
SARIMA MODELLING APPROACH FOR RAILWAY 
PASSENGER FLOW FORECASTING

Miloš MILENKOVIĆ1*, Libor ŠVADLENKA2, Vlastimil MELICHAR3, 
Nebojša BOJOVIĆ4, Zoran AVRAMOVIĆ5

1, 4, 5Division for Management in Railway, Rolling stock and Traction,  
The Faculty of Transport and Traffic Engineering, University of Belgrade, Serbia

2, 3Dept of Transport Management, Marketing and Logistics, Jan Perner Transport Faculty, 
University of Pardubice, Czech Republic

Received 25 November 2014; revised 3 February 2015, 6 August 2015; accepted 29 October 2015; 
first published online 7 March 2016

Abstract. In this paper, railway passenger flows are analyzed and a suitable modeling method proposed. Based on 
historical data composed from monthly passenger counts realized on Serbian railway network it is concluded that the 
time series has a strong autocorrelation of seasonal characteristics. In order to deal with seasonal periodicity, Seasonal 
AutoRegressive Integrated Moving Average (SARIMA) method is applied for fitting and forecasting the time series that 
spans over the January 2004 – June 2014 periods. Experimental results show good prediction performances. Therefore, 
developed SARIMA model can be considered for forecasting of monthly passenger flows on Serbian railways. 
Keywords: railway, passenger service, time series, forecasting, SARIMA.

Introduction 

Forecasting of future demand for transport service rep-
resent important element of success for a transport com-
pany. Forecasting also provides basic input for planning 
and control of functional areas including transport op-
erations planning, marketing and finance. 

There are two broad categories of forecasting ap-
proaches in transportation field: parametric and non-
parametric (Smith et al. 2002; Vlahogianni et al. 2004; 
Wei, Chen 2012). The main difference between these two 
categories lies in functional dependence between inde-
pendent variables and dependent variable. Within the 
non-parametric methods there are applications of neu-
ral networks (Dougherty 1995; Vlahogianni et al. 2004; 
Xie, Zhang 2006; Zhang, He 2007; Zhang, Ye 2008; Tsai 
et  al. 2009; Alekseev, Seixas 2009), non-parametric re-
gression (Smith et al. 2002; Williams et al. 1998; Clark 
2003), Kalman filters (Whittaker et al. 1997; Stathopou-
los, Karlaftis 2003; Saab, Zouein 2001; Wang et al. 2007) 
and Gaussian maximum likelihood (Tang et  al. 2003). 
For example, Wei and Chen (2012) developed a hybrid 
forecasting approach based on a combination of Empiri-
cal Mode Decomposition (EMD) and Back-Propagation 
Neural (BPN) networks to predict short term passenger 

flow in metro systems. Xu et al. (2004) applied spatio-
temporal data mining to forecast the railway passenger 
flow based on spatio. Approach is decomposed into two 
phases. In first phase, it forecasts the time sequence of 
the target object using statistical principles. In second 
phase, it figures out the spatial influence of neighbor ob-
jects using a neural network, and finally combines the 
two forecasting results using linear regression. Li et al. 
(2012) used Grey model for forecast annual outgoing 
passenger flows of a railway station. Authors analyzed 
monthly flucations in passenger flows and applied pro-
portional coefficient method for prediction of passenger 
flows for each month.

In the traditional parametric techniques, histori-
cal average (Smith, Demetsky 1997; Stephanedes et  al. 
1981), smoothing techniques (Williams et al. 1998), and 
AutoRegressive Integrated Moving Average (ARIMA) 
(Hansen et al. 1999; Williams et al. 1998; Lee, Fambro 
1999; Williams 2001; Kamarianakis, Prastacos 2005) 
have been applied to forecast transportation demand. 
For example, Grubb and Mason (2001) estimated a very 
long time series about air passenger traffic using Holt–
Winters forecasting methods. They estimated the histor-



M. Milenković et al. SARIMA modelling approach for railway passenger flow forecasting

ical growth using Holt–Winters decomposition and pro-
duced long lead-time forecasts. On the base of long data 
series, they evaluated the out-of-sample forecasting per-
formance of this and other forecasting procedures and 
concluded that presented modification of Holt–Winter 
method greatly improves forecasting performance for 
long lead-times. Presented approach also considers an 
assessment of uncertainty in the predictions. By modi-
fied Holt–Winters procedure they varied the trend used 
for predictions and estimated the sensitivity of forecasts 
to assumptions about the future trend. Grosche et  al. 
(2007) presented two gravity models for the estimation 
of air passenger flows between pairs of cities. Models 
are based on variables describing economic activity and 
geographical characteristics of city pairs. This means that 
developed models can be applied in case when new ser-
vice is considered or historical data are not available.

Within the class of parametric methods, AutoRe-
gressive Integrated Moving Average (ARIMA) has be-
come one of the common parametric forecasting ap-
proaches since the 1970s (Wei, Chen 2012). In addition, 
with the characteristics of seasonality and trends in traf-
fic data, some researches use seasonal ARIMA to predict 
traffic flow (Williams, Hoel 2003; Tan et al. 2009) and in-
ternational air passenger flow (Faraway, Chatfield 1993; 
Lim, McAleer 2002; Chen et al. 2009). 

As already mentioned, many railway planning pro-
cesses including financial, asset, capital investment and 
service plan are predicted on the estimate of passenger 
demand to be handled within a given time period. Fore-
casts of traffic volume represent one of the most impor-
tant outputs of a marketing plan and also the important 
input to the corporate plan. Current planning process in 
JSC ‘Serbian Railways’ lacks of any planning tool, so hav-
ing that in mind, as well as the actual market share and 
increasing competition there is a need for better plan-
ning instruments in the company. Therefore, in this pa-
per we present the first detailed application of Seasonal 
ARIMA (SARIMA) models in order to generate passen-
ger traffic forecasts for the case of JSC ‘Serbian Railways’. 
We use the data representing monthly passenger flows 
on all lines of Serbian railway network provided by Sta-
tistical Office of the Republic of Serbia (http://webrzs.
stat.gov.rs). At the time of our analysis a time series of 
monthly passenger flows from January 2004 to June 2014 
(126 months) was available. 

Paper is organized as follows. Section 1 introduces 
ARIMA and SARIMA models and describes Box–Jenkins 
methodology for their selection. In Section 2, SARIMA  
modeling process has been applied for deriving an effi-
cient model to assess rail passenger demand for a case of 
Serbian railways. Last section concludes this paper. 

1. ARIMA and SARIMA models

Box et al. (2013) introduced the ARIMA method. This 
method now represents one of the most frequently used 
univariate time series modeling tools. ARIMA models 
are based on AutoRegressive Model (AR), the Mov-
ing Average Model (MA) and the combination of the 
AR and MA, the ARMA models (Suhartono 2011).  

AR model includes lagged terms on the time series itself, 
and MA model includes lagged terms on the noise or 
residuals. The first requirement for ARIMA modeling 
is that the time series data to be modeled are either sta-
tionary or can be transformed into stationary. Therefore, 
the letter ‘I’ (Integrated) means that the first order differ-
ence is applied in order to stationarize given time series. 
First order differencing requires that there is a need to 
find between observations in two successive months. 
In case that there is a time series with trends, seasonal 
pattern and short time correlations a Seasonal ARIMA 
(SARIMA) model can be used. Besides three main com-
ponents present in ARIMA model, there is a need for 
seasonal differencing in order to make a seasonal time 
series stationary. Therefore, a SARIMA model has four 
components:

 – the non-seasonal and seasonal AR polynomial 
term of order p and P, respectively:

( )f = − f − f −⋅⋅⋅− f2
1 21 p

p pB B B B ; (1) 

( )F = − F − F −⋅⋅⋅− F2
1 21 s s Ps

P PBs B B B ;  (2)

 – the non-seasonal and seasonal Moving Average 
(MA) part of order q and Q, respectively:

q = + q + q + ⋅⋅⋅+ q2
1 2( ) 1 q

q qB B B B ; (3)

Q = + Q + Q + ⋅⋅⋅+ Q2
1 2( ) 1s s s Qs

Q QB B B B ; (4) 

 – non-seasonal differencing operator, ( )−1 dB ,
is the of order d used to eliminate polynomial 
trends;

 – seasonal differencing operator, ( )−1
DsB , of or-

der D used to eliminate seasonal patterns.
Parameters f and q are the ordinary ARMA coef-

ficients, F and Q are the seasonal ARMA coefficients, B 
is the backshift operator, whose effect on a time series Yt 
can be summarized as −=d

t t dB Y Y . 
Therefore, the generalized form of  SARIMA(p, d, q)× 

(P, D, Q)s model for a series Yt can be written as (Box 
et al. 2013; Cryer, Chan 2008):

( ) ( )( ) ( ) ( ) ( )f F − − = q Q e1 1
Dds s s

p P t q Q tB B B B Y B B ,

 (5)

where: s is the length of the periodicity (seasonality) and 
et is a white noise sequence. 

Box–Jenkins method in essence involve three steps 
for fitting the ARIMA and SARIMA models. These are 
identification, estimation and validation of the model 
(Box et al. 2013; Prista et al. 2011). First step is generally 
based on an analysis of AutoCorrelation Function (ACF) 
and Partial ACF (PACF) and their comparison with 
theoretical profiles of these functions in AR, MA and 
ARMA processes. The output of the identification step 
is determined appropriate ( ) ( )×, , , , Sp d q P D Q  model
structure. The model structure selected in previous step 
has to be fitted to the time series and its parameters to be 
estimated. This is the essence of the second step and it is 
done by using the conditional sum of squares or maxi-
mum likelihood method. Validation of selected model is 



performed within the diagnostic checking by analysis of 
stationarity, invertibility as well as the presence of redun-
dancy in model parameters. If a selected model fails in 
diagnostic check it is necessary to repeat the whole pro-
cedure again. After an appropriate model is found it can 
be used for forecasting purpose (Box et al. 2013; Prista 
et al. 2011).

Subjectivity is mostly present in model identifica-
tion step. In the fact that this step is based essentially on 
graphical interpretations of ACF/PACF estimates. To 
cope with this subjectivity and to improve the determi-
nation the final orders of the ARMA processes there are 
a lot of model selection criteria proposed in literature 
(De Gooijer et al. 1985).

The most frequently used are information criteria 
such as Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and normalized version 
of BIC. These information criteria are designed to deal 
with the fit of the nonlinear models and to account for 
the number of the parameters in the model as well. They 
consist of the natural log of the Mean Squared Error 
(MSE) and a penalty for the number of parameters being 
estimated (Yaffee, McGee 2000):

( )= +AIC ln MSE 2T k; (6)

( ) ( )= +BIC ln MSE lnT k T ; (7)

( ) ( )
= +

ln
Normalized BIC  ln MSE

T
k

T
, (8)

where: T is number of observations, k is the number of 
parameters in the model = + + + +1k p q P Q . Common 
procedure often involves estimating the largest model 
for which it is assumed to correctly capture the dynam-
ics of a time series and then decreasing its size (drop-
ping the lags) until the minimum value of AIC, BIC or 
Normalized BIC is reached. Presented methodology will 
be used in next chapter for analysis of railway passenger 
flows on Serbian railways.

2. SARIMA model for rail passenger flow
forecasting: a case study of Serbian railways 

In this chapter, we outline the practical steps, which need 
to be undertaken to use SARIMA time series models for 
passenger flows forecasting on Serbian railways. To test 

alternative SARIMA models we obtained a time series 
of a total monthly number of passengers travelled by the 
railway from the Statistical Office of the Republic of Ser-
bia (http://webrzs.stat.gov.rs). Data set covers the period 
from January 2004 to June 2014 (126 monthly values). 
The time series is presented on Figure 1. First 114 month-
ly observations are used for fitting purpose, whereas 
the remaining 12 observations served for verification 
the forecasting capability of selected SARIMA model. 

According to the Box–Jenkins methodology, in SA-
RIMA models there is an explicit consideration of trend 
and seasonal non-stationarities by the model structure. 
However, it is needed to analyze non-stationarities of 
variance before the model fitting. As it can be seen from 
the Figure  1, time series data ( )=, 1,...,126tx t  for rail
passenger traffic in Serbia have strong seasonality pat-
tern with a trend, which is not constant throughout the 
whole study period, rather slightly decreasing in period 
from 2004 to 2010 and increasing in period from 2011 
to 2014, an increase in variance with the serious mean is 
identified from variance–mean plots (Figure 2). 

Therefore, we log-transformed the data in order to 
stabilize the variance and then used these log transformed 
data set as input to the SARIMA analysis (Figure  3).

Different SARIMA models were applied to find 
the best fitting model. Among all candidate models, the 
most suitable predictive model for our case was found 
on the base of Box–Jenkins model and normalized BIC. 
This approach involved selection of the candidate model 
set, estimation of the model and determination of nor-
malized BIC and diagnostic check. 

Figure 1. Time series of monthly rail passenger flows (in thousands) in Serbia (January 2004 – June 2014) – raw data

Figure 2. Mean–variance relationship
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The set of alternative models is determined by ana-
lyzing the sample estimates of ACF and PACF, and defin-
ing the three major orders of the SARIMA models: d, D, 
and S. Lags 1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 22, 23, 24, 25, 
26, 29 and 30 had large autocorrelations with values 0.80, 
0.64, 0.45, 0.28, 0.25, 0.36, 0.46, 0.51, 0.38, 0.27, 0.22, 
0.31, 0.39, 0.29, 0.19, –0.17 and –0.26, respectively (Fig-
ure 4). According to these values, namely, the very sharp 

decrease of autocorrelation values in first three lags; it is 
obvious that there exists a long-term trend. In order to 
eliminate it, the first lag difference term has to be includ-
ed in the structure of the SARIMA model (d = 1). An-
nual lags and its multiplies also reported large autocor-
relation values. Consequently, seasonal difference terms 
are included in models (S = 12, D = 1). Further justifica-
tion of these conclusions is obvious from ACF and PACF 
plots of differenced time series (Figure 4). Based on this 
conclusions, we selected SARIMA( ) ( )× 12,1, ,1,SARIMA p q P Q as
the basic structure of the alternative SARIMA models. 

Among the statistical models, SARIMA 
(0,1,0)×(0,1,1)12 was the most appropriate with the low-
est normalized BIC of 7.056 and a Mean Absolute Percent 
Error (MAPE) of 4.176 (Table 1). 70.8% of the variance 
of the time series was covered by this model (station-
ary R-squared). According to the Ljung–Box statistics it 
is proven that the selected model is correctly specified. 
Namely, the value of 0.542 shown here is not significant, 
so we can be confident in correct specification of the 
model. This model has the following equation:

− − − −= + − + e + e1 12 13 12log log log log 0.966t t t t t tZ Z Z Z  .

(9)

Figure 3. Time series of monthly rail passenger flows in Serbia 
(January 2004 – June 2014) – log transformed data
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Table 1. Normalized BIC, MAPE and stationary R-squared 
of SARIMA models

Models MAPE Normalized 
BIC

Stationary 
R-squared

SARIMA(0,1,1)×(0,1,1)12 4.324 7.199 0.675

SARIMA(0,1,1)×(0,1,0)12 5.452 7.443 0.545

SARIMA(0,1,0)×(0,1,1)12 4.176 7.056 0.708

SARIMA(1,1,1)×(0,1,1)12 4.303 7.233 0.679

SARIMA(1,1,1)×(1,1,1)12 4.304 7.288 0.679

According to diagnostic checks SARIMA model ap-
pears as stationary and invertible without redundant pa-
rameters. According to the Ljung–Box Q-test and p-val-
ue (Ljung–Box Q = 15.747, p-value >0.05) residuals were 
white noise and therefore there is no significant auto-

correlation between residuals at different lag times (Fig-
ure 5). Significance level of a = 0.05 was used for all tests.

Twelve months of model forecasts are evaluated 
where the first month (July 2013) after the fitting part 
represent the origin of the forecast. Forecasts were ob-
tained in the data original scale ( )=ˆ , 1,...,12lx l . Per-
formance of selected SARIMA model was evaluated by 
comparison of l  – step forecasts and monthly number 
of passengers travelled in period July 2013 – Jun 2014. 
In order to perform this comparison monthly forecast 
errors are computed and following accuracy criteria ap-
plied: Root Mean Square Error (RMSE), Mean Error 
(ME), Absolute Percent Error (APEl) and MAPE. Per-
formance of SARIMA model are compared also against 
the Seasonal Exponential Smoothing (SES) method (Ta-
ble 2). For this purpose trial version of IBM SPSS (ver-
sion 19) software is used. 

Figure 5. ACF and PACF of residuals
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Table 2. Forecasts of railway passenger flows in thousands (July 2013 – June 2014): observed passenger counts (xl), forecasted pas-
senger counts ( ˆlx ), monthly forecast errors (el) and monthly absolute percent error (APEl) are displayed for Seasonal Exponential

Smoothing (SES) model and SARIMA (SAR) model 

Month, year Step (l) Obs(xl)
Forecasts ( ˆlx ) Forecast errors (el) APEl

SES SAR SES SAR SES SAR
July 2013 1 664 660.12 663.03 –3.88 –0.97 0.58 0.15
August 2013 2 623 655.84 641.02 32.84 18.02 5.27 2.89
September 2013 3 628 583.49 574.15 –44.51 –53.85 7.09 8.57
October 2013 4 614 598.45 598.03 –15.55 –15.97 2.53 2.60
November 2013 5 574 547.04 546.12 –26.96 –27.88 4.70 4.86
December 2013 6 566 540.73 539.27 –25.27 –26.73 4.46 4.72
January 2014 7 531 526.29 516.53 –4.71 –14.47 0.89 2.73
February 2014 8 507 485.6 488.51 –21.40 –18.49 4.22 3.65
March 2014 9 610 567.81 557.16 –42.19 –52.84 6.92 8.66
April 2014 10 600 613.22 601.82 13.22 1.82 2.20 0.30
May 2014 11 537 658.05 645.82 121.05 108.82 22.54 20.26
June 2014 12 515 649.67 649.48 134.67 134.48 26.15 26.11
Mean 1:12 580.75 590.52 585.08 9.77 4.33 7.30 7.13
Sum 1:12 6969 7086 7021 117 52
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Figure  6 displays observed values and SARIMA 
model fit and forecast values. Model gives slightly lower 
forecasts then observed values (September 2013 – March 
2014), but pattern of model forecasts almost matched 
the one in observed passenger counts except for peri-
od from May 2014 to June 2014. The main reason for 
this is a slightly increasing trend for the last two years 
of the study period. RMSE during the prediction period 
(RMSE = 56.45) was 1.9 times the RMSE of the fitting pe-
riod (RMSE = 29.69). Negative errors and low ME (ME = 
4.32) registered in eight of twelve forecasts indicate on 
minority of underestimation in global terms. However, it 
has to be noted that this conclusion is valid for the case 
of random error, but this will not be the case if the error 
is systematic (system changes – transportation, activity 
or flow patterns). MAPE was 7.13% reflecting the slight-
ly lower forecasts during the July 2013 and September 
2013 – March 2014. The SARIMA model forecasts also 
registered better performances with respect to SES, re-
sulting in 9.8% reduction in RMSE, 44.2% reduction in 
ME, and 9.7% reduction in MAPE. 

Outliers are known to cause trouble in time series 
model identification, estimation and forecasts (Prista 
et al. 2011). Rail passenger flow data set presented four 
apparent outliers, which are incorporated into the model 
(Figure 7). They are of different kinds. These outliers are 
mainly additive that affects a single observation (August 
2007, September 2009 and February 2012), but there is 

also one transient outlier whose impact exponentially 
decays (June 2010). The main reason for existence of 
outliers at the beginning of year (like those in February 
2012) lies in winter vacations and non-existence of daily 
and weekly school migrations. During the August 2007 
significant flows appeared especially within the interna-
tional passenger services. Higher volumes of passenger 
flows in September 2009 resulted by ending of summer 
vacations and beginning the activities at schools and fac-
ulties. June of 2010 in Serbia was very hot and this re-
flected on lower volumes of passenger flows on Serbian 
railways. 

Conclusions

In this paper, we proposed a sophisticated mathemati-
cal model for generating rail passenger traffic forecasts 
for the case of JSC ‘Serbian Railways’. Different SARIMA 
models were tested to select an appropriate. 

The results of diagnostic check indicate that the SA-
RIMA(0,1,0)×(0,1,1)12 is the most appropriate for mod-
eling the rail passenger demand on Serbian railways. 

This method can be a valuable decision support tool 
for company’s marketing sector considering from one 
side, the current situation of rail passenger sector in Ser-
bia (market share, revenues generated, number of pas-
sengers) and lack of any sophisticated planning tools, and 
from the other side, the accuracy of forecasting approach. 

Figure 6. Results of SARIMA forecasting for the passenger demand on Serbian railways

Figure 7. Outliers in time series of monthly rail passenger flows (in thousands) in Serbia (January 2004 – June 2014)
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Future research will be concentrated on developing 
more efficient forecasting models, which will also use 
additional information from market surveys and demo-
graphic studies.
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