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Abstract. The Fibonacci number f (G) of a graph G = (V,E) is defined as the
number of all subsets U of V such that no two vertices in U are adjacent. Phenylenes
represent a class of condensed polycyclic conjugated compounds which have the molec-
ular graph possessing both six-membered and four-membered circuits. In this paper
we are concerned with special types of bent phenylenes expanding our previous results
on the linear phenylenes. The explicit formulas for the Fibonacci numbers of the bent
phenylenes are found as functions of the number n of hexagons in both mentioned
branches of phenylene.
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1. Introduction1

A molecular graph in chemical graph theory is a representation of the struc-2

tural formula of a chemical compound in terms of graph theory. Vertices of it3

correspond to the atoms of the compound and edges correspond to the chemi-4

cal bonds. Many chemical structures and compounds are usually modeled by a5

molecular graph to analyze underlying theoretical properties.6

Phenylenes are an important class of conjugated hydrocarbons. Character-7

istic structural features of the phenylenes are alternating fused benzene and8

cyclobutadiene rings (circuits) which can be arranged in linear, angular or9

branched geometries. It means that the six-membered circuits (hexagons) are10

adjacent only to four-membered circuits, and every four-membered circuit is11

adjacent to a pair of nonadjacent hexagons. If each six-membered circuit in the12

molecular graph of a phenylene is adjacent only to two four-membered circuits,13

we say that it is a [N ]phenylene chain, where N signifies the number of benzene14

units. The molecular graphs of several phenylenes are presented in Fig. 1. In15
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particular, there are the linear [3]phenylene (a), the angular [3]phenylene (b)16

and the triangular [4]phenylene (c) as the case of a branched phenylene.17

Figure 1:

A topological index of a graph can be viewed as a numerical quantity which is18

invariant under isomorphism of graphs. Many topological indices are closely cor-19

related with some physico-chemical characteristics of the respective compounds.20

Hexagonal systems are of the great importance for theoretical chemistry because21

they are the natural graph representations of the benzenoid hydrocarbons [2].22

The structure of these graphs is apparently the simplest among all hexagonal23

systems [3]. Therefore the first results on topological indices were achieved for24

hexagonal chains. One of the most famous and interested topological indices25

is the Fibonacci number of a molecular graph. For the general graph-theoretic26

terminology we refer the reader to any of standard monographs, e.g. [10].27

In the number theory the Fibonacci numbers Fn are defined by the second28

order recurrence Fn+2 = Fn+1 + Fn with F0 = 0, F1 = 1. Similarly, the29

Lucas numbers Ln satisfy the same recurrence with the initial terms L0 = 2,30

L1 = 1. The total number of subsets of {1, 2, . . . , n} such that no two elements31

are adjacent is the Fibonacci number Fn+2. In view of this fact Prodinger and32

Tichy introduced in 1982 the Fibonacci number of a graph [6].33

Definition 1. Let G − (V,E) be a simple graph. The Fibonacci number f (G)34

of G is defined as the number of all subsets U of V such that no two vertices in35

U are adjacent.36

The subset U of k mutually independent vertices is called the k−independent37

set of G. We denote i(G, k) the number of the k−independent sets of G and38

i(G, 0) = 1 by definition for any graph G. Then, the Fibonacci number of G is39

given by the relation f(G) =
∑
k

i(G, k), where the summation is taken over all40

nonnegative integers k.41

The chemists Merrifield and Simmons [4] elaborated a theory aimed at de-42

scribing molecular structure by means of finite set topology. As their graph-43

topological considerations containing independent sets of vertices attracted wide44

attention there is used the name the Merrifield-Simmons index in chemistry in-45

stead of the Fibonacci number of a graph. However, we will use primarily the46

name the Fibonacci number of a graph in this paper. In recent years, a lot of47



ON THE FIBONACCI NUMBERS OF THE MOLECULAR GRAPHS 3

works have been published on the extremal problem for the Fibonacci number48

of graphs. Wagner and Gutman gave in [9] a survey which collects and classifies49

these results, and also provides some useful auxiliary tools and techniques that50

are used in the study of this type of problems.51

Directly from Definition 1 it is easy to find the Fibonacci numbers for paths52

and circuits (rings).53

Theorem 1. Let Pn be a path with n vertices and Cn a circuit with n vertices.54

Then f(Pn) = Fn+2 and f(Cn) = Ln.55

The Fibonacci numbers for various classes of graph have been found. For56

example, Yeh [11] computed algorithmically the Fibonacci numbers of the lattice57

product graphs, Ren, He and Yang [7] found the Fibonacci number of zig-zag58

tree-type hexagonal systems and Alameddine [1] found upper and below bounds59

for the Fibonacci numbers of maximal outerplanar graphs on a given number of60

vertices.61

2. Preliminary results62

In this section, we remind some important and useful results for the following63

calculations.64

Theorem 2 ([6]). If G1, G2 are disjoint graphs then f(G1⊔G2) = f(G1)f(G2).65

Theorem 3 ([5]). Let G be a graph with at least two vertices and v be its66

arbitrary vertex. Then for the Fibonacci number of G the formula f(G) =67

f(G− v) + f(G− (v)) holds, where G− v is the subgraph of G obtained from G68

by deletion of the vertex v and G− (v) is the subgraph of G obtained by deletion69

of the vertex v and all the vertices adjacent to v.70

Theorem 4 ([5]). If vertices u, v are adjacent in a graph G then71

a) f(G) = f(G− {u, v}) + f(G− (u)) + f(G− (v)), where G− {u, v} is the72

subgraph of G obtained by deletion of the vertices u and v of G,73

b) f(G) = f(G − uv) − f(G − (u, v)), where G − uv is the subgraph of G74

obtained by deletion of the edge uv of G and G− (u, v) is the subgraph of75

G obtained by deletion of the vertices u, v and all the vertices adjacent to76

them.77

In [8] we expressed the Fibonacci number of the linear phenylene as a func-78

tion of the number of its hexagons. We mention the principle of our considera-79

tions as it will be used it the next section.80

The following formulas were derived from Theorem 3 by suitable choices of81

the vertex v in the particular cases.82
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Figure 2:

Lemma 1 ([8]). Let Ln be the linear phenylene with n hexagons and let An,83

Bn, Dn, En be graphs as in Fig. 2. Then the following relations hold for any84

positive integer n > 1.85

(1) f(Ln) = f(An) + f(Dn),
86

(2) f(An) = f(Bn) + f(Dn),
87

(3) f(Bn) = 4f(Ln−1) + 4f(An−1),
88

(4) f(Dn) = f(Ln−1) + f(An−1) + f(En),
89

(5) f(En) = f(Ln−1) + 2f(An−1).

We denote f(Ln) = ln, f(An) = an, f(Bn) = bn, f(Dn) = dn and f(En) =90

en for short.91

Theorem 5. The values of the Fibonacci numbers for the graphs An are92

an = (1/(γ − δ))
[
(199− 13δ)γn−1 − (199− 13γ)δn−1

]
for any positive integer93

n, where γ = (15 +
√
241)/2, δ = (15−

√
241)/2.94

The proof is based on Lemma 1. After elimination of the remaining vari-95

ables identities (1)-(5) lead to the homogeneous linear difference equation of the96

second order with constant coefficients an+2 − 15an+1 − 4an = 0. The general97

solution of this equation has the form an = K1γ
n + K2δ

n, where K1, K2 are98
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arbitrary real numbers. It is easy to calculate that a1 = 13 and a2 = 199, and99

therefore K1 =
199−13δ
γ(γ−δ) , K2 =

199−13γ
δ(γ−δ) , which gives the expression for an.100

Using the expression for an and the relation ln = 1
6an+1 − 7

6an we have the101

following result.102

Theorem 6. The Fibonacci number of the linear phenylene with n hexagons103

can be expressed in the form104

(6) f(Ln) = ln =
1

γ − δ

[
(18γ + 4)γn−1 − (18δ + 4)δn−1

]
for any positive integer n.105

Remark. The closed expression for bn, dn, en are obtained by the similar way.106

For any positive integer we have107

bn = 1
γ−δ

[
(124γ + 32)γn−2 − (124δ + 32)δn−2

]
,108

dn = 5
γ−δ (γ

n − δn),109

en = 1
γ−δ

[
(44γ + 12)γn−2 − (44δ + 12)δn−2

]
.110

3. Main results111

Now we consider the molecular graph Ln,n of the bent phenylene which consists112

of two linear phenylenes Ln of the same length of n ≥ 2. The phenylenes have113

the common hexagon (Fig.3). It is possible to use the results from the previous114

section.115

Figure 3:

First, we prove the following Lemma.116

Lemma 2. The terms of the sequence {f (Ln,n)} satisfy the relation117

(7) f(Ln,n) = d2n − 4a2n−1 − l2n−1 − 2ln−1an−1

for any positive integer n ≥ 2.118
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Proof. The relation can be derived by repeatedly using Theorem 2 and the119

both statements of Theorem 4. First, we choose the edge u1v1 in Ln,n (see Fig.120

3) and use statement (b) of Theorem 4. Then we choose the edge u2v2 in Ln,n−121

u1v1 = L(1) and use the statement (b) of Theorem 4. Finally, we use the vertices122

u3, v3 in Ln,n − (u1, v1) = L(2) and the statement (a) of Theorem 4 (see Fig.4).123

So we have successively124

f(Ln,n) = f(Ln,n − u1v1)− f(Ln,n − (u1, v1))

= f(L(1))− f(L(2))

= f(L(1) − u2v2)− f(L(1) − (u2, v2))− (f(L(2) − {u3, v3})
+ f(L(2) − (u3)) + f(L(2) − (v3)))

= dndn − 2an−12an−1 − (ln−1ln−1 + ln−1an−1 + an−1ln−1)

which gives the desired expression.125

Figure 4:

Lemma 3. For the roots γ = (15+
√
241)/2, δ = (15−

√
241)/2 of the equation126

x2 − 15x − 4 = 0 the following relations hold: γδ = −4, γ2 = 15γ + 4, γ4 =127

3495γ + 916, δ2 = 15δ + 4, δ4 = 3495δ + 916.128

Proof. These identities are trivial consequences of roots properties of a quadratic129

equation. For instance, γ4 = (15γ + 4)2 = 225(15γ + 4) + 120γ + 16 =130

3495γ + 916.131

Theorem 7. The Fibonacci number of the graph Ln,n for any positive integer132

n can be written in the form133

f(Ln,n) =
1

(γ − δ)2
[(64547γ + 16916)γ2n−4

+ (64547δ + 16916)δ2n−4 − 200(−4)n−2].(8)
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Proof. We will use Lemma 2 and the explicit formulas for ln, an and dn. Then134

we can write successively for any positive integer n ≥ 2135

f(Ln,n) =
1

(γ − δ)2
(25(γn − δn)2

− 4[(199− 13δ)γn−2 − (199− 13γ)δn−2]2 − [(18γ + 4)γn−2 − (18δ + 4)δn−2]2

− 2[(199− 13δ)γn−2 − (199− 13γ)δn−2][(18γ + 4)γn−2 − (18δ + 4)δn−2])

=
1

(γ − δ)2
([25γ4 − 4(199− 13δ)2 − (18γ + 4)2 − 2(199− 13δ)(18γ + 4)]γ2n−4

+ [25δ4 − 4(199− 13γ)2 − (18δ + 4)2 − 2(199− 13γ)(18δ + 4)]δ2n−4

+ [−800 + 8(199− 13δ)(199− 13γ) + 2(18γ + 4)(18δ + 4)

+ 2(199− 13δ)(18δ + 4) + 2(199− 13γ)(18γ + 4)](−4)n−2) as γδ = −4.

This expression can be simplified using the identities of Lemma 3. Further136

details of this part of the proof are left to readers.137

Then138

f(Ln,n) =
1

(γ − δ)2
[(75207γ + 10660δ − 142984)γ2n−4

+ (75207δ + 10660γ − 142984)δ2n−4

+ (307480− 20512γ − 20512δ)(−4)n−2]

=
1

(γ − δ)2
[(64547γ + 10660(γ + δ)− 142984)γ2n−4

+ (64547δ + 10660(γ + δ)− 142984)δ2n−4

+ (307480− 20512(γ + δ))(−4)n−2].

As γ + δ = 15 and γ − δ =
√
241, the formula (8) is obtained immediately for139

n ≥ 2.140

Moreover,141

f(L1,1) =
1

(γ − δ)2
[(64547γ + 16916)γ−2 + (64547δ + 16916)δ−2 − 200(−4)−1]

=
1

(γ − δ)2

[
(64547γ + 16916)

δ2

16
+ (64547δ + 16916)

γ2

16
− 200

(
−1

4

)]
=

1

(γ − δ)2

[(
64547

16
γ +

4229

4

)
(15δ + 4) +

(
64547

16
δ +

4229

4

)
(15γ + 4) + 50

]
=

1

241

[
968205

8
γδ +

63991

2
(γ + δ) + 8508

]
= 18 = f(C6).

As L1,1 = C6, the statement holds also for n = 1.142

Example. The previous function expression of f(Ln,n) can be used to find143

f(L2,2) and f(L3,3). In this case, L2,2 and L3,3 represent the molecular graphs144

of a bent [3]phenylene and of a bent [5]phenylene, respectively.145
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Thus,146

f(L2,2) =
1

(γ − δ)2
[(64547γ + 16916)γ0 + (64547δ + 16916)δ0 − 200(−4)0]

=
1

241
[64547(γ + δ) + 33832− 200] = 4157.

Similarly,147

f(L3,3) =
1

(γ − δ)2
[(64547γ + 16916)γ2 + (64547δ + 16916)δ2 − 200(−4)]

=
1

(γ − δ)2
[(64547γ + 16916)(15γ + 4) + (64547δ + 16916)(15δ + 4) + 800]

=
1

(γ − δ)2
[968205(15γ + 4) + 511928γ + 67664 + 968205(15δ + 4) + 511928δ

+ 67664 + 800] =
1

241
[15035003(γ + δ) + 7880968 + 800] = 968493.

Further we consider the molecular graph Zn,n of the bent phenylene which148

consists of two linear phenylenes Ln of the same length of n ≥ 1. In this case,149

the linear phenylenes are linked using a square (Fig. 5).150

Figure 5:

First, we prove the following Lemma.151

Lemma 4. The terms of the sequence {f(Zn,n)} satisfy the relation152

(9) f(Zn,n) = l2n − 2dn(3ln−1 + 2an−1)

for any positive integer n ≥ 2.153

Proof. The relation can be derived by repeatedly using Theorem 2 and the154

both statements of Theorem 4. First we choose the edge u1v1 in Zn,n (see155

Fig. 5) and use the statement (b) of Theorem 4. Then we choose the edge156

u2v2 in Zn,n − u1v1 = Z(1) and use the statement (b) of Theorem 4. Hence157

f(Zn,n) = f(Zn,n − u1v1)− f(Zn,n − (u1, v1)) = f(Z(1))− f(Z(2)).158

It can be easily seen (Fig. 6) that f(Z(2)) = f(Dn)f(Un−1). If we choose159

the vertices u3, v3 in Un−1 and use the statement (a) of Theorem 4 (see Fig. 6),160

we obtain (with the help of Theorem 2) f(Un−1) = 2ln−1 + ln−1 + 2an−1. Then161

f(Zn,n) = lnln − dnf(Un−1)− dnf(Un−1) = l2n − 2dn(3ln−1 + 2an−1), which was162

to be shown.163



ON THE FIBONACCI NUMBERS OF THE MOLECULAR GRAPHS 9

Figure 6:

Theorem 8. The Fibonacci number of the graph Zn,n has the closed function164

expression165

f(Zn,n) =
1

(γ − δ)2
[
(4204γ + 1112)γ2n−2

+(4204δ + 1112)δ2n−2 − 3000(−4)n−2
]

(10)

for any positive integer n.166

Proof. Using Lemma 2 and the explicit formulas for ln, an and dn, we get for167

n ≥ 2168

f(Zn,n) =
1

(γ − δ)2
{
[
(18γ + 4)γn−1 − (18δ + 4)δn−1

]2
− 10(γn − δn)(3

[
(18γ + 4)γn−2 − (18δ + 4)δn−2

]
+ 2

[
(199− 13δ)γn−2 − (199− 13γ)δn−2

]
)}

=
1

(γ − δ)2
{
[
(18γ + 4)2 − 800γ − 200

]
γ2n−2

+
[
(18δ + 4)2 − 800δ − 200

]
δ2n−2

+
[
−2(18γ + 4)(18δ + 4) + 10δ2(80γ + 20) + 10γ2(80δ + 20)

]
(−4)n−2}

=
1

(γ − δ)2
[(4204γ + 1112)γ2n−2 + (4204δ + 1112)δ2n−2

+ (24000γδ + 6200γ + 6200δ)(−4)n−2].

Since γ + δ = 15 and γδ = −4, we arrive at the expression (10) for f(Zn,n),169

if n ≥ 2. Moreover, f(Z1,1) = 1
(γ−δ)2

[(4204γ + 1112)γ0 + (4204δ + 1112)δ0 −170

3000(−4)−1] = 1
(γ−δ)2

[4204(γ + δ) + 2224 − 3000(−1
4)] == 1

241 [63060 + 2224 +171

750] = 274 = f(L2) as Z1,1 = L2. It completes the proof for all n ≥ 1.172
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4. Conclusion173

The total number of independent subsets of graph vertices finds its application174

mainly in organic chemistry. In particular, there exists the link between the175

Merrifield-Simmons index and a boiling point of organic compounds. It is the176

reason why the name “Merrifield-Simmons index” is preferred in the literature to177

originally pure mathematical “Fibonacci number”. In case of molecular graphs,178

there exists a lot of works devoted to the calculation of the Merrifield-Simmons179

index for various classes of graphs. The method of calculation used in this paper180

and the obtained results can be generalized for other classes of molecular graphs.181
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