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Abstract

Condition monitoring for railway vehicle systems plays an important role to maintain safety and performance of railway

vehicles. Rolling radius is one of the properties that should be monitored continuously for a predictive maintenance of

a railway vehicle since it changes with time due to wheel wear. In this study, a model based condition monitoring

methodology, which is based on unscented Kalman filter, is proposed. Model includes the torsional dynamics of

an independently rotating tram wheel with a traction motor and a contact model. Rolling radius is estimated by

considering the traction effort of the motor and angular velocity measurements. Proposed methodology is tested on

a tram wheel test stand (roller–rig) which has a wheel on roller configuration. Firstly, mathematical model is validated

by the measurements taken from the test stand. Secondly, unscented Kalman filter is applied as a parameter estimator.

Results demonstrate that proposed scheme is promising to use for predictive condition monitoring of wheel profile for

traction vehicles.
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Introduction

A recent review article reported by Li et al.1 summarizes

the existing approaches applied for railway vehicle on–board

health (i.e. condition) monitoring systems. It is indicated that

the focus of condition monitoring systems should be wheel–

rail health monitoring, suspension health monitoring, vehicle

component health monitoring and running state monitoring.1

It is also stated by Li et al.1 that unscented Kalman filter,

which is also used hereby, is generally considered to estimate

wheel–rail friction coefficients in the railway industry.2;3

Wheel profile condition monitoring methodologies can

be classified into two group and these are methodologies

based on vehicle mounted sensors and track–side sensors.1

Methodologies based on track–side sensors have the

drawback of providing information only on the specific

points on the track. Therefore, methodologies based on

vehicle mounted sensors are preferable since they provide

continuous information along the track.

One of the very first model based estimation schemes for

wheel–rail profile estimation is given by Charles et al.4, and

a lateral dynamic model of a wheelset is used. Measurements

are taken from a generic wheelset model to estimate the

conicity, which is a linearised parameter including secant

gradient of rolling radius difference, and only a simulation

study is presented without experimental validation.4 A

state of art application by using time frequency techniques

for detecting wheel flat and rail defects is presented by

Liang et al.5 and results are experimentally validated,

whereas good agreement was achieved between simulated

and measured acceleration results just for low wheel speed

(3.5 km/h). For high wheel speed, difference between

simulations and measurements becomes higher and causes

degradation in detection performance.5 Similar method,

which also considers vertical dynamics of a vehicle and

Fourier transform, is reported by Real et al.6 and the focus

is detecting the defects on rails. A recent article that reveals

direct detection methods for wheel defects is given by Alemi

et al.7.

On–track experiments for railway vehicles is burdensome

and time consuming. In order to overcome this issue, roller-

rig test stands are used for research purposes to enhance the

performance of vehicles. Adhesion, wheel–rail contact and

traction have been attracted attention of many researchers

since the first days of railway vehicles and roller–rigs are

extensively used for a better observation of these phenomena.

According to the research purpose, the substitution of the

rail with the roller and the vehicle with the substitutive

configuration differ. The details of the several cases for

substitution and the differences from real case are reported

by Voltr8, Liu and Bruni9.

Reported roller–rig configurations in literature differ in

size.10;11 According to the size, roller–rigs can be specified

as full scale and reduced scale. Full scale test stands

are generally useful to understand behaviour of complete

railway vehicle systems, whereas scaled roller–rigs with
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different configurations are the cheap, easy to construct

and purposeful version of the full scale ones. Although

many improvements have been carried out for roller–rigs to

replace them with real vehicles, more research is still needed,

especially by considering a multidisciplinary engineering

perspective.

For many years, experimental research has been conducted

in Faculty of Transport Engineering, Pardubice, Czechia on a

tram wheel test stand originally built by VÚKV (Výzkumný

Ústav Kolejových Vozidel - Rail Vehicle Research Institute).

Extensive reconstruction for this test stand has been made

at the Faculty of Transport Engineering. Adhesion12–14 and

traction15;16 are the focus of the research by using this tram

wheel test stand. It is a full scale roller–rig having a wheel

on roller configuration. This wheel on roller configuration

has some advantages and disadvantages.17 Most significant

advantage of such configuration is that it provides better

contact mechanics (adhesion, contact geometry, creep forces,

etc.) studies. The most obvious disadvantage is that it does

not allow to study hunting and curving dynamics.

Especially on such roller–rigs, which have wheel on

roller configuration, the effect of adhesion conditions is

studied extensively.18;19 In order to simulate such adhesion

conditions water, oil, sand, lubricants etc.18;19 are used. Use

of such contaminants causes wear and defects on wheel

and roller surface. This situation degrades the accuracy in

such studies as contact is directly formed by the profiles.

Therefore, measuring profiles and rolling radii is crucial

during experiments. For the case in real vehicles, such wear

and defects can even cause safety problems.

In this study, a model based condition monitoring scheme

is proposed to estimate rolling radius of an independently

rotating tram wheel and the effectiveness of the methodology

is proven with experiments carried out on a tram wheel

test stand. Firstly, this methodology provides continuous

inspection of the rolling radius of an independently rotating

tram wheel. This inspection is directly related with the wheel

wear and defects. Therefore, such wear and defects can

easily be identified by this estimation methodology. Besides,

this condition monitoring scheme is effective for higher

translational speeds (e.g. 30 km/h) than the previously

reported experimental and signal based scheme for wheel

defect detection.5 Furthermore, signal based schemes (e.g.

Liang et al.5) for wheel profile monitoring just indicates

the existence of a wheel wear and/or defect and they do

not provide the severity or the magnitude of this wear

and/or defect. Methodology presented hereby shows that

with certain assumptions magnitude of the rolling radius,

which is directly related with wheel wear and defects, can be

monitored. As a second significance, this scheme combines

the information from a mathematical model describing the

physical system and the measurements taken from the test

stand (or a vehicle). Therefore, in case of model uncertainties

or a sensory fault, such a model based methodology provides

more accurate state estimates. Such situation is especially

apparent in traction control systems. Mathematical models,

which are similar to the model considered hereby, are

used for traction control systems.20 Nevertheless, model

or measurement uncertainties are not taken into account.

Therefore, this methodology can be used as an auxiliary

system to improve effectiveness and performance of traction

and adhesion control systems.

In this case of application, both wheel and roller are

driven and angular velocity measurements are taken from

both wheel and roller. In practice for railway vehicles,

there are rails instead of roller. Therefore, angular velocity

measurement assumption of roller fails in practice. However,

in this application, angular velocity measurement on a roller–

rig is necessary to obtain creep value, so that creep forces at

contact can be described accurately. In order to obtain creep

forces and overcome this issue, the translational velocity

of the vehicle should be measured accurately and this can

be achieved by modern and accurate velocity measurement

systems (e.g. GPS - Global Positioning System etc.). Thus,

instead of angular velocity of the roller, translational velocity

of the railway vehicle is taken as measurement in practice.

This scheme provides good results in case of necessary

excitation (i.e. torque). Another drawback of this application

is when there is lack of excitation (i.e. torque) in the system

results of this scheme is unreliable as it is in any parameter

estimation scheme. Application of this methodology is not

straightforward for wagons without traction motors and in

steady rolling case (i.e. without torque) of locomotives. For

these cases, this methodology can be applied with different

models which continuous excitation (e.g. track irregularities)

can be considered. This is examined in details in the

discussion section of the text.

An illustration which summarizes the proposed method-

ology can be found in Figure 1. In this study, in order

to show effectiveness of the methodology, it is applied to

the mentioned tram wheel test stand. Therefore, firstly, an

analysis of the mentioned tram wheel stand is introduced and

a model to represent this physical system is proposed. This

analysis includes derivation of a contact model, inspection of

the electric motors and torsional dynamics of the stand. After

the model is validated in comparison with measurements, the

rolling radius estimation scheme is presented. Lastly, the use

of such estimation scheme for real vehicles is discussed.

Tram wheel test stand

The test rig comprises a full-scale tramway wheel and a roller

(”rotating rail”) manufactured from a railway wagon wheel.

Both rolling components are carried by an upright frame, the

former attached to a swinging arm with a pneumatic spring

for normal force, the latter mounted in bearings of a base

plate. The roller assembly can be set into the angle of attack

and, to a limited extent, shifted laterally. To provide traction

or braking at the tram wheel, the machine is equipped with

a torque–controlled permanent magnet synchronous motor

(i.e. PMSM). Its effect is opposed by an asynchronous motor

of the roller which is operated to keep constant speed.14 A

diagram and the photos of the test stand can be seen in Figure

2 and Figure 3, respectively.

The normal force is provided by a pressurised air spring

and the air pressure is observed by a pressure transmitter of

type DMP331 produced by BD SENSORS, Germany. The

incremental rotary encoders of type IRC315 produced by

LARM, Czechia mounted on both shafts provide the angular

velocities of the wheel (ωw) and the rail roller (ωr). This

type of encoder has physically 4096 pulses per revolution
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Figure 1. Structure of the methodology

(i.e. PPR), but by considering X4 mode of evaluation 16384

PPR are obtained. The tangential force T and the coefficient

of adhesion µ (ratio of the tangential force to the normal

force) are calculated from the output of a torque transducer

on the roller shaft. In a recent study21, which is carried

out on the same test stand, it is indicated that based on the

torque calibration data the uncertainty of the adhesion value

is approximately 0.02. All sensors were connected to the

DAQ device of type NI USB-6341 produced by National

Instruments, United States which has 500 000 samples per

second for all channels in total. However, this is not used to

the maximum and the sampling rate used in measurements is

normally 200 Hz. The A/D converter used in measurements

has 16 bit resolution. Similar configuration for contact

force calculation is presented by using a dynamometer by

Meymand et al.22. The electric motor connected to the

wheel is a PMSM, which has a nominal power of 58 kW,

a nominal torque of 852 Nm and maximum torque of 2000

Nm. Additionally, the electric motor connected to the roller is

an asynchronous motor produced by the manufacturer MEZ

Brno, Czechia which has a nominal power of 55 kW and a

nominal torque of 891 Nm. The nominal rolling diameter of

the wheel is 700 mm and the nominal rolling diameter of the

roller is 905 mm.

The roller rig simulates the driving system of some trams

used in Czechia. These trams include independently rotating

wheels. The motors are carried by the bogie frame in

such way that it may tilt about the longitudinal axis. This

configuration compensates vertical movements in primary

suspension in cooperation with a constant velocity (i.e. cv)

joint at the other end of the drive shaft. Characterisation

of the test stand can be further used to propose high

performance traction control systems, new wheel profiles

and suspension systems for high adhesion and low wear

during the tram design process.

Electrical motors attached to wheel and roller

As mentioned previously, the tram wheel is driven by a

PMSM with feedback flux weakening control.16 The details

of this motor and control procedure is presented by Doleček

et al.16, so hereby details about the motor and control method

are omitted. In this study, torque applied by this motor is

provided as a torque request from this controller. However,

there was no attention paid previously to the asynchronous

motor attached to the roller which is used for braking. In

order to obtain opposing torque of this asynchronous motor

with respect to angular velocity, its equivalent circuit model

should be obtained by some simple tests.23 These are no

load test, blocked rotor test and measuring per phase stator

resistances. After these tests are conducted, the Thevenin

equivalent circuit is obtained at 50 Hz and the equivalent

circuit for this frequency can be seen in Figure 4. This

asynchronous motor is controlled with an open loop V/f

(i.e. volts per Hertz) control scheme by using a rectifier and

inverter couple as it is seen in the diagram given in Figure

5. When the frequency decreases, in order to keep constant

flux and to protect the motor, line voltage must also decrease

proportionally to frequency so that V/f ratio can be kept

constant.23 Mechanical torque of the asynchronous motor

can be given as follows:

Tmech =
3

ωsyn

V 2
Th

(

RTh +
R

′

2

s

)2

+
(

XTh +X
′

2

)2

R
′

2

s
, (1)

where ωsyn is the synchronous angular speed of the motor

and s is the slip. The slip is simply the difference between

the rotor speed and synchronous speed.23

Contact analysis

Geometrical problem

After extensive use, the wheel has recently been reprofiled,

using the profiles ”W169” and ”R169”. These profiles

have been designed particularly for the roller–rig, and

their conicity and curvatures are similar to those of

common wheels and rails used in the tramway network of

Prague, Czechia. Wheel is based on the theoretical profile,

named ”VM” and designed by VÚKV. The roller is also

reprofiled by considering the theoretical profile of the rail,

named ”NT1” and designed by the manufacturer Třinecké
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Figure 3. The tram wheel test rig in the laboratory of the University of Pardubice
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Figure 4. Thevenin equivalent circuit of the Asynchronous

motor

Železárny, Czechia. Measured wheel/roller profiles by using

a miniprof device are illustrated in Figure 6.

In order to analyse the contact, rolling radii in longitudinal

(roller diameter - 0.9043 m, wheel diameter - 0.6964 m) and

lateral directions and the contact angle must be obtained. The

longitudinal rolling radii for the wheel/roller is obtained by

using measurements by a diameter tape. Mathematical tools

3x400 V / 50 Hz

Converter

Braking 
External Resistor

ASM

Test  Stand

PMSM

Inverter

Front-end Resistor

Wheel

Roller

Figure 5. Diagram for the electrical layout 16

are used to obtain the lateral rolling radii and the contact

angle. The conicity angle of the wheel is defined as follows:

tanδw =
dzw
dyw

, (2)

and the signed lateral curvature is
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κ =

d2zw
dy2

w

(

1 +
(

dzw
dyw

)2
)

3

2

. (3)

Obtained results can be seen for the conicity angle

of the wheel in Figure 7 and for lateral curvatures of

the wheel/roller in Figure 8. A simple second order

differentiation is used to take derivatives indicated in

Equations 2, 3. The results are unsuitable to use them in a

Hertzian contact analysis due to sudden changes of curvature

values. Therefore, a simple moving average filter with a

window length of 5 mm is used. It should be mentioned that

reference point (i.e. origin) in the y–axis of the Figures 7, 8

and 9 are same as the origin of the Figure 6.
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Figure 7. Conicity angle of the wheel with respect to y axis

A contact point must be determined to obtain a contact

patch. In order to find this contact point rigid and quasi–

elastic24;25 contact search methods are applied. The quasi–

elastic contact search method is a more realistic approach

in comparison with the rigid method and it has less

computational complexity than the finite element analysis.

Simply, the rigid search is based on finding the minimum

of distance on the z axis, whereas the quasi–elastic method

is based on finding the contact locus by using a weighted

average function. A similar application of the quasi–elastic

contact search method for a roller–rig system also presented

by Heckmann et al.26. An illustration to show the difference

between the two methods is given in Figure 9. In this study,

the result of the quasi-elastic contact search is considered.

The contact angle is found as 0.0503 radians, the lateral

curvatures of wheel and roller are found as 3.4306 m−1

and 0.5259 m−1, respectively. It is observed that the results

are also consistent with the curvatures obtained by using

theoretical profiles.

Normal Problem

In order to find the contact patch, theory of Hertz27 is used.

Details of the solution methodology for the normal problem,

which is considered in this study, are reported by Onat et

al.28 For a 13 kN normal load applied by the air spring, the

Hertzian contact ellipse has the semi–length of 2.605 mm

and the semi–width of 2.622 mm. This result is consistent

with the finite element and analytical result reported in a

previous study.29 Moreover, after the Hertzian contact is

obtained, a virtual penetration method, which is proposed by

Kik and Piotorowski30 is used. This method is based on the

correction of the shape by considering the virtual penetration

value which is equal to 0.55 times the penetration value

calculated by using the theory of Hertz. The new contact

shape is given by

a =

√

0.55δ0
A

, b =

√

0.55δ0
B

, (4)

where a, b are the contact patch ellipse length and width,

and A, B are the Hertzian curvatures. By using this method,

the result of this study is more consistent with the carbon

test result presented in a previous study29 in which the semi–

length of 2.5 mm and the semi–width of 3 mm are found,

whereas it is found here as 2.674 mm and 3.028 mm for the

same normal load after the shape correction, respectively .

Friction model

During measurements dry surface conditions are considered.

The variable friction model, which is presented by Polach31,

is used. In this model, adhesion is dependent on the slip

velocity. The slip velocity depends on the dimensionless

creep and the translational velocity of the wheel. The

dimensionless creep and the creep due to spin (1/m) are

calculated as

sx =
vr − vw

vr
, (5a)

sφ =
sinδw
reqx

, , (5b)

where vw and vr are the translational velocities of the

wheel and roller, respectively and δw is the contact angle.

Unlike the real wheel/rail case, in this scheme roller also

rotates. Therefore, in order to calculate the spin creepage, an

equivalent radius reqx should be considered and can be given

as:

1

reqx
=

1

rwx

+
1

rrx
, (6)
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Figure 8. Lateral curvatures

-150 -100 -50 0

y axis

-40

-30

-20

-10

0

z
 a

x
is

Rigid and Quasi Elastic Contact Search

Rigid contact point

Quasi-elastic contact point

Figure 9. Contact search

where rwx
and rrx are the rolling radii of the wheel and

roller, respectively. The slip velocity simply equals to w =
sx × vw and friction coefficient can be given as:

µ = µ0

[

(1−A) e−Bw +A
]

, (7)

where µ0 is the maximum friciton coefficient, w [m/s] is

the magnitude of the slip velocity, B [s/m] is the coefficient

of exponential decrease and A is the ratio of limit friction

coefficient µ∞ to µ0. Here, by using previous knowledge

from experimental study for dry conditions, µ0, A,B is

selected as 0.4, 0.4 and 0.6, respectively. Comparison of

the model with respect to the adhesion measurement can

be found in Figure 10. It should be indicated that adhesion

measurements are done by using the torque transducer which

is connected to the shaft of the roller. Torque value, which is

provided by the transducer, is also used for determination of

the creep force as measurement. Shortly, determination of

creep force leads to the adhesion coefficient considering the

normal force measurement by using pressure transmitter. In

this study, dry surface conditions are considered, but a creep

force model proposed for water induced low adhesion, which

experiments are carried out on the same test stand, can be

found in the study by Trummer et al.21
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Figure 10. Adhesion model comparison

Tangential problem

The method namely Fastsim, which is proposed by Kalker32

and used in many multibody simulation software, is

considered for the solution of tangential problem. Fastsim is

based on the simplified theory proposed by Kalker and this

theory is built upon the fact that

u = Lp, (8)

where u =
[

ux uy uz

]

is the deformation vector, p =
[

τx τy pz
]

is the traction vector and L is the flexibility

parameter. Flexibilities for the longitudinal direction and

spin are given as follows:

Lx =
8a

3Gc11
, Lφ =

πa2

4Gc23
√
ab

(9)

where G is the shear modulus of rigidity (8× 1010Pa),

c11 and c23 are the coefficients from Kalker’s linear theory.
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Figure 11. Forces and torques acting on roller–rig

Polynomial approximation for these coefficients are given in

Appendix A. In this case of application, since there is no

lateral creepage, the lateral flexibility is not given in Equation

9. For derivations and proofs, readers are reffered to read the

study reported by Kalker32.

Furthermore, polynomial approximation for Kalker coef-

ficients, which are given in Appendix A, includes the

Poisson’s ratio as a variable different from the polynomial

approximations reported previously which assumes the Pois-

son’s ratio of the steel is equal to the 0.27.10 The polynomial

approximation given in Appendix A is especially useful

when a study is carried out for a roller–rig test stand or

vehicle system which includes wheel and roller (or rail) with

different steels. Similar approximation, which also considers

Poisson’s ratio as a variable, is reported by Meymand17

and also different fit models are compared. It is shown by

Meymand17 that polynomial approximation for fit provides

the least root mean squared error.

Torsional dynamic model

A simple torsional dynamic model is considered. Forces and

torques, which are affecting the roller–rig, can be seen in

Figure 11.

Torsional dynamic model of the roller–rig can be

expressed as follows:

dω̇r

dt
=

TA + (Fx × rrx)

Jrtotal

, (10a)

dω̇w

dt
=
−TP − (Fx × rwx

)

Jwtotal

, (10b)

where Jwtotal
and Jrtotal

are the total moment of inertias

of wheel–roller respectively including electrical motors, all

mechanical elements and connection components. These

values for the wheel–roller are obtained as 17.86 kgm2 and

47.2 kgm2 by using a 3D modeling software, respectively.

TA and TP are the applied torques by asynchronous motor

and PMSM, respectively.

Validation of the model

Simulation scenarios, which are based on the torque request

from PMSM, are generated. The torque request from the

PMSM can be seen in Figure 12 for the first case. In the

second case, the torque profile is same, but the maximum

torque transmitted to the wheel is 852 N which is different

than the first case (500 N ). In these scenarios, for first and

last 5 minutes, the system proceeds without traction. Initially,

the asynchronous motor attached to the roller is controlled

and adjusted to operate at synchronous frequency of 7.5 Hz
for the first simulation scenario and 15 Hz for the second

one, which is almost equal to the 15 km/h and 30 km/h
translational velocity for the wheel in real case. According

to the traction from PMSM, the asynchronous motor applies

a counter torque which is proportional to the slip and given

in Equation 1. Initial angular velocities for roller and wheel

are calculated as 9.36 rad/s and 12.16 rad/s for the first

case, and 18.73 rad/s and 24.33 rad/s for the second case,

respectively.
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Figure 12. Torque request from PMSM

Simulation results and measurements for system states

(i.e. angular velocities) can be seen in Figure 13 and

Figure 14 for the first and second simulation scenarios,

respectively. It is obvious that simulation results are in very

good agreement with measurements for the first simulation

scenario. However, when speed increases, because of

the increasing dynamic effects due to modeling errors

(especially due to unmodeled dynamics and characteristics

of asynchronous motor), simulation results include more

error than the first scenario during maximum traction. The

difference between change in simulation and the change in

measurement is approximately 11% for roller angular speed,

and 9% for wheel angular speed. It can be seen from Figure

14 that the error is at an acceptable level. For the first and

second simulation scenarios, the comparison of the results

of the Fastsim algorithm with respect to measured creep

force by using the torque transducer can be found in Figure

15. The error between creep force measurement and the

results for the Fastsim in the second simulation scenario

is approximately 7.3%. While comparing with the errors

in angular velocity measurements, error for creep force is

smaller, but it should be noted that creep force is proportional

with creep and the creep is dependent on the difference
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between velocities. Since the same trend is seen both for

wheel and roller in the second simulation scenario, smaller

error is obtained in the creep force comparison. Results for

the Fastsim are obtained by using a 20x20 discretization.

Unscented Kalman filter and model based

estimation results

The details of Unscented Kalman filter (i.e. UKF) for state

and parameter estimation with some examples are previously

reported33–36 and the algorithm for UKF can be found in

Appendix B. Furthermore, a similar study for a roller–rig

with a different configuration and model is presented by

Zhao et al.2, in which the torsional dynamics and UKF are

considered to estimate the adhesion conditions. Instead of

the adhesion conditions, the focus is to estimate the rolling

radius of the wheel in this work. Considering the continuous

time nonlinear system given in Equation 10, equations of the

system can be written in the form37

ẋ(t) = f (x(t), u(t), θ) + q(t) (11a)

y(t) = h (x(t), θ) + r(t), (11b)

where x(t) ∈ R
n is the system state vector, u(t) ∈ R is the

input (in this case torque request from PMSM), θ is the

parameter (i.e. rolling radius of the wheel), y(t) ∈ R
m is the

measurement vector (i.e. system output), q(t) ∼ N(0, Q(t))
and r(t) ∼ N(0, R(t)) are process and measurement noises,

respectively. In this study, the system is considered as

discretized continous system and can be expressed by

xk = fd (xk−1, uk−1, θk−1, k − 1) + qk−1 (12a)

yk = h (xk, θk−1, k − 1) + rk, (12b)

where xk = x(kT ), the subscript k represents discrete time,

and T is the sampling period. The function fd does not

require an explicit formula, but a numerical integration is

needed for calculation. In this study, fourth order Runge-

Kutta numerical integration method with 0.25 ms time step

is used. State vector can be given as

x̂ =
[

ω̂w ω̂r r̂wx

]

. (13)

Output vector (i.e. measurement vector) can be given as

y =
[

ωw ωr

]

. (14)

In order to deal with nonlinear dynamic systems, a

linearisation method is required. In Extended Kalman

Filter (i.e. EKF) linearisation is achieved by considering

a linearisation of the dynamic model around the operating

point. Another method for linearisation is to do a statistical

linearisation.36 Instead of a dynamic model linearisation,

a statistical linearisation is considered in UKF. Local

linearisation considered in EKF introduces large errors in

an highly nonlinear dynamic systems.35 In UKF, a set of

sample points are initially created based on an initial error

covariance (i.e. by using P0 in Equation 15a) and these

sample points are propagated through the nonlinear dynamic

model. This statistical linearisation operation increases the

accuracy of the filter and eliminates the need for a Jacobian

Matrix which is very difficult to obtain for highly nonlinear

dynamic system. It should be noted that errors are assumed

to be Gaussian Random Variables (i.e. GRV) in these

deterministic filters (e.g. EKF, UKF).

First step in UKF is unscented transformation (i.e. UT)

which is a deterministic sampling approach. Based on the

initial estimate of states (in this case include parameter

estimate as well) and covariance P0, a set of samples are

created. These sample points are called sigma points35. It

can be seen in Figure 1 that sigma points corresponds to the

dynamic models with different states (i.e. angular velocities)

and parameter (i.e. rolling radius) in this study. These sigma

points are propagated through mathematical models and

state estimates for each sigma point are obtained in the

form as given in Equation 13. Next step is to calculate

a weighted mean for these sigma points and a priori error

covariance (by considering this mean and the model noise

matrix – Q) is obtained. This part is called time update for

UKF. Then, aim is to obtain each measurement estimate

for sigma points based on states. If there is a function

which connects measurements and states, each sigma point

should be also propagated through this function. In this study,

there is no such a function since states in state vector and

measurement vector is same. However, it should be noted

that angular velocities (i.e. states) in Equation 13 and 14 are

not same. Angular velocities given in Equation 13 represents

states obtained by using mathematical models and angular

velocities given in Equation 14 are the measurements taken

from the physical system (e.g. railway vehicle, test stand etc.)

by using sensory data.

Second step is to form a posteriori state estimate

by using the mean of estimated measurements (in this

case estimated measurements are ŷ =
[

ω̂w ω̂r

]

) and

sensory measurements taken from the physical system.

After calculating cross covariances between estimated

measurements (by considering measurement noise matrix –

R), estimated states and mean of estimated measurements,

a Kalman gain is obtained. Then, this gain is used to

calculate a posteriori state estimate by using the priori

estimated measurements and the measurements from the

physical system. Last step is to update error covariance

by using Kalman gain and cross covariance for estimated

measurements. Shortly, the purpose is to minimize error

for estimated states by considering measurements from the

physical system.

Two estimation cases for each simulation scenario are

defined. In the first case, the rolling radius of the wheel

is initially assumed (i.e. estimated) as 320 mm, whereas

the measured rolling radius is approximately 348.2 mm.

This case is the underestimation case. In the second case,

the rolling radius of the wheel is initially assumed (i.e.

estimated) as 400 mm and this case is the overestimation

case. These two cases are realized for the 15 km/h and 30

km/h translational velocities. Initial selection of the states

are same as the ones indicated in model validation section.

However, in the contact model, only a circular contact

(2.7 mm radius) without shape correction is considered.

This situation also increases uncertainty of the mathematical

model and it is useful to test robustness of the estimator.

In order to find a reference magnitude for the radius of the

contact patch, the methods presented in the contact analysis
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Figure 13. First simulation scenario (15 km/h)–comparison of simulation and measurements
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Figure 14. Second simulation scenario (30 km/h)–comparison of simulation and measurements
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Figure 15. Comparison of creep forces between simulation (Fastsim) and measurement

section are taken into account. Furthermore, the filter

parameters α which is used to determine the distribution

of sigma points, κ the secondary scaling parameter, and β
a non–negative weight incorporating the prior knowledge
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of the state distribution are taken 1, 0 and 2, respectively.

Filter parameter α is used to determine spread of sigma

points around state estimate x̂ and takes values between

10−4 ≤ α ≤ 1. Here, it is chosen as 1 so that the maximum

exploration ability of UKF is used. κ is the secondary

scaling parameter and optimal value for this parameters

is 3− L where L is the number of states.36 β is used

to incorporate prior knowledge of the distribution and for

Gaussian distributions β = 2.34 Initial covariance matrix,

process and measurement noise matrices are same for all

conditions and given as

P0 =
[

10−1, 10−1, 10−3
]

, (15a)

Q =
[

10−5, 10−5, 10−5
]

, (15b)

R =
[

10−5, 10−5
]

. (15c)

There are seven parameters which can be selected for

UKF. These are x̂0 (i.e. initial state estimation), P0, Q,R,
and UT parameters α, κ, β. Selection of parameters used in

UT (i.e. α, κ, β.) are described by referring to the literature in

the previous paragraph. It is stated by Han et al.38 that x̂0 and

P0 have asymptotically negligible influence on estimation

results since UKF updates both of them as time proceeds.

Nevertheless, Q and R influence UKF significantly. If they

are chosen too small, estimated states will probably tighten,

whereas if they are chosen too large, UKF may diverge.38

In this study, especially in order to tighten estimated states,

Q and R are chose relatively small and their magnitudes

are determined after extensive simulations. It is observed

that relatively large value in Q and R (e.g. 10−1) causes

divergence in UKF especially for the estimated parameter.

It will be more appropriate to consider UKF versions with

adaptive tuning mechanisms (e.g. the method which is

presented by Han et al.38), if it is difficult to determine model

and measurement noise covariance matrices Q and R by

using extensive simulations.

Firstly, the effect of UKF on system states (i.e. angular

velocities) are presented and can be found in Figures 16 and

17. It can be seen from Figures 16 and 17 that UKF provides

better estimates of the angular velocities with respect to the

cases presented in Figure 13 and 14 when a simulation model

is considered only.

Estimation results for the first scenario (15 km/h
translational velocity) are given in Figures 18 and 19. It

is obvious from Figure 18 that UKF provides very fast

convergence for underestimation case. Additionally, result

of the overestimation scenario can be seen in Figure 19.

Same conclusion can also be made for the overestimation

case given in Figure 19.

Figures 20 and 21 represent the results of the

underestimation and overestimation cases for the second

estimation scenario (30 km/h translational velocity). Unlike

the first estimation scenario, deteriorating effect of the

higher speed due to modeling errors causes a little bit

higher parameter estimation error for underestimation case

in comparison with the first scenario. However, parameter

estimation error for each case is at an acceptable level. Figure

20 reveals that UKF also provides very fast convergence in

the second simulation scenario. Additionally, result of the

overestimation case for second scenario is seen in Figure 21.

Table 1. Root mean squared errors for estimation scenarios

First Estimation

Scenario

(15 km/h)

Second Estimation

Scenario

(30 km/h)

Underestimation 0.6060 mm
(≈ 0.17%)

1.0631 mm
(≈ 0.31%)

Overestimation 0.8233 mm
(≈ 0.24%)

1.0139 mm
(≈ 0.29%)

Same conclusion can also be made for the overestimation

case given in Figure 21.

For such estimators, a visual inspection of the results can

be deceptive. Therefore, a different performance measure

from the visual inspection should be considered. The

performance measures for the family of Kalman filters are

provided by Haug A. J.39. In this study, root mean squared

error is used as the performance measure. Root mean squared

error can be given as

eRMS =

[

1

M

M
∑

i=0

(

θi − θ̂i

)2
]

1

2

, (16)

where θ represents the parameter (i.e. rwx
) and M represents

the total number of sampled points. Root mean squared

errors for the defined estimation scenarios can be found in

Table 1. From the quantities of the root mean squared errors

with respect to wheel radius (348.2mm), it can be concluded

that the estimation of the rolling radius is successful by

using UKF and the largest amount of the root mean squared

error is due to improper selection of the initial estimates

which is about 50 mm over the nominal rolling radius for

overestimation case and 30 mm under the nominal rolling

radius for underestimation case.

Another issue, which should be mentioned in estimation

and simulation scenarios, is the high frequency noise in

the measurements. These high frequency vibrations are

caused by two factors. The most influential factor is the

mechanical imperfections of the test stand. The main

frequency component of this periodic noise is equal to the

frequency of rotation of the roller. This can be noted in

Figures 13 and 14. When the angular velocity doubles from

15 km/h to 30 km/h, the frequency of noise also doubles.

The other factor for the noise in velocity measurements

is the numerical derivation procedure to obtain angular

velocities from encoders. Encoders provide angular positions

in radians and then during measurements derivatives of the

angular position signals are taken. It is a well–known fact

that derivation operation amplifies the noise effect. It is not

a difficult task to filter out the noise from measurements

by using a low–pass filter or a moving average filter.

However, deterministic type of Kalman filters such as EKF

and UKF provide optimal state estimation when models

and measurements include Gaussian noise. Even though the

statistical characteristics of the noise in the measurements of

this study are not investigated, in order to exploit this feature

of family of Kalman filters, use of a low–pass or moving

average filter is avoided in this study. This type of noise is

not only specific to test stand but also it can be observed for

vehicles in operation.
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Figure 16. First simulation scenario (15 km/h)–comparison of UKF results and measurements

0 10 20 30 40

Time [s]

18.4

18.6

18.8

19

19.2

R
o
lle

r 
A

n
g
u
la

r 
V

e
lo

c
it
y
 [
ra

d
/s

]

Roller rotational speed

UKF Result

Measurement

(a)

0 10 20 30 40

Time [s]

24.2

24.4

24.6

24.8

25

W
h
e
e
l 
A

n
g
u
la

r 
V

e
lo

c
it
y
 [
ra

d
/s

]
Wheel rotational speed

UKF Result

Measurement

(b)

Figure 17. Second simulation scenario (30 km/h)–comparison of UKF results and measurements
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(a) Estimation result between 0–40 seconds
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(b) Estimation result between 0–1 second

Figure 18. First estimation scenario (15 km/h)–underestimation (initial estimate of 320 mm rolling radius)

Discussion

One may criticise the use of UKF for such a system instead

of Kalman or Extended Kalman filter. However, it can be

seen from related equations that dynamic system is highly

nonlinear in terms of system states (angular velocities).
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(b) Estimation result between 0–1 second

Figure 19. First estimation scenario (15 km/h)–overestimation (initial estimate of 400 mm rolling radius)
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(b) Estimation result between 0–1 second

Figure 20. Second estimation scenario (30 km/h)–underestimation (initial estimate of 320 mm rolling radius)
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(b) Estimation result between 0–1 second

Figure 21. Second estimation scenario (30 km/h)–overestimation (initial estimate of 400 mm rolling radius)

Due to this nonlinearity, the use of Kalman filter is not

considerable. Extended Kalman filter requires the Jacobian

matrix of the system. It can be seen in the model that

obtaining a Jacobian is impossible due to the complex
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structure of the contact model. Therefore, UKF is the viable

alternative for this application.

Secondly, one may question the use of a least squares

estimator for parameter estimation instead of UKF. However,

in the real case, as well as parameters, correct estimation of

states is also essential. Especially in this case of application,

estimating the parameter along with the states eliminates

inaccuracies due to state estimation since the results of

the models for asynchronous electric motor and tangential

solution are highly dependent on the system states (i.e.

angular velocities). A joint UKF is preferred for the state

and parameter estimation so that both angular velocities

and rolling radius are estimated accurately at one step.

Furthermore, the accurate estimation of angular velocities

for real vehicles is very important such that it leads to better

slip control systems and longitudinal velocity calculation of

vehicles.

Thirdly, for traction vehicles and locomotives, this

estimation scheme can be used straightforwardly just by

considering torsional dynamics of the wheel or wheelset

(along with the traction motor), the contact model presented

here, angular velocity measurement of the wheel or wheelset

and translational velocity of the vehicle.

For wagons without traction and in steady rolling (i.e.

without torque) of traction vehicles, this UKF based

methodology can also be considered. However, different

mathematical model directly related with wheel profile

and continuous excitation should be taken into account.

In parameter estimation schemes there must be enough

excitation (i.e. persistency of excitation) in the system to

identify the parameter and here, the excitation is provided by

electrical motor as torque which is not continuous in traction

vehicles and do not exist in hauled stock. Fortunately,

track irregularities can be a source of such excitation. Best

suitable model is the vertical dynamic model (e.g. model

given in Liang et al.5) of an railway vehicle system for

such a purpose. By using UKF along with the vertical

dynamic model of the vehicle and inertial measurement

units, estimation scheme presented here can be used to

monitor rolling radius of a wheel of a wheelset especially

in the straight track sections with known vertical track

irregularities. Drawbacks of such a scheme is the prior

knowledge of vertical track irregularities and obtaining

position of the wheel by using inertial measurement

unit. However, when the amount of excitation (e.g. track

irregularity) is known and the vertical position of the wheel

is obtained by inertial measurement units, the magnitude of

the inspected parameter (e.g. rolling radius) can be identified

by using the model based estimation methodology presented

in this study. This is out of scope of this study, but it is a

challenging and interesting further research task to take. It

has shown in Figures 18 and 19 that parameter estimation

is achieved in steady rolling. However, this is due to the

excitation provided by the asynchronous motor connected to

the roller.

This study is carried out on a laterally fixed, independently

rotating tram wheel. In practice, lateral track irregularities

cause a lateral shift of the wheel or wheelset. Due to the

curvilinear structure of the wheel, rolling radius changes

with lateral shift of the wheelset. In order to make a

comparison whether there is a wear and/or defect when the

wheel is laterally shifted, knowledge of the lateral relative

position of the wheel or wheelset with respect to the rail

is required so that the amount of rolling radius difference

for that lateral shift can be interpreted. Nevertheless, a low

cost measurement system by using inertial measurement

units without optical sensors do not exist for lateral relative

position of wheel or wheelset with respect to the track.40

There are mathematical approaches to monitor wheel profile

(i.e. conicity) with respect to a lateral relative wheel–

rail position.4 Nevertheless, such a study is limited with

simulations and lack of experimental application. Combining

the scheme presented here with the approach proposed by

Charles et al.4, continuous profile estimation for different

lateral shifts of the wheelset can be achieved in practice.

Conclusion

Monitoring of the rolling radius is important since severely

worn wheels can cause safety problems for railway vehicles.

The main goal of the current study is to propose a novel

approach to simultaneously monitor the rolling radius of

the wheel and angular velocities of the roller–wheel of the

mentioned test stand. For this reason, firstly, a torsional

dynamic analysis of a tram wheel test stand is presented.

Then, it is concluded that the simulation model, which

includes torque models of the electric motors and contact

model, is sufficient to represent the behavior of the physical

system. Then, the use of a joint UKF, which estimates

states and parameter together, is proven to be effective

tool for identifying rolling radius of the wheel. Estimation

results show good performance of the joint UKF for rolling

radius estimation for this test stand even with model

uncertainties. Additionally, application of this approach for

railway vehicles in practice is discussed and it is concluded

that this scheme can be used by considering the mathematical

model provided here for railway vehicles during traction.
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12. Voltr P, Čáp J and Lata M. New practical results about adhesion

limites obtained from experimental stand testing. Scientific

papers of the University of Pardubice Series B, Jan Perner

Transport Faculty 15 (2009) 2009; .
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A. Kalker coefficients

The polynomial equations for Kalker’s Coefficients. Here

k1, k2, k3, k4 are auxiliary variables.

k1 = 2.3464 + 1.5443.υ + 7.9577.υ2,

k2 = 0.961669− 0.043513.υ + 2.402357.υ2,

k3 = −0.0160185 + 0.0055475.υ − 0.0741104.υ2,

k4 = 0.10563 + 0.61285.υ − 7.26904.υ2,

c11 = k1 +
k2
(

b
a

) +
k3

(

b
a

)2 +
k4

√

(

b
a

)

. (17a)

k1 = 2.34641− 0.27993.υ + 0.19763.υ2,

k2 = 0.96167 + 0.52684.υ + 1.22642.υ2,

k3 = −0.0160185− 0.0126292.υ − 0.0011272.υ2,

k4 = 0.10563 + 0.78197.υ − 1.12348.υ2,

c22 = k1 +
k2
(

b
a

) +
k3

(

b
a

)2 +
k4

√

(

b
a

)

. (17b)

k1 = 0.29677 + 0.22524.υ + 0.71899.υ2,

k2 = 1.01321 + 0.20407.υ − 0.72375.υ2,

k3 = 0.0092415 + 0.0854262.υ + 0.319940.υ2,

k4 = (8.4835× 10−4)− (3.211× 10−3).υ

− (1.7484× 10−2).υ2,

c23 = k1 +
k2
(

b
a

) +
k3

(

b
a

)2 +
k4

(

b
a

)3 . (17c)

k1 = 0.72795− 1.00202.υ − 0.32695.υ2,

k2 = 0.461755 + 1.002340.υ + 0.081441.υ2,

k3 = 0.023739− 0.110640.υ + 0.249008.υ2,

k4 = −0.0012999 + 0.0063653.υ − 0.0129114.υ2,

c33 = k1 +
k2
(

b
a

) +
k3

(

b
a

)2 +
k4

(

b
a

)3 . (17d)

B. Joint UKF algorithm

Algorithm 1 Joint Unscented Kalman filter - Additive Noise

Case Algorithm

1: DefineFilter Parameters

2: L← 3 ⊲ L is the dimension of state vector

3: α← 1 ⊲ (10−4 ≤ α ≤ 1)

4: κ← 0 ⊲ (generally κ = 3− L)

5: β ← 2
6: λ← α2(L+ κ)− L
7: γ ←

√
L+ λ

8: W
(m)
0 ← λ

L+λ

9: W
(c)
0 ← λ

L+λ
+ 1− α2 + β

10: for i← {1, . . . , 2L} do

11: W
(m)
i ←W

(c)
i := 1

2(L+λ)

12: end for

13: End

14: function UKF(x̂, ˙̂x,P)

15: Initialize

16: x̂0 ← E [x0]
17: P0 ← E

[

(x0 − x̂0)(x0 − x̂0)
T
]

18: End

19: end function

20: function SIGMA POINTS(x̂, P)

21: Define

22: Sk−1 ←
√

Pk−1

23: End

24: for k ∈ {1, . . . ,∞} do

25: χk−1 ←
[

x̂k−1, x̂k−1 + γSk−1, x̂k−1 − γSk−1

]

26: end for

27: end function

28: function TIME UPDATE(χk−1, P, Q)

29: χ∗
k|k−1 ← f(χk−1, uk−1)

30: x̂−k ←
∑2L

i=0 W
(m)
i χ∗

i,k|k−1

31:
P−k ←

2L
∑

i=0

W
(c)
i (χ∗i,k|k−1 − x̂−k )

(χ∗i,k|k−1 − x̂−k )
T + Q

32: end function

33: function MEASUREMENT UPDATE(χ∗
k|k−1, R)

34: Υ∗
k|k−1 ← h(χ∗

k|k−1, uk−1)

35: ŷ−k ←
∑2L

i=0 W
(m)
i Υ∗

i,k|k−1

36:
Pỹkỹk

←
2L
∑

i=0

W
(c)
i (Υ∗i,k|k−1 − ŷ−k )

(Υ∗i,k|k−1 − ŷ−k )
T + R

37:
Pxkyk

←
2L
∑

i=0

W
(c)
i (χ∗i,k|k−1 − x̂−k )

(Υ∗i,k|k−1 − ŷ−k )
T

38: Kk ← Pxkyk
P−1
ỹkỹk

39: x̂k ← x̂−k + Kk(yk − ŷ−k )

40: Pk ← P−k −KkPỹkỹk
KT

k

41: end function
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