is also
satisfied with H1ðn�Þ ¼ H5ð1� ðn�ÞÞ;H2ðn�Þ ¼ �H6ð1� ðn�ÞÞ and
H3ðn�Þ ¼ H4ð1� ðn�ÞÞ.

Ccðn�; sÞ is taken to be the approximating function for Cðn�; sÞ,
similarly Q ð‘;cÞðg�; n�; sÞ and Nð‘;cÞðg�; n�; sÞ have taken as the
approximating functions for Qðg�; n�; sÞ and Nðg�; n�; sÞ, respec-
tively. Approximating functions have been defined as:

CðcÞðn�; sÞ ¼
X6
i¼1

cðcÞi Hiðn�Þ ð22Þ

Q ð‘;cÞðg�; n�; sÞ ¼
X6
i¼1

qð‘;cÞ
i Hiðg�Þ ð23Þ

Nð‘;cÞðg�; n�; sÞ ¼
X6
i¼1

nð‘;cÞ
i Hiðg�Þ ð24Þ

where ci; qi and ni are continuous functions of s.
Next step in the collocation technique is the choice of colloca-

tion points. In present study zeros of Legendre polynomials have
been taken as collocation points in both radial as well as axial
direction. Details of method has been given in Arora and Kaur
(2016, 2018).

4.1. Application of QHCM

Using the approximation of Qðg; n; sÞ;Nðg; n; sÞ and Cðn; sÞ given
in previous section at jth collocation point in radial direction and kth

collocation point in axial direction, following system of equations
is obtained:

X6
i¼1

dqð‘;cÞ
i

ds
Hji ¼ 1

h2
‘

X6
i¼1

qð‘;cÞ
i Bji þ 1

ðg�
j h‘ þ g‘Þh‘

X6
i¼1

qð‘;cÞ
i Aji

� ð1� eÞ
e

N1P1 C1

X6
i¼1

qð‘;cÞ
i Hji

 !
1�

X6
i¼1

nð‘;cÞ
i Hji

 ! !

� ð1� eÞ
e

N1P1 k�
X6
i¼1

nð‘;cÞ
i Hji

 !
;

‘ ¼ 1;2; . . . ; s1; c ¼ 1;2; . . . ; s2 ð25Þ

X6
i¼1

dnð‘;cÞ
i

ds
Hji ¼ P1 C1

X6
i¼1

qð‘;cÞ
i Hji

 !
1�

X6
i¼1

nð‘;cÞ
i Hji

 ! !

� P1 k�
X6
i¼1

nð‘;cÞ
i Hji

 !
;

‘ ¼ 1;2; . . . ; s1; c ¼ 1;2; . . . ; s2 ð26Þ

X6
i¼1

dcðcÞi

ds
Hji ¼ wBi

Peh2
c

X6
i¼1

cðcÞi Bji � wBi
hc

X6
i¼1

cðcÞi Aji

� hBi
X6
i¼1

cðcÞi Hji �
X6
i¼1

qðs1 ;cÞ
i H1i

 !

c ¼ 1;2; . . . ; s2 ð27Þ
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Bji and Aji are discretization matrices for second and first order

derivatives respectively, in radial domain whereas Bji and Aji are dis-
cretization matrices for second and first order derivatives respec-
tively, in axial domain.

After applying QHCM, for 2 elements in radial domain and vary-
ing elements in axial domain ‘76s2’ number of differential equa-
tions appears where s2 is the number of elements in axial
domain. This system of differential equations is solved using
MATLAB with ‘ode15s’ system solver. This subroutine uses back-
ward differentiation formula to discretize the system of ordinary
differential equations.
5. Results and discussions

In this section the numerically obtained results are also com-
pared with the published results given in Gupta et al. (2015). How-
ever, in Gupta et al. (2015) large number of elements is taken i.e.
from 5 to 40 elements in radial and axial direction which gives
nearly 7000 number of equations to solve according to the formula
given in Gupta et al. (2015). Solving such a large system of equa-
tions is very difficult and time consuming using MATLAB solver.
But in QHCM only 2–8 elements are required which gives nearly
600 equations to solve the model equations.
5.1. Comparison between experimental and model predicted values

Practically it is not possible to vary a single parameter. As bed
porosity changes, pore radius of particles, interstitial velocity and
permeability vary, which varies axial dispersion coefficient and
intraparticle diffusion coefficient which ultimately effects Péclet
number and Biot number. In Fig. 4, the combined effect of param-
eters has been shown graphically through surface plot using exper-
imental values (Arora and Potuček, 2012). It can be easily observed
that solution profiles are smooth. From the surface plots one can
interpret that the solution profiles also lies within the domain. In
Tables 2 and 3 model predicted values are compared to experimen-
tal ones and relative error (R.E.) is calculated using the formula:

R:E: ¼ Cex � Cnum

Cex

����
���� ð28Þ

where Cex are the experimental values and Cnum are the numerical
values obtained by finding the solution profiles using QHCM.
Numerical values have been compared to the experimental values
taken from Arora and Potuček (2012). Numerical values obtained
from QHCM have also been compared to the values obtained by
Gupta et al. (2015) using cubic spline collocation method (CSCM).
Comparison of the values obtained from QHCM and CSCM are pre-
sented in Tables 4 and 5. The relative error is found to be of order
10�3. It signifies the validity of the model to a washing cell. This fact
authenticates that QHCM is better than technique of CSCM given in
Gupta et al. (2015).
Fig. 4. Graphical view of solution profile through surface plots (a) Pe = 12.25, Bi =
7.4, e ¼ 0:6898, (b) Pe = 12.96, Bi = 6.3, e ¼ 0:8120, (c) Pe = 16.92, Bi = 7.5,
e ¼ 0:5561, (d) Pe = 20.81, Bi = 10, e ¼ 0:6711.
5.2. Effect of different parameters

On the basis of results obtained, effect of different parameters
on solution profiles has been analyzed and shown graphically
through breakthrough curves. Numerical values have been calcu-
lated by QHCM using backward differentiation formula with
2� 8 elements in radial and axial domain, respectively.



Table 2
Comparison of present method (QHCM) with the experimental values for Pe =12.25, Bi
= 7.4, e ¼ 0:6898.

Experimental v Present Method (QHCM) Relative Error

1:0000� 100 1:0001� 100 1:0000� 10�4

9:5080� 10�1 9:5097� 10�1 1:7880� 10�4

8:4810� 10�1 8:4809� 10�1 1:1791� 10�5

6:5190� 10�1 6:5192� 10�1 3:0680� 10�5

4:5440� 10�1 4:5444� 10�1 8:8028� 10�5

3:0720� 10�1 3:0736� 10�1 5:2083� 10�4

1:6300� 10�1 1:6303� 10�1 1:8405� 10�4

7:2010� 10�2 7:2012� 10�2 2:7774� 10�5

2:7650� 10�2 2:7660� 10�2 3:6166� 10�4

9:7270� 10�3 9:7251� 10�3 1:9533� 10�4

4:5730� 10�3 4:5702� 10�3 6:1229� 10�4

2:0310� 10�3 2:0310� 10�3 0

1:1950� 10�3 1:1940� 10�3 8:3682� 10�4

8:1400� 10�4 8:1372� 10�4 3:4398� 10�4

6:0800� 10�4 6:0841� 10�4 6:7434� 10�4

Table 3
Comparison of present method (QHCM) with the experimental values for Pe =16.92, Bi
= 7.5, e ¼ 0:5561.

Experimental Values Present Method (QHCM) Relative Error

1:0000� 100 1:0002� 100 2:0000� 10�4

1:0000� 100 1:0001� 100 1:0000� 10�4

9:8000� 10�1 9:8013� 10�1 1:3265� 10�4

8:7850� 10�1 8:7864� 10�1 1:5936� 10�4

7:0770� 10�1 7:0769� 10�1 1:4130� 10�5

5:3960� 10�1 5:3965� 10�1 9:2661� 10�5

3:9420� 10�1 3:9412� 10�1 2:0294� 10�4

2:4040� 10�1 2:4046� 10�1 2:4958� 10�4

8:3850� 10�2 8:3887� 10�2 4:4126� 10�4

1:9040� 10�2 1:9040� 10�2 0

6:5390� 10�3 6:5387� 10�3 4:5879� 10�5

2:6150� 10�3 2:6158� 10�3 3:0593� 10�4

1:4040� 10�3 1:4050� 10�3 7:1225� 10�4

9:3100� 10�4 9:3139� 10�4 4:1890� 10�4

6:7700� 10�4 6:7663� 10�4 5:4653� 10�4
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5.2.1. Effect of Péclet number (Pe):
Péclet number is the ratio of advection to dispersion. Being

inversely proportional to axial dispersion coefficient, higher Péclet
Table 4
Comparison of present method (QHCM) with CSCM given in Gupta et al. (2015) for Pe =12

Experimental Values Present Method (CSCM) Gupta et al. (201

1.0000 1.0001 1.0001

0.9473 0.9472 0.9471

0.8378 0.8377 0.8372

0.7420 0.7421 0.7431

0.6409 0.6409 0.6418

0.5483 0.5485 0.5481

0.4300 0.4300 0.4313

0.3121 0.3123 0.3135

0.2132 0.2132 0.2119

0.1139 0.1139 0.1147

0.0576 0.0575 –

0.0266 0.0265 –

0.0100 0.0100 –
0.0039 0.0039 –
0.0016 0.0016 –
number implies smaller axial dispersion coefficient which in turn
implies less back mixing and hence, better removal of impurities
adsorbed on particle surface. In Figs. 5 and 6, the effect of Pe is ana-
lyzed for different ranges i.e. 5–20 and 50–100, respectively. It is
observed that for small range of Pe solution profiles takes long time
to converge to steady state. This occurs due to large value of axial
dispersion coefficient which causes back mixing and as a result
long time is required to leach out the impurities adsorbed on par-
ticle surface and vice versa. No considerable effect is observed for
Pe > 100.

5.2.2. Effect of Biot number (Bi):
Biot number represents the mass transfer resistances inside and

on the surface of the particle. It is also an important parameter in
the process of displacement washing. In Fig. 7 behaviour of solu-
tion profiles is shown for different values of Bi. It is observed that
for large values of Bi solution profiles converge faster as compare
to small values of Bi. It shows that mass transfer rate increases
with the increase in Biot number which increases the rate of
removal of impurities adsorbed on particle surface and vice versa.

5.2.3. Effect of Bed porosity (e):
Bed porosity is one of the most perceptive factor which influ-

ences the process of displacement washing. As bed porosity
increases, permeability increases which results in more removal
of solute from intraparticle voids which accelerates the convective
mechanism and hence better washing operations can be achieved.
This theoretical interpretation is shown in Fig. 8 where the beha-
viour of solution profiles is shown for varying values of bed
porosity.
6. Conclusions

A nonlinear advection dispersion model for packed bed of por-
ous particles has been discretized using quintic Hermite colloca-
tion method. Numerical results obtained through QHCM have
been compared to the experimental values of Arora and Potuček
(2012). The relative error is found to be of order 10�3. Numerical
results are also compared to the Gupta et al. (2015) in different
perspectives as number of elements to be taken, the relative error
according to the mathematical point of view. This fact authenti-
cates the validity and applicability of QHCM. Results are shown
in tabular as well as graphical form through which the smoothness
of solution profiles can be easily observed. It can be concluded
from all the findings that mathematical advection dispersion
.96, Bi = 6.3, e ¼ 0:8120.

5) (QHCM) Relative Error (QHCM) Relative Error (CSCM)

1:0000� 10�4 1:0000� 10�4

1:0556� 10�4 2:1113� 10�4

1:1936� 10�4 7:1616� 10�4

1:3477� 10�4 1:4825� 10�3

0 1:4043� 10�3

3:6476� 10�4 3:6476� 10�4

0 3:0233� 10�3

6:4082� 10�4 4:4857� 10�3

0 6:0976� 10�3

0 7:0237� 10�3

1:7000� 10�3 –

3:8000� 10�3 –

0 –
0 –
0 –



Table 5
Comparison of present method (QHCM) with CSCM given in Gupta et al. (2015) for Pe =20.81, Bi = 10, e ¼ 0:6711.

Experimental Values Present Method (QHCM) Gupta et al. (2015) (CSCM) Relative Error (QHCM) Relative Error (CSCM)

1.0000 1.0001 – 1:0000� 10�4 –

0.9900 0.9901 0.9907 1:0101� 10�4 7:0707� 10�4

0.9385 0.9384 0.9379 1:0655� 10�4 6:3932� 10�4

0.8169 0.8170 0.8158 1:2241� 10�4 1:3466� 10�3

0.6743 0.6744 0.6736 1:4830� 10�4 1:0381� 10�3

0.5335 0.5334 0.5343 1:8744� 10�4 1:4995� 10�3

0.4560 0.4559 0.4571 2:1930� 10�4 2:4123� 10�3

0.3556 0.3554 0.3546 5:6243� 10�4 2:8121� 10�3

0.2685 0.2685 0.2674 0 4:0968� 10�3

0.1849 0.1850 0.1891 5:4083� 10�4 2:2715� 10�2

0.1095 0.1094 0.1056 9:1324� 10�4 3:5616� 10�2

0.0429 0.0430 – 2:3000� 10�3 –

0.0054 0.0054 – 0 –
0.0019 0.0019 – 0 –
0.0005 0.0005 – 0 –

Fig. 5. Effect of solution profiles for different range of Pe;Bi ¼ 5, e ¼ 0:6711 and
w ¼ 0:1.

Fig. 6. Effect of solution profiles for different range of Pe;Bi ¼ 5, e ¼ 0:6711 and
w ¼ 0:1.

Fig. 7. Effect of solution profiles for different values of Bi; Pe ¼ 20, e ¼ 0:6711 and
w ¼ 0:1.

Fig. 8. Effect of solution profiles for different values e; Pe ¼ 20, w ¼ 0:1 and Bi = 5.
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model agrees well with the experimental data. Graphical and tab-
ular views of the solution profiles show the efficiency of QHCM.
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