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Abstract. Paper deals with an analytic solution of Model Predictive Controller 
in simple symbolic form. Process is approximated with a first order dynamical 
model. Special choice of prediction and control horizons is considered, so the 
symbolic solution is still applicable, and the controller has interesting “predic-
tive” feature in case of known future set-point course. Such a controller can be 
used in simple devices like PLCs or microcontrollers without need of matrix op-
erations. Its advantage is that the controller reacts to the process model parame-
ters and penalty parameter change so the control can be very fast and efficient 
even in adaptive manner. 
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1 Introduction 

Model Predictive Control (MPC) is very spread and popular time-domain optimization-
based controller design methodology. Plenty different process models, cost functions 
(performance indexes), analytical and numerical solutions with lot of choices and pa-
rameters give arise huge family of methods studied from theoretical point of view but 
also being applied in industry in different versions for decades. Strong potential of MPC 
methods lies in natural and graspable formulation (MPC origins can be found in indus-
try), ability to control large systems with constraints and transport delays and work with 
known future disturbances or set-points – see [1] and [2]. 

Connections between MPC and existing analytic control methods has been published 
in [3]. Standard analytic control methods can be considered as a special case of MPC. 
Both methods are identical in unconstrained case but MPC does not exhibit poor per-
formance of analytical control methods when a constraint is present. In [4] class of 
nonlinear and linear plants for which MPC admits an analytical solution was character-
ized. Optimal control sequence takes significantly less time to calculate in case of ana-
lytical solution. On the other hand, quadratic programming can handle different types 
of constraints. 

Presented approach is slightly different – we want to get analytical MPC which is 
parametrized with model parameters and penalty parameter and does not require any 
matrix operations or numerical methods. Then such a controller can be used in simple 
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systems with less memory and computational power. Because of its parametric feature 
the controller reacts to process changes (changes in model parameters) and penalty pa-
rameter so the user can tune the controller online iteratively or use it in adaptive manner. 
The complexity of analytical controller depends on choice of prediction and control 
horizons. The challenge was to find such horizons that the formula is still simple and 
the controller has predictive behavior – it will react to the set-point change in advance. 

2 Controller derivation 

2.1 Performance index 

Control aim is set-point following and disturbance rejection together with performance 
index minimization - to minimize sum of the squares of the future control error and 
future control changes (control moves) 
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Controlled variable predictions based on actual state and future control actions are 
needed. We will use dynamical process model for derivation of such a predictor. 
 
2.2 Process model and predictor 

We consider first order process model with time constant T and gain Z 

 
dy

T y Zu
dt

  . (2) 

After discretization with sample time Ts we get discrete-time process model 
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        . (3) 

We suppose disturbance model as a random walk process - summation of correlated 
prediction error e by polynomials C/A. The result is that the controller has integrating 
character. 

 
Fig. 1. Discrete-time process and disturbance model 
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The process model equation is 

      B C
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, (4) 

where prediction error      ˆe k y k y k   and process polynomials 1
11A a z  and  

1
1B b z , second order filtering polynomial 1 2

1 21C c z c z     and 

     1 1 1 2
1 1 11 1 1 1A a z z a z a z           . The  is backward difference opera-

tor 11 z   . By multiplying (4) with A we get prediction equations in matrix form 
as 
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We suppose the prediction and control horizons N1 = 1, N2 = Nu = 4 and optimal pre-
dictions - zero future prediction error. By multiplying (5) with Ap

-1 we get predictor in 
matrix form as 
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2.3 Performance index in matrix form and analytic solution 

Cost function (1) in matrix form can be written as 

    T TJ    Y W Y W U QU , (8) 

where 
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By substitution (7) into (8) we get following quadratic form 
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and the unconstrained solution can be written as 

        11 T T
p p p pk k

      U H g G G Q G W F x L W F x . (10) 

The control law (actual control change) is 

     p pu k k  K W F x , (11) 

where K is the first row of matrix L. This is analytic form of predictive controller but 
matrix operations must be used to calculate K and Fp. 

2.4 Simple symbolic forms of predictive controller 

Simple MPC symbolic forms can be obtained for special choices of prediction and con-
trol horizons. If N1 = N2 = 3 and Nu = 1 we get control law as 
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 2
1 1 1p a a   . (13) 

 
There is only one point in time k+3 considered for the set-point following.  
Only one control change is considered – control action is supposed to be constant for 
whole control horizon. 
 
For horizons N1 = N2 = 4 and Nu = 1 we get 
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 3 2
1 1 1 1r a a a     (15) 

Controlled variable prediction used to calculate prediction error      ˆe k y k y k  is 

the same for both versions 

              1 1 1 1 2ˆ 1 1 1 2 1 2y k b u k a y k a y k c e k c e k            . (16) 

3 Control experiments 

Firstly we simulated control with model of the laboratory system GUNT RT 050 - speed 
control (see Fig. 2) – motor with mass flywheel and generator. 

 
Fig. 2. GUNT RT 050 – speed control laboratory system 
 
We have identified first order continuous-time transfer function model from measured 
dynamical responses as 
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With sample time Ts = 0.5 s and penalty parameter q = 1 we got following control 
responses for both versions of the controller – by using equations (12 – 16). 

 
Fig. 3. Simulated control responses with horizons 3 (left) and 4 (right) 
 
We have also tested how the model mismatch and measurement noise will influence 
the control responses. We have identified second order model of the same system - this 
is the right order of the controlled process 
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. (18) 

Second version of the controller (N1 = N2 = 4) uses model F1 (17) like first order ap-
proximation of the real process. For simulation purpose we have added normally dis-
tributed pseudorandom noise with standard deviation 0.01 to the controlled output of 
the process F2 (18) to emulate measurement noise. 

 
Fig. 4. Simulated control responses without (left) and with filtering polynomial (right) 
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Two versions according to the filtering polynomial are applied - without filtering pol-
ynomial (C = 1) and with second order filtering polynomial C = (1-0.8z-1)2. Simulated 
control responses are in Fig. 4 and real control responses in Fig. 5. 

 
Fig. 5. Real control responses without (left) and with filtering polynomial (right) 

4 Conclusion 

Two fast and easy to use symbolic forms of MPC are presented and applied in labora-
tory scale. Controllers are parametrized with first order process model parameters a1 
and b1, one penalty parameter q and two filtering polynomial parameters c1 and c2. 
Penalty parameter allows to tune the control quality. Filtering parameters can be seen 
also as tunable parameters. The controller is quite sensitive to measurement noise with-
out filtering (c1 = c2 = 0). First order polynomial (e.g. c1 = -0.8, c2 = 0) will give 
smoother control actions. Second order polynomial (e.g. c1 = -1.6, c2 = 0.64) filter im-
proves control actions even more but also increases risk of oscillations. Some trade-off 
in filtering tuning is necessary similarly to state observing problem. 
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