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ABSTRACT 

Minimization of energy consumption of environmental measurement systems is important to 

ensure their extended operational lifetime and low maintenance cost. This needs to be 

realized without sacrificing on data quality. One possible way to achieving this is the use of 

energy-aware sampling techniques such as adaptive and event-triggered sampling.  In this 

work, new methods based on these sampling techniques have been developed. The first 

method produces stochastic models that accurately predict missed and future data with 

minimal energy. The method also determines the optimal sampling interval. The second 

method utilizes new type of event-triggered mechanism that adjusts sampling interval so that 

it adapts to the changes in measurement data. Algorithms have been developed and all 

methods demonstrated using field data. Obtained results have been thoroughly analyzed from 

the perspective of approximation error and energy savings. Models have been validated and 

favorable results obtained. High R-squared values and low values of mean square normalized 

error have been obtained. Battery lifetime is extended by more than 87% when sampling 

interval increases from 15 to 30 seconds. Furthermore, about 45% daily savings of energy 

consumption of analog-to-digital converter has been achieved in a case study analysis 

involving the new algorithm, an ADC and field data.  
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energy consumption, data quality 
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TERMINOLOGY 

Observations Set of values obtained when an environmental variable is measured. 

 

Process Series of physical, chemical and biological activities involved in 

measurement of environmental variable. 

 

Variable Physical, chemical or biological property of the environment that is 

observed (measured) over time at a given location. Observed values may be 

discrete or continuous. An example is air temperature. 

 

Environmental 

measurement: 

Comprises of monitoring and evaluation of environmental variable.  During 

monitoring, variable of interest is observed. During evaluation, observed 

value is processed to give a final settled value within given tolerance band. 

 

Sampling Act of reading and collecting data from the environment using sensors.  

 

Sampling 

interval 

Interchangeable with sampling time interval. Represents time interval 

separating successive observations. 

 

Sensing time Time taken for sensor to measure and attain a final settled value for the 

variable measured. Comprises of measurement time, start-up time and 

response time. Measurement time is negligibly small compared to other 

components. Therefore, a sensor that is already in operation has a fairly 

constant sensing time. 

 

Duty-cycle Ratio of length of time sensor spends in active mode to sampling interval. 

 

Stochastic 

process 

Mathematical relation that describes probability structure of time series; 

implying that a set of values (observations) is sample realization of the 

stochastic process that produced it. 

 

White noise Sequence of uncorrelated values with mean of zero and finite variance. 

 

Measurement 

error 

Difference between measured value of variable and its true value. 

 

 

Residual Difference between measured value and its model-predicted value. 
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CHAPTER ONE 

INTRODUCTION 

1.1     Background Information 

There is huge focus on energy management of self-powered electronic systems such as 

those used in environmental and health measurement systems. This is due to need for 

extended battery lifetime and low life-cycle cost requirement of measurement systems. 

Therefore energy is required to be managed. Energy management is classified based on 

whether additional energy is supplied to systems or whether available energy is conserved and 

efficiently utilized. The former is termed energy supplying while the latter is termed energy 

conservation [1].  

Energy conservation approach is however, most favored and widely adopted as better 

energy management approach. This is because energy supplying approach is faced with 

environmental or security of supply challenges. First is doubt if sufficient energy supply from 

renewable energy sources would be available to meet current energy supply needs by 2020. 

This doubt is caused by belief that European Union (EU) 2020 target of having 20% total 

energy production from renewable energy sources may not be achieved [2]. This is a threat to 

security of supply. Second is the environmental challenge facing energy supply through 

conventional energy sources. For above reasons, it becomes imperative that available energy 

be efficiently utilized. Based on methods used in realizing energy savings, energy 

conservation is classified into three main parts: data-oriented, node-oriented and network-

oriented methods [1, 3]. Taxonomy of energy management technique is shown below. 

Energy
Management

Energy
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Energy
Conservation
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Energy
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Data-oriented
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Network-oriented
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Node-oriented
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Transform-based

Model-based

Energy-aware
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Time Series
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Active Sampling

Directional
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Figure 1: Taxonomy of energy management technique [1, 3] 
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This work focuses on measurement optimization of environmental variables to ensure that 

variables are measured with minimal energy without significant loss of data. One way of 

achieving this is the use event-driven sampling methods such as adaptive and event-triggered 

sampling. These methods are energy-aware data acquisition methods. They work to minimize 

energy consumption while sampling. This would be seen in figure 1. Event-triggered 

sampling exercises control in sampling by ensuring that sensor processes and transmits data 

whenever significant change in data occurs. Adaptive sampling on the other hand reduces 

number of samplings by adjusting sampling frequency. This allows sampling at low 

frequencies. 

When sampling with low frequency, accurate stochastic models are determined so that 

missed and future values are estimated with sufficient accuracy. It is also required that models 

be made simple. They should operate with simple software programs that minimize energy 

consumption of measuring device without the occurrence of aliasing. Consequently, an 

optimal sampling interval is required. 

Aliasing is a major limitation of discrete-time sampled variables. It is said to have occurred 

whenever there is loss of significant amount of data. Loss of significant amount of data causes 

difficulty in reconstructing the original signal. It also causes loss of vital data. The latter effect 

is more important in this work since measured data are processed and used as digital input to 

other microelectronic devices. It is not intended to be reconstructed to its original analogue 

signal. 

Therefore when variable sampled with low sampling frequency is interpolated for missed 

values, model used should give values that are close to those which would have been obtained 

if a higher sampling frequency were used. Thus, knowledge of appropriate stochastic model 

and optimal sampling interval are needed while sampling at low frequency. They help ensure 

that trade-off between aliasing and energy consumption is balanced. 

1.2     Description of Environmental Variables 

Environmental measurement involves assessment of physical, biological or chemical 

factors that affect health and quality of life within the human environment. It comprises of 

environmental monitoring and evaluation. During monitoring, the environmental variable or 

factor of interest is observed. During evaluation, the observed (or monitored) variable is 

processed in order to obtain a final settled value that is within a tolerance band.  

While performing environmental measurements, disturbances may be imposed on the 

environment. Consequently, an environmental measurement may be destructive or non-

destructive. Destructive measurement results in samples being physically removed from the 

environment. Non-destructive measurement which is also known as non-invasive 

measurement does not involve removal of samples from environment. Due to advances in 

sensors and transducers technologies, non-destructive measurements are becoming popular. 

There are two main techniques employed in non-destructive measurements. They are remote 

sensing and liquid-solid (or gas-solid) sensing [4].  

Remote sensing uses earth’s electromagnetic waves to perform measurement while liquid-

solid or gas-solid sensing convert changes in parameters at interface to electrical response. 

Liquid-solid or gas-solid sensing is commonly used in environmental measurement systems 

where variable of interest is measured and displayed, or stored locally within the system. It is 
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also used in measurement systems enabled for wireless sensor network and in ubiquitous 

systems. 

In this work, environmental variables that are of interest are - air temperature, 

photosynthetically active radiation (PAR), relative humidity and soil moisture. Air 

temperature is the action of individual air molecules at a certain time in a given location. It 

relates to the average kinetic energy of moving air molecules at a given time in a particular 

location. Small-scale actions of individual air molecules usually describe air temperature. 

This emanates from the kinetic theory of gases. On the other hand, air temperature description 

for large-scale effects of larger number of air molecules is based on thermodynamic 

principles. It follows three fundamental principles of thermodynamics; namely: 

1. The temperature of an object can affect some properties of the object such as length, 

AC electrical resistance of the object, etc. 

2. Two objects that have the same temperature are in thermodynamic equilibrium. 

3. Two objects that have different temperatures, if in contact with each other will 

eventually attain thermodynamic equilibrium. 

Photosynthetically active radiation (PAR) on the other hand is an electromagnetic radiation 

whose wavelength between is 400 and 700 nm [5]. It represents the amount of light available 

for photosynthesis. It is essential since it is required by plants for photosynthesis. This is 

among the reasons it is been measured. PAR values can vary from zero (mostly during night 

time) to its maximum value during daytime. This variation is usually significant during 

summer. This is why PAR values are usually logarithmic-transformed during data analysis. It 

helps stabilize variation in variance that occurs when daytime and nighttime PAR values are 

considered as dataset.  

On the other hand, relative humidity is the ratio of water vapour density to saturated water 

vapour density of air at a given temperature. This ratio is usually expressed in percent. It is 

worth noting that vapour density is the same as vapour mass per unit volume. It then follows 

that relative humidity checks the amount of moisture or water vapour in a given volume of air 

relative to the amount in a saturated volume of air. This means that relative density depends 

on moisture content and air temperature. 

Soil moisture on the other hand constitutes water that has been held up within the spaces of 

soil particles. It could be surface or root soil moisture. In surface soil moisture, water is being 

held within 10 cm from soil surface. In root soil moisture, water is held up within the root 

zone which is about 200 cm above the soil surface [6]. In this work, surface soil moisture was 

measured. Both surface and root soil moistures are useful to farmers since its selection 

depends on type of crop to be planted. This is one of the reasons soil moisture is measured. 

Additionally, soil moisture plays key role in weather-pattern formation and precipitation. 

This it achieves through control of heat transfer and water exchange that takes place between 

the ground and atmosphere. By controlling the processes of transpiration and evaporation, soil 

moisture helps establish the weather pattern and precipitation. 

Having explained the environmental variables that are of interest in this work, sampling 

techniques, measurement system and problem formulation are discussed in succeeding 

sections. 
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1.3     Sampling Techniques  

Sampling is done while measuring environmental variables. Sampling is the act reading 

and collecting data from the environment using sensors. It may be random, systematic, 

exploratory, surrogate, composite or time-integrated [4]. In random sampling, variable is 

sampled randomly. Systematic sampling is a special type of random sampling where the 

sampling process is optimized in order to save energy, reduce sampling cost and improve 

reliability of measurements. Consequently, adaptive sampling is a type of systematic 

sampling. Another sampling technique is stratified sampling. Stratified sampling is a special 

type of random sampling where entire population is divided into strata. Sampling is done 

randomly so that stratum is formed. It continues until entire population is classified. 

On the other hand, exploratory sampling involves conducting one or two observations so 

as to identify the presence or absence of variable of interest. Surrogate sampling is used 

where cost of observing and analyzing variable of interest is high, while there is alternative 

low-cost variable that could be measured. Data relating to the variable of interest are therefore 

deduced from the measured low-cost variable. For instance, the cost of analyzing sodium (Na) 

and chlorine (Cl) ions in soil sample is more expensive than measuring electrical 

conductivity. A cost-effective approach is therefore to measure the electrical conductivity of 

soil water extract [4]. 

Composite sampling is another cost-effective method of sampling environmental variables. 

It is a special type of exploratory sampling. In composite sampling, point measurement taken 

for specific time interval is considered as the average value and consequently, used for 

subsequent time intervals. Time-integrated sampling is another sampling method. It is 

commonly used in weather stations where environmental variables such as air temperature are 

measured frequently but reported hourly or daily with an average value [4].  

It is worth noting that sampling techniques discussed above are classified as probability 

sampling techniques. This is because members of the population have equal chance of 

occurring or being selected. This contrasts non-probability sampling techniques where 

members of a given population do not have equal chance of occurring or being selected. 

Examples of non-probability sampling techniques include – quota sampling, accidental 

sampling, purposive sampling, etc.     

It is also worth noting that while taking measurements, errors are prone to occur. Three 

types of errors exist - random, instrument calibration and systematic errors. Random errors 

are due to spread of measured data about a true value. It may be caused by unknown or 

unpredictable changes that occur during measurement. Examples of such changes include - 

electrical circuit noise in measuring instrument, changes in wind speed, etc.  

Random errors are defined statistically by variance or standard deviation about a true 

value. They decrease as the number of measurements increases. Therefore, random errors 

impact most on precision of measurement. On the other hand, instrument calibration error is 

concerned with range of detection of the instrument. There is always uncertainty with 

calibration range of the measuring instrument. Certain assumptions are usually made during 

instrument calibration. As a result, some adjustments have been made in order to obtain 

optimized calibration curves [4]. 
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Systematic errors, also known as constant errors, usually arise from the use of measuring 

instrument. If they occur, they are normally caused by functional error with instrument or 

instrument being wrongly used. For instruments with linear responses, two types of 

systematic errors are common, namely – offset and scale factor errors. Offset error implies 

that the instrument does not read zero when quantity of the variable being measured is zero.  

Scale factor error means that the change in value of variable or quantity read by the 

instrument is either greater than or less than the actual (true) change. Therefore, systematic 

error impacts most on accuracy of the measurement. That is, how close the measured value is 

to the true value of the variable being measured. This is partly mitigated by ensuring that 

during data post-processing, accuracy of instrument indicated by the manufacturer in 

technical data sheet is taken into consideration. 

1.4     Environmental Measurement System 

The variables were measured using Hobo sensors. These are continuous analog signals 

which are represented in digital domain through amplitude quantization or time quantization. 

Hobo sensors measure the analog signals which are converted to voltage signals at output. 

Using its resolution (in mV/
o
C for air temperature), measured values are obtained. This is 

discussed in this section and demonstrated using an ADC driven analog temperature sensor.   

In order to effectively monitor and evaluate environmental variables, automated equipment 

is required [4]. This basically consists of sensor or transducer that senses the variable and a 

data acquisition system (DAS). At present, microprocessor-controlled automated data 

acquisition system is the most commonly available data acquisition system. Its data 

transmission process may be via wireless communication protocol; consequently, resulting in 

an EMS enabled WSN. Alternatively, data transmission may involve TCP/IP-enabled devices 

that connect independently to the internet as in ubiquitous application systems.  

A complete measurement process for automated equipment consists of a sensor - placed in 

the environment, signal conditioning circuit, an analog-to-digital (ADC) converter, counters, 

processors and storage memories. The sensor, signal conditioning circuit, together with ADC 

and digital counters constitute the sensing unit. The block diagram below shows the 

measurement process. 

 

Figure 2: Measurement process of automated environmental measurement system [4] 
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For an environmental variable to be measured, sensing unit is required. The simplified 

sensing unit consists of sensor and analog-to-digital converter (ADC) only. Signal 

conditioning circuitry and its functions of filtering and amplification, in most cases, are 

embedded within the ADC. Similarly, the digital counter is part of the ADC’s digital control 

logic unit. The ADC considered in this work is of successive approximation type. Sensing 

unit of a typical EMS enabled for WSN application is shown below.  

 

Figure 3: Sensing unit of EMS enabled for WSN applications [7]. 

The sensing unit measures, processes and relays processed input data either directly to end 

user (sink node) or indirectly via upstream modules such as microcontrollers, transceivers, 

digital-to-analog devices, etc. Autonomicity of the system demands that the complete system 

operate for relatively long time without human intervention. This implies the system should 

be able to operate with low need of maintenance, and with available energy for time length 

specified by customer. Simplified circuit drawing of a typical sensing unit is shown below. It 

consists of a single-ended voltage source SAR ADC driven by analog temperature sensor.  

 

    Figure 4: Schematic of a single-ended voltage source ADC driven by analog temperature sensor [8]. 
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The sensor in figure 4 may be embedded in the ADC, or discrete and directly-coupled to 

the ADC. Regardless of sensor-ADC configuration selected, in this work, it is assumed that 

both sensor and ADC operate within one clock domain. This differentiates the chosen 

architecture from another architecture where sensor and ADC operate in different clock 

domains – one for sensor in range of few kHz and another for ADC in range of few MHz. The 

sensor considered is of analog type. Digital sensor was not considered because they usually 

have ADC embedded within them. This results in generation of digital output signals. 

Therefore, their consideration will increase the complexity of the model. Additionally, analog 

sensors are popular for systems used in environmental measurements due to their inherent 

small size, low cost and low power consumption capability [8].  

For the ADC, a voltage source, single-ended mode SAR-ADC was considered. Successive 

approximation register (SAR) architecture was selected over other architectures such as 

sigma-delta, flash, pipelined, etc., due to its increased resolution and low-power consumption. 

The table below provides an overview of various ADC architectures and their characteristics.  

Table 1: ADC architectures and their characteristics 

ADC 

Architecture 

Resolution Speed Conversion time Power consumption 

SAR High From medium 

to low 

Increases with resolution From medium  to low 

Flash  Low High Does not change with 

resolution 

High 

Pipelined Medium From medium 

to high 

Increases with resolution Medium 

Sigma-Delta High Medium Slow and decreases with 

resolution 

From medium to low 

 

 
Figure 5: Block diagram showing components of SAR ADC [9]. 

SAR ADC uses the binary search method and consists of a high-speed comparator, a 

digital-to-analog converter (DAC), control logic and bit (control) register. The fully charged 

capacitor during sampling holds voltage, V. The voltage acts as input to SAR ADC. SAR 

architecture is based on binary search. The comparator compares the input voltage with half 

of the reference voltage coming from the DAC. If the input voltage is greater than half of the 

reference voltage, the most significant bit (MSB) is set (registered as 1) and the comparator 

computes for next MSB.  
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On the other hand, if the input voltage is less than half of the reference voltage, MSB is 

turned off (registered as 0) and the comparator computes for next MSB by comparing input 

voltage with updated reference voltage. In this case, the updated reference voltage is sum of 

last voltage that caused MSB to be turned on and the reference voltage for next bit position. 

The reference voltage for next bit position, in this case, is one-quarter of the first reference 

voltage. This continues until all bit positions are compared and data placed at data register for 

microcontroller to read. 

1.5     Problem Formulation 

Frequent sampling of environmental variables at sensor nodes and consequently, their 

analog-to-digital conversion process contribute in increasing total energy consumption and 

operating cost of measurement systems. They also create set-up and hold-time issues [10]. 

This is due to high data rate that occurs at analog-to-digital (ADC) output. High data rate at 

ADC output also demands that field-programmable gate arrays (FPGA) operate for longer 

time since they are required to capture all bits at ADC output. As a result, energy is not 

conserved. 

Nyquist and Nyquist-Shannon sampling theorems did establish some bounds on how 

continuous-time signals should be recorded at discrete time instants. The theorems allow 

frequent sampling of variables thereby contributing in increased energy consumption of 

systems [1]. Furthermore, they do not provide simple and straight-forward way of 

determining accurate minimum sampling rates [11]. Before discussing further, the theorems 

are presented briefly. 

Theorem 1.5.1: Let 𝑓𝑠 represent Nyquist sampling frequency and 𝑓𝑚𝑎𝑥 the highest frequency 

contained in the signal. Nyquist sampling frequency theorem states that 𝑓𝑠 must be at least 

twice of 𝑓𝑚𝑎𝑥. That is, sampling frequency should be at least two times greater than the 

highest frequency contained in the signal [11].   

In order to understand the above theorem, consider a cosinusoidal signal whose frequency 

is 1 Hz. This is shown in figure 6 below. According to Nyquist, the signal should be sampled 

with frequency of 2 Hz or more in order to avoid aliasing when reconstructed. Sampling the 

signal at 2 Hz, for example, captures all the peaks and troughs in the signal. Consequently, the 

original analog signal can conveniently be recreated without loss of information. However, 

sampling the signal with frequency lower than 2 Hz, say 1.5 Hz, captures only a few peaks 

and troughs in the signal. As a result, some data are lost and original signal cannot be 

recreated from sampled data.  The above is shown in figures below.   

 

Figure 6: Original signal 
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Figure 7: Sampling original signal at 2 Hz 

 

Figure 8: Sampling original signal at 1.5 Hz 

Theorem 1.5.2: Let B represent signal bandwidth of a band-limited signal and 𝑓𝑛𝑠 represent 

Nyquist-Shannon sampling frequency. Nyquist-Shannon sampling theorem states that 𝑓𝑛𝑠 

must be at least twice of  𝐵. That is, sampling frequency should be at least two times greater 

than the signal bandwidth in order to avoid aliasing when reconstructed [11]. 

Besides allowing frequent sampling of variable at sensor node, Nyquist and Nyquist-

Shannon sampling theorems are faced with implementation challenges. Nyquist sampling 

theorem requires knowledge of highest frequency component of the signal. This is not always 

known a priori [1]. Consequently, power spectrum analysis of the signal has to be performed 

through fast Fourier transformation (FFT) or use of spectrum analyzer. For non-stationary 

signals with blowups, it becomes difficult to establish the actual highest frequency 

component. This usually leads to excessive oversampling. 

On the other hand, Nyquist-Shannon sampling theorem demands that input signals be 

band-limited [10 - 12]. This constitutes a short-coming since no real world signal is truly 

band-limited. A truly band-limited signal has no energy outside some finite frequency band. 

This implies that the signal must extend infinitely in time [10, 11]. Although pure repetitive 

waveform with single frequency component is theoretically band-limited since it perfectly 

repeats itself over time, no real signal however exhibits such behavior. 

Considering above challenges and need to sample less frequently for efficient utilization of 

energy, Nyquist sampling theorem is not commonly adopted [1]. It is for this reason that 

research is intense and novel methods such as compressive sensing emerging. These emerging 

methods aim to allow sampling below the Nyquist rate [1]. With reduced sampling rate, 

analog-to-digital converters can work with lower voltage levels. Also, output data rate is 

reduced. Consequently, energy consumption of the system is reduced [1, 10 and 13]. 

Additionally, use of lower sampling rates (rates below Nyquist rate) gives savings in 

memory space of sensor nodes. It also helps in reducing data transmission traffic in upstream 

stage (transceiver section) of measurement systems enabled for WSN application. Reducing 
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data transmission traffic makes it possible for lower frequencies of industrial-scientific-

medical (ISM) band to be used. As a result, they give more range for a given power budget. 

Other benefits associated with using lower sampling rates include – reduced latency, reduced 

data hopping and bandwidth packing problems during data transmission. These help in 

improving system reliability and life cycle cost of the system. 

While above discourse emphasized on need for available energy to be efficiently utilized 

through use of low sampling rates, it should be noted that trade-off exists between data 

quality and energy consumption when using low sampling rates [11, 12, and 14]. While low 

sampling rates help reduce energy consumption, they however result in loss of data. 

Consequently, there is need to balance this trade-off so that energy consumed is minimized 

without sacrificing to data loss.  This constitutes the problem statement of this work. It is 

worth noting that the phrase “sampling at lower frequencies” implies sampling at rates below 

the Nyquist rate. Similarly, the phrase “without sacrificing to data loss” implies that all data 

lost due to aliasing while sampling at a lower frequency are accurately determined. 

1.6     Research Methodology 

The framework adopted for research methodology is that presented by Langhe [15]. The 

framework is a four-level structure with input questions that define the levels. It addressed 

important elements required in scientific research work. The elements include goals and 

objectives, mental models, research scope and type of study. Since goals are non-measurable 

while objectives are measurable, the goal of this research work is to investigate and determine 

dynamic stochastic modeling methods that are optimized for measurement of environmental 

variables.  

Based on above goal, the objective is to determine novel stochastic modeling methods that 

enable sampling of environmental variables at lower frequencies without sacrificing to data 

loss. This is achieved through stochastic analysis involving real field datasets with energy 

consumption taken into consideration. Research questions such as how often environmental 

variables should be sampled in order to secure energy-efficiency were addressed. Novel 

method of determining optimal sampling interval was also presented.  

Research mental model adopted was analytical. It comprised of predictive and empirical 

approaches. The research work was inductive and descriptive. It is inductive because it 

worked from specifics to generalizations. It is descriptive not because case-studies were 

involved, but also due to its “features-to-detect” characteristics. That is, the work moved from 

observation of features to detection. 
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CHAPTER TWO 

The State of the Art 

2.1     Sampling and Time Series Data Processing 

Since most real world signals are continuous functions of time, they are required to be 

transformed into digital domain to enable compatibility with digital electronic components. 

Although it is easier to transmit analog signals through the air, they are still required to be 

digitalized so that digital electronic components can read, understand and manipulate them. 

Consequently, quantization is performed so that analog signals could be represented in the 

digital domain. Quantization could be amplitude or time quantization. Time quantization 

which is also known as sampling is the main focus in this context. It has been extensively 

discussed in preceding chapter. Nyquist and Nyquist-Shannon sampling theorems have also 

been discussed. They have been found not to be energy-efficient. Research is therefore 

intensive for energy-efficient sampling techniques that do not sacrifice to data loss.  

Compressed sensing (also known as compressed sampling) has been found to be more 

energy-efficient than Nyquist-based sampling approaches [16, 17]. An improved version of 

compressed sensing which involves compressing while sampling made compressed sensing 

very competitive. Currently, it competes with adaptive sampling technique. Improved 

compressed sensing has also displaced the traditional compressed sensing method. Traditional 

compressed sensing samples first, thereafter compresses [1]. Other variants of compressed 

sensing method exist. However, the above-described improved version gives better results in 

terms of energy-efficiency and data quality.  

For adaptive sampling technique, Al-Hoqani and Yang [16] proposed an adaptive sampling 

method that uses single exponential smoothing to perform predictions. In their work, Reno 

transmission control protocol (TCP Reno) was used for congestion control. Other variants of 

adaptive sampling technique exist.  

Padhy et al [17] used Bayesian linear model to determine sampling rates. In their work, 

properties of Kullback-Leibler divergence were used to map values on sampling rate so that 

sensor adjusts sensing rate based on data it believes the system shall observe as next 

(incoming) data. Although their work adopted a mathematical approach to predict incoming 

data, their model and methodology differ from those used in this work. Also, sensor network 

topology used in their work differs from that used in this work. Their work used a mesh-

network topology. Mesh-network topology is known to be susceptible to bandwidth and 

latency challenges [18]. 

Chatterjea and Havinga [19] used time series forecasting method to predict variability in 

measured values. In their work, sampling frequency changes whenever significant variability 

occurs in measured values. Time series models used in their work was completely linear and 

did not consider lagged errors as predictors. In this work, forecasts are linear functions of past 

data. They are also functions of lagged errors and considered lagged errors as predictors. 

Also, this work used a different reference condition in determining when models should be 

updated. 

Law et al [20] developed an adaptive sampling method that uses Box-Jenkins approach to 

predict future values. In their work, when confidence interval of predicted value lies below a 
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specified error tolerance, predicted value is considered accurate enough and sensor skips 

sampling and goes for next sampling. The sensor samples if this condition is not fulfilled. 

Some significant differences exist between their work and that conducted in this research 

work. First, this research work established models that perform both forward and backward 

predictions. Second, this work samples with lower frequencies. This offers the capability of 

integrating lower frequencies of ISM band and their associated benefits. Third, this work used 

a different condition for adaptive sampling. The condition involves skip of subsequent 

sampling and continued use of predicted values if difference between immediate sampled and 

predicted values lies within a predefined residual threshold interval.  

Furthermore, this work evaluates to determine whether or not next (succeeding) sampling 

should be measured while their work evaluates to determine if present sampling should be 

skipped. Moreover, if need for update of model occurs, the new method developed in this 

research work demands that model coefficients be re-estimated while keeping orders of model 

constant. As considered in this work, this holds for situations where dataset and its developed 

model accurately represent defined period or season. Thus values of the dataset are 

homogeneous. Least square errors in model coefficients will occur if the moving average 

component of the autoregressive integrated moving average model was not kept constant. 

Similarly, common-factor problem will arise if the autoregressive and integrated components 

of the autoregressive integrated moving average model were not kept constant.  

Therefore, work presented in this contribution is simpler, less obscure and reliable. This is 

essential considering that simpler and less complex models give better energy efficiency. 

2.2     Sensing Unit 

This section reviews related works on sensing units used in stand-alone systems. This 

review is vital since energy consumption is among the parameters of focus in this work. 

Sensing unit which basically consists of sensor and analog-to-digital converter (ADC) has 

been described in section 1.4. Studies on low-power ADC have been on the increase. 

O’Driscoll et al [21] showed that power consumption of an ADC can be adaptively 

reduced by reducing resolution of ADC. In their work, ADC resolution was varied from 8 to 

3-bits and power consumption found to reduce from 0.90 mW to 0.23 mW.  

Similarly, Schroeder [22] developed circuit architecture for integrated ADC that uses 

information-theoretic redundancy in input signals to reduce conversion workload in wireless 

sensor networks. The integrated ADC circuit architecture also performs data compression 

during ADC conversion. Consequently, savings in energy was achieved during radio 

transmission due to reduced workload and bandwidth. 

Furthermore Chen [23] investigated the use of adaptive fuzzy resolution controller in 

adjusting sampling rate of ADC in wireless ECG health care monitoring system. In his work, 

a fuzzy resolution controller produced control signal that adaptively selects appropriate 

sampling clock for ADC so that sampling rate is adjusted. 

In addition to the above, Artan et al [24] in their work on neural implants found that 

significant loss of ADC power occurs if sampling rate does not adapt to the significant value 

of the neurological signal being sampled. Their work also noted that reduction in ADC power 

consumption up to 62% is achieved if sampling rate is reduced for cases where values of 

sampled input signal are below a defined threshold value. 
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The work presented in thesis differs from prior arts in several ways. First, it does not 

require additional hardware such as comparators in the feedback control loop. Instead, it uses 

a software-only solution. Detection of change-point is performed statistically using data 

obtained at ADC output. When detected, the algorithm changes the frequency of ADC clock. 

This makes the system simpler and smarter. Consequently maintenance and operating costs 

will be reduced. This shall also reduce life cycle cost of sensor node. 

2.3     Energy Consumption of Sensing Unit  

In order to improve understanding of sensing unit and its energy consumption, an energy 

model was presented. This section reviews similar published works. It also presents 

distinctions between results in published works and those presented in this thesis work. 

Hanfoug et al [25] presented a behavioral model of a current-source SAR ADC using 

MATLAB Simulink. Their model investigated both static and dynamic performance of an 8-

bit current-mode SAR ADC. Non ideal factors such as switching noise, clock-feed through, 

flicker noise, clock jitter, etc., were taken into consideration. Simulation results for ideal 

model were compared with those for non-ideal model so that effects of non-ideality in ADC 

could be established. Work presented in this thesis report differs from their work in that it 

modeled a complete sensing unit; not just the ADC. Additionally, the ADC considered in this 

work is a voltage-source SAR ADC while theirs is a current-source SAR ADC. 

Halgamuge et al [26] developed an energy model which is used to study energy 

consumption of certain components of a sensor node. For the sensing unit, their work did not 

consider energy consumed in converting analog input signal to b-bit packet. This is one of the 

differences between their work and that presented in this thesis. In this thesis, total energy 

consumed by ADC which comprises of energy consumed in switching the control logic, that 

consumed by DAC capacitor arrays and that consumed by comparator were all considered. 

Additionally, in this work, energy consumed during sampling mode and that dissipated by 

sensor output and ADC input resistances were taken into account. 

Razzaque and Dobson [27] investigated sensing energy cost for certain off-the-shelf 

sensors. In their work, it was shown that energy consumption and cost of sensing operations 

are greater than that for certain radio frequency transceivers. It was also shown that 

compressed sensing and distributed compressed sensing give significant savings in sensing 

and overall energy cost of the system. Their work differs from that presented in this thesis in 

that it used digital sensors and did not consider energy consumed when analog-to-digital 

conversions are done. 

Ginsburg [28] in his doctoral thesis presented energy models that were used to study 

energy consumption of SAR ADC and flash ADC. The ADCs were of the same bit-

configuration. In terms of energy consumption, SAR ADC was found to be very competitive 

when compared against traditional high speed architectures such as flash ADC. Similar 

situation applies to Fredenburg et al [29] work. Both works differ from that presented in this 

thesis work for the reason that they did not consider sensor sub-unit in their energy model. 
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CHAPTER THREE 

DATA ANALYSIS 

3.1     Overview of Time Series Analysis 

3.1.1     Time Series  

Definition 3.1.1a: Time series is defined as a sequential set of data points measured over 

successive times [30, 31]. That is, repeated measurements of the same phenomenon carried 

out over time. 

Example 3.1.1: Hourly air temperature values obtained between 09:00:15 and 07:00:15 on 

2016-06-04 during measurement in a residential area in Edmonton constitute a time series. 

The series is presented as [18.2, 20.9, 24.1, 27.5, 30.3, 30.8, 22.4, 42.7, 26.6, 36.5]. 

A given time series may follow a probability model. The model describes joint distribution 

of random variables that constitute the time series. As a result, mathematical expression 

describing the probability model constitutes a stochastic process. Therefore, sequence of 

observations of a given time series are actually samples realizations of the stochastic process 

that produced them [31]. 

Time series and its analysis cannot be discussed without stating the central limit theorem. 

Definition 3.1.1b: The central limit theorem states that the distribution of sampling means 

approaches a normal distribution as sample size gets larger, notwithstanding shape of the 

population distribution [32]. 

The implications of central limit theorem are: 

1. The average of all the samples means will approach mean of population from where 

the samples were taken as sample size increases, notwithstanding the distribution of 

the data – whether normal or non-normal.  

2. The average of all the samples means and standard deviation will approach standard 

deviation of population from where the samples were taken as sample size increases. 

Time series dataset may be independent and identically distributed (iid). On the other hand, 

it may not be an iid. Independent and identically distributed (iid) dataset follows a random 

walk while non-iid time dataset follows a pattern [31]. Both iid and non-iid time series are 

described below. 

3.1.2     IID and Non-IID Time Series 

Definition 3.1.2a: An independent and identically distributed time series is defined as 

collection of data that are identically distributed, and mutually independent. This means every 

finite subset of data within the time series is independent [33]. 

Example 3.1.2a: Consider hourly air temperature data obtained between 09:00:15 and 

07:00:15 on 2016-06-04 during measurement in a residential area in Edmonton. The sequence 

of values is already shown in Example 3.1.1. It constitutes an iid time series because dataset is 

uncorrelated and normal distributed with finite variance. At this point, it is worth noting that: 

1. Uncorrelated dataset does not absolutely mean that dataset is independent. This is 

because dataset could be uncorrelated and still dependent [33]. 
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2. Independence of data does not absolutely mean that given dataset is an iid. This is 

because dataset can be independently distributed and still not identical [33].  An 

independent dataset whose subsets have different probability distribution functions is 

not identically distributed.  

It is for above reasons that sequence of values shown in Example 3.1.2 was investigated 

for iid by studying status of its autocorrelation coefficients and normality. Autocorrelation 

function (ACF) analysis was performed in order to determine correlation between elements of 

the sequence. Normality on the other hand was investigated using Chi-square test. They are 

shown in the preceding analysis where autocorrelation and chi-square are described. 

Theorem 3.1.2a: Members of a given time series are correlated if their autocorrelation 

coefficient is near zero and within the 95% confidence interval. On the other hand, they are 

uncorrelated if one or more of the autocorrelation coefficients is significantly non-zero [33].  

The ACF plot of Example 3.1.2 requires that autocorrelation coefficients of various orders 

be computed and plotted against corresponding lag. The equation below and table describe it. 

𝑟𝑡 = (
1

(𝑛 − 1)(𝑆𝑥𝑡 
∗  𝑆𝑥𝑡+1 

)
) ∑ [(𝑥𝑡,𝑖 − 𝑥̇𝑡)(𝑥𝑡+1,𝑖 − 𝑥̇𝑡+1)]

𝑛−1

𝑡,𝑖=1

            (1) 

where: 

𝑟𝑡 represents autocorrelation coefficient of order 𝑡, 

𝑥𝑡,𝑖 represents series of first observations for order 𝑡,   

𝑥̇𝑡 represents sample mean of values contained in the series 𝑥𝑡, 

𝑥𝑡+1,𝑖 represents series of last observations for order 𝑡,  

𝑥̇𝑡+1 represents sample mean of values contained in the series 𝑥𝑡+1, 

𝑆𝑥𝑡 
 represents sample standard deviation of values contained in series 𝑥𝑡, 

𝑆𝑥𝑡+1 
represents sample standard deviation of values contained in series 𝑥𝑡+1, 

𝑛 represents number of values contained in each of the series. 

Table 2: Autocorrelation analysis table using hourly air temperature data 

Time 

index 

Air temp 

(
o
C) 

Air temp (
o
C), 

First order, 𝒙𝟏 

Air temp (
o
C), 

Second order, 𝒙𝟐 

Air temp (
o
C), 

…Ninth order, 𝒙𝟗 

First (n-1) 

values 

Last (n-1) 

values 

First (n-2) 

values 

Last (n-2) 

values 

First (n-9) 

values 

Last (n-9) 

values 

1 18.2 18.2 20.9 18.2 24.1 18.2 36.5 

2 20.9 20.9 24.1 20.9 27.5   

3 24.1 24.1 27.5 24.1 30.3   

4 27.5 27.5 30.3 27.5 30.8   

5 30.3 30.3 30.8 30.3 22.4   

6 30.8 30.8 22.4 30.8 42.7   

7 22.4 22.4 42.7 22.4 26.6   

8 42.7 42.7 26.6 42.7 36.5   

9 26.6 26.6 36.5     

10 36.5       

Sample mean 27.06 29.09 27.11 30.11 - -  

Sample standard 

deviation 

6.80 6.58 7.21 6.27 - - 

Autocorrelation 

coefficient (r) 

-0.052 0.380 - 



30 

Distribution of autocorrelation coefficients computed for various orders or lags is shown in 

the table below. Similarly, ACF plot with limit lines of 95% confidence interval is shown in 

figure below. Limit lines corresponding to 95% confidence interval were estimated using 

equation (2) [33]. 

  Table 3: Summary of autocorrelation coefficient  

Lag (order) 1 2 3 4 5 6 7 8 

Autocorrelation 

coefficient (r) 

-0.052 0.387 -0.075 -0.015 -0.049 -0.097 -0.337 -0.094 

𝐶𝐼95 =
±1,96

√𝑛
               (2) 

where: 

𝐶𝐼95 represents 95% confidence interval limit,  

 𝑛 represents number of samples. 

 

Figure 9: Autocorrelation function plot of an iid time series 

In above figure, it would be seen that all autocorrelations are near zero and within lower 

and upper limits of 95% confidence interval. This shows that values are uncorrelated. Next is 

the use of Chi-square test to investigate normality of data. 

Theorem 3.1.2b:  Assuming 𝑧1,….,𝑧𝑘 represents set of independent observations from normal 

distributed population, then the distribution constituting sum of squares of the observations is 

a chi-square distribution [33].  

That is, a random variable, w, represented in equation (3) has a chi-square distribution 

χ2(k) as long as, 𝑘 is a positive integer and observations {𝑧1, … , 𝑧𝑘} taken from independent 

and normal distributed population. 

𝑍𝑖 = ∑ 𝑧𝑖
2                         (3)

𝑘

𝑖=1

 

The null hypothesis is that observations are taken from a normal-distributed dataset. 

Therefore if the null hypothesis is true, distribution of the test statistic follows a chi-square 

distribution. Pearson’s chi-square test statistic is one of the commonly used test statistics in 

performing the above-described test for goodness of fit. It tests to determine whether observed 

data correspond sufficiently well to expected values. It is described in below equation. 
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χ2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

                (4) 

where: 

χ2 represents chi-square test statistic, 

𝑂𝑖 represents the observed frequency for bin 𝑖, 

𝐸𝑖 represents the expected frequency for bin 𝑖, 

𝑛 represents the number of bins, 

Using Example 3.1.2, chi-square test for goodness of fit was performed. The steps are 

described below. 

Step 1: Mean and standard deviation of the dataset were computed and noted.  

Step 2: Dataset was grouped in bins. Frequency of each bin was noted. This constitutes the 

observed frequency. 

Step 3: Using computed mean and standard deviation, normalized Gaussian distribution 

function was determined. For each bin, definite integral of normalized Gaussian distribution 

function was performed. Lower and upper limits of the definite integral were the lower and 

upper limits of the bins. Since normalized Gaussian distribution is the same as normal 

distribution, result obtained when total number of data is multiplied by definite integral of 

normalized Gaussian distribution over given bin is the expected frequency (cumulative 

frequency) for that bin. The results are shown in Table 4 while the equation below shows 

probability density function of normal distribution. 

 

𝑓(𝑥) =
𝑒−(𝑥−𝜇)2/(2𝜎2)

𝜎 ∗ √2𝜋
           (5) 

where; 

𝑓(𝑥) represents probability density function of normal distribution, 

𝜇 represents the mean of given dataset, 

𝜎 represents the standard deviation of given dataset. 

Step 4: With expected frequency determined, chi-square value for each of the bins was 

computed using equation (4). The steps and results obtained are summarized in below table. 

  Table 4: Chi-square test of normality for iid time series 

Time  

index 

Air temp. 

values in oC 

Air temp. values 

in bins (oC) 

Air temp. 

observed 

frequency (𝑶𝒊) 

Air temp. 

expected 

frequency (𝑬𝒊) 

Chi-square value 

= 
(𝑶𝒊−𝑬𝒊)𝟐

𝑬𝒊
 

1 18.2 18 – 21 2 0.8218 1.6892 

2 20.9 21 – 24 2 1.2456 0.4570 

3 24.1 24 – 27 1 1.5791 0.2124 

4 27.5 27 – 30 1 1.6747 0.2718 

5 30.3 30 – 33 2 1.4856 0.1781 

6 30.8 33 – 36 0 1.1024 1.1024 

7 22.4 36 -39 1 0.6843 0.1457 

8 42.7 39 – 42 0 0.3553 0.3553 
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9 26.6 42 – 45 1 0.1543 4.6356 

10 36.5 45 – 48 0 0.0560 0.0560 

Sum 9.1035 

Degree of freedom was determined as number of categories (or groups) minus one. In this 

case, there are ten groups or categories. Thus, degree of freedom was (10 – 1 = 9). Chi-

squared test statistic of 9.1035 was obtained. This gives p-value that is between 0.25 and 0.5 

when read from chi-square distribution table. Using Excel’s “CHISQ.TEST” function, exact 

value of p-value was found to be 0.4277. P-value of 0.4277 is greater than standard 

significance level of 0.05 usually used in statistical hypothesis testing. Thus, the null 

hypothesis cannot be rejected. In order to reject the null hypothesis P-value less than 0.05 is 

required. Therefore, dataset tested for goodness-of-fit is normal distributed.  

Definition 3.1.2b: A non-iid time series is defined as collection of data that are not 

identically distributed and independent [33].  

The above definition implies that non-iid time series is dependent and non-identically 

distributed. This usually occurs in situations where data points are interdependent such as 

cases where data exhibit significant temporal or spatial correlations. Such an example is 

described below.  

Example 3.1.2b: Consider values of photosynthetically active radiation (PAR) recorded every 

30 minutes in a Brazilian forest from 23:30 on 2009-01-01 to 10:00 on 2009-01-02. Due to 

significant temporal correlation existing within the dataset, it constitutes non-iid time series. 

The analysis is discussed below. Histogram plot of dataset and its autocorrelation function 

plot are shown below. 

 
Figure 10: Histogram plot of non-iid time series 
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Figure 11: Autocorrelation function plot of a non-iid time series 

Fitting a normal distribution curve to histograms in figure 10 appears to be difficult. This 

suggests the dataset is not normal distributed. In order to confirm this, chi-square test for 

normality was performed. This is summarized in the table below. 

      Table 5: Chi-square test of normality for a non-iid time series 

PAR values in bins 

(W/m2) 

PAR observed 

frequency (𝑶𝒊) 

PAR expected 

frequency (𝑬𝒊) 

Chi-square value = 
(𝑶𝒊−𝑬𝒊)𝟐

𝑬𝒊
 

1.2 – 21.2 15 4.1339 28.56112 

21.2 – 41.2 0 4.1536 4.1536 

41.2 – 61.2 2 3.7748 0.8345 

61.2 – 81.2 1 2.4182 0.8318 

81.2 – 100.2 2 1.1865 0.5577 

100.2 – 120.2 2 0.4459 5.4165 

Sum 40.3552 

p-value 0.0067 

P-value was calculated to be 0.0067. This is less than the significance value (0.05). 

Therefore the null hypothesis that dataset is normal distributed is rejected. Also, figure 11 

shows that autocorrelation coefficient at lags 1 and 2 were significant and above upper 

confidence interval limit. This indicates that dataset is dependent and correlated. 

Analyzing the dataset further revealed that logistic distribution fits best among all the 

distributions examined. P-values obtained during goodness-of-fit tests are shown in table 

below. Similarly, the figure below shows the dataset being fitted with logistic distribution.                                                                                  

                      Table 6: Goodness-of-fit test results for a non-iid time series 

Distribution p-value 

Exponential 0.0000 

Gamma 0.0050 

Normal 0.0067 

Log-normal 0.0040 

Logistic 0.052 

Weibull 0.0070 
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Figure 12: Dataset fitted with logistic distribution 

3.1.3     Discrete-time and Continuous-time Series 

Time series data may be discrete-time or continuous-time. In discrete-time series, 

observations are recorded at discrete time-points and values constitute a finite set. 

Continuous-time series on the other hand has observations that were continuously recorded 

over a closed time interval. Some discrete-time series are obtained by observing a continuous-

time process at discrete observation times [33]. 

In systems or models where nonlinearity exists, continuous-time series are most suitable in 

describing the nonlinearity. This is due to reduced risk of missing data while sampling in 

continuous-time. Furthermore, some system dynamics are better investigated using 

continuous-time series. In such systems, time may be made granular during measurement. 

3.1.4     Stationary and Non-stationary Time Series 

Stationarity defines the quality of time series properties. This is essential since statistical 

properties of a given time series are required to be time-invariant so that model can be fitted 

to the series. Stationarity therefore plays an important role in time series analysis. Stationary 

time series may be weakly or strictly stationary. 

Definition 3.1.4a: Time series is said to be weakly stationary if its first and second orders of 

moments are time-invariant [33].  

First orders of moment are mean and variance while autocorrelation is the second order of 

moment. Thus, above definition implies that statistical properties of mean, variance and 

autocorrelation do not change with time in a weakly stationary time series. Such time series 

usually originate from a stationary process. 

Definition 3.1.4b: If  𝑡 and ℎ are positive integers, then time series {𝑋𝑡} is strictly stationary 

if joint distribution of  {𝑋1, 𝑋2, … , 𝑋𝑝} is the same as that of {𝑋1+ℎ, 𝑋2+ℎ, … , 𝑋𝑝+ℎ} [33].  

This means that joint distribution of a strict stationary time series only depends on 

difference, ℎ, but not on time. It therefore implies that a strict stationary time series has its 
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higher orders of moments (e.g. skewness, kurtosis) being constant [33]. A strict stationary 

time series has the same structure when moved forward or backward in time. 

It shall be noted that weak stationarity is a sufficient and necessary condition in linear time 

series analyses. In non-linear time series analyses, weak stationarity condition is not usually 

sufficient. Strict stationarity is usually required to be fulfilled. The example below has been 

provided to describe the concept of stationarity. 

Example 3.1.4: Consider hourly values of air temperature obtained during measurement in a 

residential area in Edmonton from 09:00:15 on 2016-06-04 to 08:00:15 on 2016-06-05. The 

set of values obtained at time index, 𝑡 = {1, 2, … 24} is shown below.  

𝑋𝑡 = {18.2, 20.9,24.1,27.5,30.3,30.8,22.4,42.7,26.6,36.5,26.3,22.4,20.4,16.7,15.2,14.4,13.8,12.7,11,9.9,9.2,9,10.6,13.1} 

If two subsets are drawn from the series, it would be seen that they have unequal mean and 

variance. However, if values of the subsets are logarithmic-transformed, it would be seen that 

their mean and variance become approximately the same (see Table 7). Therefore, the original 

series is not stationary but logarithmic-transformation of it has helped it become stationary. 

The table below summarizes the analysis 

                            Table 7: Securing stationarity 

 𝐗𝐭 = Air temperature values (
o
C)  Log-transformed air temperature 

values (
o
C) 

Subset 1: first 12 

datasets in the set  

Subset 2: last 12 

datasets  in  the set 

Subset 1: first 12 

datasets in set 

Subset 2: last 12 

datasets in set 

18.2 20.4 1.260071388 1.309630167 

20.9 16.7 1.320146286 1.222716471 

24.1 15.2 1.382017043 1.181843588 

27.5 14.4 1.439332694 1.158362492 

30.3 13.8 1.481442629 1.139879086 

30.8 12.7 1.488550717 1.103803721 

22.4 11.0 1.350248018 1.041392685 

42.7 9.9 1.630427875 0.995635195 

26.6 9.2 1.424881637 0.963787827 

36.5 9.0 1.562292864 0.954242509 

26.3 10.6 1.419955748 1.025305865 

22.4 13.1 1.350248018 1.117271296 

Sample mean 27.39 13.00 1.43 1.11 

Sample variance 47.86 11.44 0.011 0.011 

     

In addition to above approach, stationarity can be checked through following tests: 

1. Modulus of roots of the characteristic equation: If absolute value (modulus) of roots 

of model characteristic equation lies outside a unit circle, the model is stationary. 

This means that absolute value of roots of model characteristic equation must be 

greater than one. 

2. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: Based on null hypothesis that time 

series is trend stationary with no noise component. This implies that the time series 

trend has only deterministic component. The alternative hypothesis is that time series 

has both trend and noise component. This implies it has stochastic component.  

3. Augmented Dickey-Fuller (ADF) test: Based on null hypothesis that time series has 

unit roots. This means that model characteristic equation of the time series has roots 
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that lie within the unit circle. Consequently, the time series is not stationary. The 

alternative hypothesis is that time series does not have unit roots. This implies the 

roots lie outside the unit circle. Therefore the time series is stationary.  

It is always recommended that ADF test be performed whenever KPSS test is used. It 

complements KPSS test [33].  

3.1.5     Linear and Non-linear Time Series 

Time series may be linear or non-linear. Linear time series are represented by models that 

investigate covariance structure of the series. According to [33] and [34], linear time series 

are represented by two main models: 

1. Autoregressive models 

2. Moving average models 

Definition 3.1.5a: A time series is linear if it can be represented as shown below. 

Xt= ∑ 𝜃j

∞

j=-∞

ϵt-j                            (6) 

where: 

{𝑋t} represents  time series, 

{𝜃j} represents sequence of constants, 

{ϵj} represents sequence of uncorrelated random values with mean of zero and finite variance. 

The sequence of values, {ϵj}, described above does not need to be independent. It is similar 

to white noise and should not be confused with Gaussian (or strict) white noise. 

Equation (6) also defines the moving average model. In simplified form, it can be written 

as shown below. 

𝑥𝑡 = ϵ𝑡 + 𝜃1ϵ𝑡−1 + 𝜃2ϵ𝑡−2 + 𝜃3ϵ𝑡−3 + ⋯ + 𝜃𝑞ϵ𝑡−𝑞              (7) 

where: 

𝑞 represents order of the model, 

𝜃1, 𝜃2,…, 𝜃𝑞 represent model parameters, 

ϵ𝑡 represents sequence of uncorrelated random values with mean of zero and finite variance. 

For moving average model of order 1, that is MA(1), equation (7) reduces to equation (8). 

𝑥𝑡 = ϵ𝑡 + 𝜃1ϵ𝑡−1                 (8) 

Linear time series defined above can also be represented in terms of autoregressive (AR) 

model since MA and AR models are invertible. That is, an MA model can be converted to an 

AR model and vice versa. This leads to Definition 3.1.5b presented below.  

Definition 3.1.5b: Linear time series {𝑋t} is said to come from an autoregressive model if it 

satisfies the equation shown below [33]. 

Xt= ∑ Φj

p

j=1

𝑋t-j+ ϵt              (9) 
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where: 

{𝑋t-j} represents past values of elements of the series, 

p represents order of the model, 

{Φj} represents sequence of constants or coefficients of model, 

{ϵt} represents sequence of uncorrelated random values with mean of zero and finite variance. 

In simplified form, equation (9) reduces to equation (10). 

𝑥𝑡 = Φ1𝑥𝑡−1 + Φ2𝑥𝑡−2 + Φ3𝑥𝑡−3+. . . Φ𝑝𝑥𝑡−𝑝 + 𝜖𝑡           (10)                   

where: 

Φ1, Φ2, Φ3, …, Φp represent model parameters or coefficients, 

p represents order of the model, 

ϵ𝑡 represents sequence of uncorrelated random values with mean of zero and finite variance. 

Example 3.1.5: 

Consider hourly values of air temperature obtained during measurement in a residential 

area in Edmonton from 09:00:15 on 2016-06-04 to 08:00:15 on 2016-06-05. The values were 

shown in preceding example (Example 3.1.4). Without using software program, an AR model 

was fitted to the dataset. Below are the steps and results obtained. 

Step 1: Time series was detrended by taking the first difference (𝑋𝑡+1 − 𝑋𝑡). The differenced 

series is shown below. 
 

{𝑋𝑡+1 − 𝑋𝑡} = {2.7, 3.2, 3.4, 2.8, 0.5, −8.4, 20.3, −16.1, 9.9, −10.2, −3.9, −2, −3.7, −1.5, −0.8, −0.6, −1.1, −1.7, −1.1, −0.7, −0.2, 1.6, 2.5} 

                                                                              

Step 2: Autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

differenced series were computed. They are shown below. 
 

 
Figure 13: Autocorrelation function plot for Example 3.1.5 
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Figure 14: Partial autocorrelation function plot for Example 3.1.5 

Step 3: The above ACF plot shows an AR(1) model. This is because autocorrelation 

coefficient is significant at lag 1. Also, it would be seen in PACF plot that partial 

autocorrelation coefficient is not significant at lag 2 and above. This further confirms an 

AR(1) model since partial autocorrelation coefficient of an AR(p) process is non-significant at 

lag (p + 1) and above.  

Step 4: Considering the simplified equation of an AR(p) process, an AR(1) model is therefore 

represented below. 

𝑥𝑡 = Φ1𝑥𝑡−1 + 𝜖𝑡           (11) 

Model coefficient Φ1was determined by finding value of Φ1 that minimizes sum of 

squares of residuals (SSR) subject to constraint that mean of residuals should be equal to zero. 

Setting initial guess of Φ1as zero and using values of 𝑥𝑡 and 𝑥𝑡−1, residuals (𝜖𝑡) were 

computed using equation (11). The residuals were squared and summed to give SSR. Using 

Excel Solver, SSR was set as objective function. SSR was then minimized by varying Φ1until 

Φ1value which gives lowest possible SSR and zero mean residuals was determined. Φ1was 

found to be 0.989. Thus, model equation of the first differenced series becomes: 

𝑥𝑡 = 0.989𝑥𝑡−1 + 𝜖𝑡          (12) 

Plot of model predicted series against first differenced series is shown below. Also shown 

below is plot of model predicted series against the original (initial) time series.   
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Figure 15: Plot of model predicted series against first differenced series 

 

 
 

Figure 16: Plot of model predicted series against original (initial) time series 

It would be seen in figure 16 that the model can predict the original series. Histogram plot 

of the residuals is shown below. Mean value of residuals was calculated as -0.01
o
C and 

variance calculated as 151.5
o
C. 

 

Figure 17: Histogram plot of residuals of AR(1) model - air temperature model 
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Non-linear time series are produced by non-linear dynamic stochastic processes [33]. They 

exhibit characteristics that are difficult to be modeled using linear time series models. Such 

characteristics include breaks and thresholds, time-dependent variances, asymmetric and 

aperiodic cycles, etc.  

Some analyses involving non-linear time series require determination of test statistics of 

probability distribution of the given series. Such test statistics include - Lyapunov exponents, 

entropies and prediction errors, etc. This is quite a tedious task since most non-linear test 

statistics require their statistical estimates such as time-reversal invariance, etc., to be first 

determined [34]. Furthermore, this approach of analyzing non-linear time series through its 

test statistics is largely applied when time series model is low dimensional in state space. This 

means that state space representation of transition and observation equations of the series is of 

lower order. As a result, there is high focus on finding simplified approach for non-linear time 

series analysis. 

In order to characterize stochastic parameters of non-linear time series, models based on 

threshold principle are usually considered. Such models include - threshold autoregressive, 

exponential autoregressive (EXPAR), smooth transition autoregressive (STAR), etc [35]. The 

models demand that regimes be created and dynamics associated with the regimes 

investigated. It is recommended that non-linearity tests be performed before selecting and 

building non-linear model. For this, Brock-Dechert-Scheinkman (BDS) test of non-linearity 

may be considered [36]. 

3.2     Approaches in Time Series Analysis  

Time series can be analyzed using any of the following approaches: 

 Classical-decomposition approach 

 Parametric approach 

 Non-parametric approach. 

Classical-decomposition approach is a traditional approach that has long been used. It is 

also known as reduction-to-noise approach. It is based on the concept that components of a 

given time series can be gradually removed so that resulting component approximates to strict 

white noise. This is because strict white noise cannot be modeled. Functions representing all 

the eliminated (removed) components add up to constitute model for original time series.  

Parametric approach involves the use of models [37]. It tends to fit model to given time 

series data. On the other hand, non-parametric approach does not involve the use of models. It 

is model-free and does not require model assumptions as well. This approach is mainly data-

driven. It explores characteristic features of time series data and uses them for identification 

and characterization of time series data. 

Above-mentioned approaches are treated in detail in preceding sections. Examples are 

provided to demonstrate their applications. 

3.2.1     Classical-Decomposition Approach 

Classical-decomposition approach considers times series as being composed of trend, 

cyclic, seasonal and random components. It aims to detrend time series data, and remove all 

seasonal and irregular components.  The components are described in the equation below. 
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𝑋𝑡 = 𝑇𝑡 + 𝐶𝑡 + 𝑆𝑡 + 𝑅𝑡                       (13) 

where: 

𝑋𝑡 represents values of the series, 

𝑇𝑡 represents trend component of the series, 

𝐶𝑡 represents cyclic component of the series,  

𝑆𝑡 represents seasonal component of the series, 

𝑅𝑡 represents random component of the series. 

Classical-decomposition approach is composed of following steps: 

1. Ensure that time series is stationary. If time series is not stationary, perform 

logarithmic or square-root transformations of the series. This helps in stabilizing the 

variance. If non-stationarity is due to variation in mean, perform differencing.  

2. Fit model to stationarized time series. It is usually recommended to start with the 

simplest function, a linear function. Linear functions are easy to fit and help detrend 

the series. The resulting series (detrended series) obtained after fit of linear function is 

subjected to further analysis (see steps 3 and 4 below). This resulting (detrended) 

series is the difference between stationarized series and fitted linear function. 

3. Check if detrended series has seasonal or cyclic components. If seasonal component is 

present, identify its period. If cyclic component is present, identify its number of 

cycles. 

4. Fit function to detrended series using moving average or harmonic functions. Use of 

moving average or harmonic functions help remove seasonal and cyclic components. 

The function should be fitted such that resulting residual approximates to strict white 

noise. Resulting residual in this stage is the difference between fitted function and 

detrended series. Also analyze the resulting residuals so as to ascertain if they are 

independent with mean of zero and finite variance. This implies that residuals have 

been reduced to lowest possible form. A form similar to that of strict white noise since 

strict white noise cannot be modeled. 

5. Time series model therefore constitutes sum of all fitted functions. Remember to 

transform back values read-out (obtained) using the model to ensure consistency, in 

form, with the initial (original) time series values. 

Example 3.2.1 has been provided to demonstrate how classical-decomposition approach 

works following above-described steps. 

Example 3.2.1: Consider hourly values of air temperature obtained during measurement in a 

residential area in Edmonton from 09:00:15 on 2016-06-04 to 08:00:15 on 2016-06-05. The 

values were shown in Example 3.1.4. They reproduced and shown below. 

𝑋𝑡 = {18.2, 20.9,24.1,27.5,30.3,30.8,22.4,42.7,26.6,36.5,26.3,22.4,20.4,16.7,15.2,14.4,13.8,12.7,11.0,9.9,9.2,9.0,10.6,13.1} 

Classical-decomposition approach is used to analyze data and fit model to the series. The 

steps are shown below: 

Step 1: From Example 3.1.4, it would be seen that time series was logarithmic-transformed in 

order to achieve stationarity. The resulting series is shown below. 

log10(𝑋𝑡) = {1.26, 1.32, 1.38, 1.44, 1.48, 1.49, 1.35, 1.63, 1.42, 1.56, 1.42, 1.35, 1.31, 1.22, 1.18, 1.15, 1.13, 1.10, 1.04, 0.10, 0.96, 0.95, 1.03, 1.12} 
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Step 2: Linear function was fitted to above-stationarized series. The results are shown below. 

 
Figure 18: Straight line fitted to stationarized time series 

Straight line being the simplest linear function was selected and fitted to the stationarized 

series. Its equation is shown below. 

𝑇𝑡 = −0.0219𝑡 + 1.5369               (14) 

where: 

𝑇𝑡 represents the log-transformed air temperature values, 

𝑡 represents time index.  

Step 3: Detrended series is obtained by subtracting values of fitted straight line from the 

series. That is (log10(Xt) − Tt) . The resulting series is shown below. 

 
Figure 19: Plot of resulting series after straight line fit 

Step 4: Irregular cyclic components are seen within the series shown in figure 19. In order to 

remove these components and smoothen the series, 4-point moving average was performed. 

The choice of 4-point moving average is due to the presence of four cycles. Also some cycles 

have only one or two time points in-between them. The results are shown in Table 8 and in 

figure 20. Also, below equation shows how fitted values were calculated using 4-point 

moving average. 

𝑌 =
1

𝑛
∑ 𝐷𝑡−𝑖                 (15)

𝑛−1

𝑡=0
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where: 

𝑌 represents computed value of log-transformed air temperature (see Table 8), 

𝑛 represents number of points of moving average which in this case is 4, 

𝐷 represents values of detrended series (see Table 8), 

𝑡 represents time index for which 𝑡 at 𝑛 = 0. 

  Table 8: Removal of irregular cycles from detrended series and smoothening of the series 

Time index Detrended values of 

log-transformed air 

temp., (D) in 
o
C 

Computed values of log-

transformed air temp. 

using 4-point moving 

average, (Y) in 
o
C 

Values of poly-fitted 

function obtained 

after smoothening, 

(Yc) in 
o
C 

Residuals of log 

transformed air 

temp., (D -Yc) 

in 
o
C 

1 -0.254978379 Not applicable Not applicable Not applicable 

2 -0.173027725 Not applicable Not applicable Not applicable 

3 -0.089281213 Not applicable Not applicable Not applicable 

4 -0.010089806 -0.131844281 -0.1505 0.1405 

5 0.053895885 -0.054625715 -0.0597 0.1137 

6 0.082879728 0.009351149 0.0105 0.0726 

7 -0.033547214 0.023284648 0.0619 -0.0953 

8 0.268508398 0.092934199 0.0963 0.1724 

9 0.084837916 0.100669707 0.1155 -0.0304 

10 0.244124899 0.140981000 0.1213 0.1231 

11 0.123663539 0.180283688 0.1155 0.0085 

12 0.075831565 0.132114480 0.0999 -0.0238 

13 0.057089469 0.125177368 0.0763 -0.0189 

14 -0.007948471 0.062159026 0.0465 -0.0541 

15 -0.026945599 0.024506741 0.0123 -0.0389 

16 -0.028550939 -0.001588885 -0.0245 -0.0036 

17 -0.025158589 -0.022150899 -0.0621 0.0374 

18 -0.039358198 -0.030003331 -0.0987 0.0598 

19 -0.079893478 -0.043240301 -0.1325 0.0531 

20 -0.103775213 -0.062046370 -0.1617 0.0584 

21 -0.113746825 -0.084193429 -0.1845 0.0713 

22 -0.101416387 -0.099707976 -0.1991 0.0982 

23 -0.008477275 -0.081853925 -0.2037 0.1958 

24 0.105363911 -0.029569144 -0.1965 0.3025 

 

 

Figure 20: 4-point moving average fitted to detrended series 

Step 5: In figure 20, it would be seen that the series obtained after performing the 4-point 

moving average analysis was smoothened. This resulted in poly-fitted function shown in 

y = 0,0003t3 - 0,0148t2 + 0,2057t - 0,7557 

R² = 0,9454 
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figure 20 and in equation (16). Values of poly-fitted function were subtracted from detrended 

series. The resulting residuals obtained have a mean value of 0 and variance of 0.009. They 

are also uncorrelated as could be seen in figures 21 and 22 where all autocorrelation and 

partial-autocorrelation coefficients are within confidence interval limits. 

0.0003𝑡3 − 0.0148𝑡2 + 0.2057𝑡 − 0.7557             (16) 

 

Figure 21: Autocorrelation function plot of residuals 

 

Figure 22: Partial autocorrelation function plot of residuals. 

Step 6: Finally, the time series model becomes sum of equations (14) and (16). This results in 

equation (17) shown below. It should be noted that all values obtained using equation (17) are 

back-transformed using the inverse-logarithmic function. This is to ensure consistency, in 

form, with the original time series data. 

0.0003𝑡3 − 0.0148𝑡2 + 0.1838𝑡 + 0.7812            (17) 
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3.2.2     Non-Parametric Approach  

Non-parametric approach does not require model selection or assumptions on probability 

distribution before investigating dataset. It is usually used when information about underlying 

model or distribution is unclear or unavailable. Consequently, it is free from restricting 

assumptions about models. It investigates the internal structures, patterns and trends present in 

time series data. Therefore, it explores to obtain and interpret features that describe the given 

time series data. 

Non-parametric approach has some short comings. First is its lack of continuity. Some 

statistical methods that are based on non-parametric approach lack continuity. For example, 

they cannot be used to predict future values. This requirement is essential in engineering 

applications such as filter operations of autonomous vehicles, where past data are used to 

estimate and program the future.  

Bootstrap and Kernel estimation methods are good examples of methods that are based on 

non-parametric approach. 

3.2.2.1     Bootstrap Method 

Bootstrap method is a time series non-parametric approach. It is used to create replicate of 

a given time series. It computes replicate of time series statistics. Time series statistics whose 

replicate are computed could be range, mean, etc. Bootstrap method can also be used to 

estimate confidence intervals for the replicates. Bootstrapping requires that time series data 

fulfill independently and identically distributed (iid) condition. If time series data are not iid, 

successive differencing or data transformation are performed until the series fulfills iid 

requirement. 

Bootstrap method comprises of following steps: 

1. Ensure time series data are iid. If not, perform successive differencing, etc. 

2. Create reshuffled series by reshuffling the differenced time series. 

3. Create one-bootstrap replicate of the time series by adding only the first data of   

           the (initial) original time series to the sum of preceding values of the reshuffled  

           series. 

4. Compute replicate of test statistics that are of interest. 

Example 3.2.2.1 is provided to demonstrate how bootstrap method could be used. 

Example 3.2.2.1: In order to ease understanding and reduced data size, consider air 

temperature data obtained in a Brazilian canopy forest between 0000 and 0600 hours on 2009-

09-01. First, it is shown how one-bootstrap replicate can be created. Thereafter, it is shown 

how mean replicate of the time series is computed. The analysis is presented as follows. 

Step 1: Compute mean of the original (initial) time series. In this example, mean is the 

statistic of interest. Sequence of original time series and its mean are shown below. 

[21.33, 20.95, 20.19, 19.81, 19.04, 18.66, 18.28, 17.90, 17.52, 17.52, 17.14, 16.76, 16.38] 

Mean = 18.5754 

Step 2: Compute successive differences. In this case, first difference is sufficient. The result 

is shown below. 
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[-0.38, -0.76, -0.38, -0.77, -0.38, -0.38, -0.38, -0.38, 0, -0.38, -0.38, -0.38] 

Step 3: Reshuffle the differenced series. 

[-0.77, -0.38, -0.38, -0.38, 0, -0.38, -0.38, -0.38, -0.76, -0.38, -0.38, -0.38] 

Step 4: Create one-bootstrap replicate of original (initial) time series. 

[21.33, 21.33+(-0.77), 21.33+(-0,77)+(-0.38), 21.33+(-0.77)+(-0.38)+(-0.38), …] 

This simplifies to sequence shown below: 

[21.33, 20.56, 20.18, 19.8, 19.42, 19.42, 19.04, 18.66, 18.28, 17.52, 17.14, 16.76, 16.38] 

Similarly, replicate of mean of original (initial) series becomes 18.8069. 

Bootstrap method can also be applied by sampling in groups or blocks. In this case, 

random samples of blocks are selected. The samples are mixed to form bootstrap time series. 

The process is repeated numerous times so as to ensure that several bootstrap time series are 

obtained. These artificial series (i.e. the obtained bootstrap series) are then used to investigate 

properties of the original time series [38]. 

3.2.2.2     Kernel Estimation Method 

Kernel estimation method is another time series non-parametric approach. It assumes that 

both conditional mean and variance depend on number of lags within the series. It estimates 

non-parametrically, the probability distribution function of a given time series dataset. It also 

estimates the series cumulative distribution function.  

Considering sample of 𝑛 observations taken from time series dataset of unknown 

distribution, kernel estimator of probability and cumulative distribution functions (PDF and 

CDF) are defined in equations shown below [39]. 

𝑓𝑇(𝑦) =
1

𝑛ℎ
∑ 𝑘

(𝑦 − 𝑦𝑖)

ℎ
                        (18)

𝑛

𝑖=1

 

𝐹𝑇(𝑦) =
1

𝑛
∑ 𝐻

(𝑦 − 𝑦𝑖)

ℎ
                          (19)

𝑛

𝑖=1

 

where: 

𝑓𝑇(𝑦) represents kernel estimated PDF, 

𝐹𝑇(𝑦) represents kernel estimated CDF, 

n represents number of observations, 

h represents bandwith, 

𝐻(. ) represents kernel which takes the form of a CDF, 

𝐾(. ) represents the kernel - a bounded PDF that is symmetrical about origin. 

The kernel - K(.) can be rectangular, quadratic or Gaussian weighting function. This 

implies that the weighting function is imposed on each observed point on x-axis.  

Consequently, PDF estimate at a given point is the product of (1/n) and total height 

component of the weighting function [40]. However, choice of bandwidth is more important 

than choice of kernel. Therefore, degree of smoothing is varied by changing values assigned 

to bandwidth. 
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Example 3.2.2.2: Using air temperature series discussed in preceding example (Example 

3.2.2.1), together with equation (18), kernel probability density distribution was computed. 

Rectangular weighting function was considered. For standardized rectangular weighting 

function, Kernel function - 𝐾(𝑡) is always equal to 
1

2
 [40]. Bin-width was determined as the 

quotient between range and number of bins. Range is the difference between maximum and 

minimum values in the series. Thus, 5 bins gave 0.99 bin-width while 3 bins gave 1.65 bin-

width. The choice of number of bins was guided by Freedman-Diaconis’ rule which is 

described in equation below [41].  

𝐵 = 2 ∗ 𝐼𝑄𝑅 ∗ 𝑁(−
1
3

)               (20)  

where: 

𝐵 represents bin-width, 

𝐼𝑄𝑅 represents interquartile range, 

𝑁 represents data size. 

Selecting kernel bandwidth is an area of considerable research. Therefore, kernel 

bandwidth was computed using the conventional approach of iterating for bandwidth with 

start value of half bin-width. For each iteration, kernel density plot obtained was compared 

with histogram plot of the density function.  

Histogram and kernel density plots for 5 bins are shown below. Bandwidth was found to be 

approximately 0.5.  

 

Figure 23: Histogram plot of density function for air temperature 

 
Figure 24: Kernel density plot for air temperature (bandwidth =0.5) 
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Using bandwidths greater than 0.5 does not give better density functions (see figure 25). 

They result in reduced area between density function and x-axis. Similarly, bandwidths less 

than 0.5 do not give better density functions. They result in increased area between density 

function and x-axis (see figure 25). The area between density function and x-axis is 0.83 for 

bandwidth of 0.6, and 1.7 for bandwidth of 0.3. Therefore, they do not fulfill important 

characteristics of probability density function which requires that area between density 

function and x-axis be equal to one.   

 

 
Figure 25: Kernel density plot for air temperature (bandwidths of 0.6 and 0.3) 

3.2.3     Parametric Approach  

State-space, artificial neural network and Box-Jenkins methods are considered as time 

series parametric approaches. Others are regression and variogram methods. They all require 

the use of models. Choice of model is usually made during start of analysis. This is usually 

done after a preliminary (also called preceding) analysis.  

In dynamic systems where outputs change with time, models can be deterministic or 

stochastic. Deterministic models have their output determined only by past observations with 

no consideration to errors. Stochastic models take into account state-space and probability 

distribution of the parameters. As a result, stochastic models offer better predictive capability 

than deterministic models. Methods such as state-space, artificial neural network and Box-

Jenkins methods are stochastic while variogram method is deterministic. 

As general statement, dynamic stochastic models are seen as deterministic concepts that 

take into account stochastic information of uncertainty available for the concept. According to 

Gelfan [42], four groups of dynamic stochastic models exist. They are: 

1. Dynamic-stochastic models with random inputs. These are responsible for stochasticity 

in temporal variations of meteorological factors such as air temperature, air humidity, 

etc. 

2. Dynamic-stochastic models that are responsible for stochasticity in spatial variations of 

factors such as soil properties, topography, etc. 

3. Dynamic-stochastic models that are responsible for stochastic properties in parameters 

used in describing relationships and processes. 

4. Dynamic-stochastic models that are responsible for stochastic characteristics of 

measurements used in developing other models. 
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    3.2.3.1     Regression  

According to Helsel and Hirsch [43], regression can be performed due to following 

reasons: 

1. In order to investigate relationship between two variables.  

2. In order to remove variations in certain portions of measured variable. 

3. In order to estimate values of a variable based on knowledge of another variable. 

Regression involves variables of interest. The variables are called response and 

explanatory variables. If one explanatory variable is involved in a linear regression, the linear 

regression becomes a simple linear regression. However if more than one explanatory variable 

are involved, it becomes multiple linear regression. Simple linear regressions are represented 

by model equation described below.  

𝑌 = 𝑎 + 𝑏𝑋 + 𝜀                          (21) 

where: 

Y represents observations of the response (also called dependent) variable, 

X represents observations of the explanatory (also called independent) variable, 

a represents intercept on the ordinate,  

b represents the slope,  

 𝜀 represents the residuals.  

Table 9 presents assumptions of linear regression and their applicability.  

Table 9: Assumptions of linear regression (culled from [43] and [4]) 

 Purpose 

Assumption Predict Y given X Predict Y and 

Variance for the 

prediction 

Obtain best linear 

unbiased 

estimator of Y 

Test hypotheses, 

estimate confidence 

or prediction 

intervals 

Model form is correct. 

 

+ + + + 

Data used to fit model 

represents data of 

interest. 

+ + + + 

Variance of residuals is 

constant (homoscedastic) 
 + + + 

Residuals are 

independent. 
  + + 

Residuals are normally 

distributed. 
   + 

Key: + indicates assumption is required.  

Equation (21) is also used to test for trend. The null hypothesis is that slope, b is equal to 

zero. If slope is non-zero, the null hypothesis is rejected. Rejection of the null hypothesis 

means linear trend exists [43]. 

One of the methods of estimating coefficients of linear regression equation is least squares 

method. Least squares method aims to minimize sum of squared residuals from the regression 

line [4]. It is described in equation below. 
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∑ 𝜀2 = ∑(𝑌𝑡 − 𝑎 − 𝑏𝑋𝑡)2                                    (22)

𝑛

𝑡=1

𝑛

𝑡=1

 

where: 

𝜀 represents residuals, 

Y represents observations of the response variable, 

X represents observations of the explanatory variable, 

a represents intercept on ordinate,  

b represents slope. 

It is important to mention an important measure used in regression analysis. It is called 

coefficient of determination of residuals or index determination of residuals. It is usually 

represented as R
2
. It represents fraction of initial (original) variance of the series that is fitted 

with model. It is shown below. 

 𝑅2 = 1 −
𝑣𝑎𝑟(𝑅𝑡)

𝑣𝑎𝑟(𝑋𝑡)
                                                      (23) 

where: 

𝑋𝑡 represents the initial (orginial) series, 

𝑅𝑡 represents residuals of the initial series, 

𝑣𝑎𝑟(𝑋𝑡) represents variance of the initial time series, 

𝑣𝑎𝑟(𝑅𝑡) represents variance of the residuals. 

Value of  𝑅2 varies from 0 to 1; where 0 indicates that fitted model is of no importance.  𝑅2 

value of 1 indicates that fitted model is of significant importance. An example has been 

provided to demonstrate how linear regression is used to test and identify trends in time 

series. The example also demonstrates how a linear model could be fitted to the series.  

Example 3.2.3.1: Consider the time series discussed and used in Examples 3.1.4 and 3.2.1. 

The series is been used to demonstrate linear regression. Table 10 presents the series and 

results obtained. 

Table 10: Linear regression analysis 

Time index 

(X) 
Air temp. (oC) 

(Y) 
XY X2 Ytrend  Y - Ytrend 

1 18.2 18.2 1 30.61834 -12.41834 

2 20.9 41.8 4 29.71204 -8.81204 

3 24.1 72.3 9 28.80574 -4.70574 

4 27.5 110.0 16 27.89944 -0.39944 

5 30.3 151.5 25 26.99314 3.30686 

6 30.8 184.8 36 26.08684 4.71316 

7 22.4 156.8 49 25.18054 -2.78054 

8 42.7 341.6 64 24.27424 18.42576 

9 26.6 239.4 81 23.36794 3.23206 

10 36.5 365.0 100 22.46164 14.03836 

11 26.3 289.3 121 21.55534 4.74466 

12 22.4 268.8 144 20.64904 1.75096 

13 20.4 265.2 169 19.74274 0.65726 

14 16.7 233.8 196 18.83644 -2.13644 

15 15.2 228.0 225 17.93014 -2.73014 

16 14.4 230.4 256 17.02384 -2.62384 
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17 13.8 234.6 289 16.11754 -2.31754 

18 12.7 228.6 324 15.21124 -2.51124 

19 11.0 209.0 361 14.30494 -3.30494 

20 9.9 198.0 400 13.39864 -3.49864 

21 9.2 193.2 441 12.49234 -3.29234 

22 9.0 198.0 484 11.58604 -2.58604 

23 10.6 243.8 529 10.67974 -0.07974 

24 13.1 314.4 576 9.77344 3.32656 

 ∑ 𝑋= 300 ∑ 𝑌 = 484.7  ∑(𝑋𝑌) = 5016.5 ∑ X2 = 4900  ∑( Y - Ytrend) = 39.6 

From equation of least square shown in equation (22), it implies that equations (24) and 

(25) shown below hold for intercept and slope. 

∑ 𝑌𝑡 = 𝑛𝑎 + 𝑏 ∑ 𝑋𝑡                                     (24)

𝑛

𝑡=1

𝑛

𝑡=1

 

∑(𝑋𝑡 ∗ 𝑌𝑡)

𝑛

𝑡=1

= 𝑎 ∑ 𝑋𝑡 + 𝑏 ∑(𝑋𝑡)2             (25)

𝑛

𝑡=1

𝑛

𝑡=1

 

 

Using equations (24) and (25), the regression line coefficients were determined. This has 

been demonstrated in Table 10 above. For the example used in Table 10, intercept was 

calculated to be 31.5246 and slope calculated to be -0.9063. Also, the figure below shows plot 

of trend line and original time series.  

 
Figure 26: Fit of trend using linear regression method 

Coefficient of determination was computed using equation (23). It was calculated to be 

0.4985. Also, the residuals were normally distributed with mean of 0 and variance of 39.6.  

Multiple linear regression analysis involves two or more explanatory (independent) 

variables. The equation below shows multiple regression of 𝑌 on  𝑋1, 𝑋2, 𝑋3,…, 𝑋𝑘 in 

standard form. 

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ⋯ + 𝑏𝑘𝑋𝑘 + 𝜀         (26) 

where: 

𝑏0 represents intercept, 

b1, … , bk represent model coefficients, 

𝜀 represents regression residual. 
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For nonlinear regression, dependent variable is a nonlinear function of model parameters. 

It is also a nonlinear function of independent variables. Commonly used nonlinear regression 

models include: 

1. Asymptotic growth regression model. Its regression function is shown below. 

𝜇𝑌(𝑥) = 𝛽1+𝛽2𝑒(𝛽3𝑥)                                            (27) 

       𝛽1, 𝛽2, 𝛽3 represent model parameters that are to be estimated. 

2. Asymptotic decay regression model. Its regression function is shown below. 

                                        𝜇𝑌(𝑥) = 𝛽4−𝛽5𝑒−(𝛽6𝑥)                                           (28) 

                    𝛽4, 𝛽5, 𝛽6 represent model parameters that are to be estimated. 

3. Logistic regression model. Its regression function is shown below. 

𝜇𝑌(𝑥) =
𝛽7

1 + 𝑒−(𝛽8+𝛽9𝑥)
                                         (29) 

                    𝛽7, 𝛽8, 𝛽9 represent model parameters that are to be estimated. 

4. Gompertz regression model. Its regression function is shown below. 

𝜇𝑌(𝑥) = 𝛽10𝑒−𝑒−(𝛽11+𝛽12𝑥)
                                                     (30) 

                 𝛽10, 𝛽11, 𝛽12 represent model parameters which are required to be estimated.  

Other nonlinear regression models include: Weibull model, bi-exponential model, etc. 

According to Ratkowsky [44], main assumptions of nonlinear regression model include: 

1. Mean of subpopulations of dependent (response) variable is a nonlinear function of 

model parameters. 

2. Standard deviation of all subpopulations of the dependent variable is constant. 

3. Every subpopulation of the dependent variable is Gaussian. 

4. Sample size is selected either by random sampling or sampling with preselected values 

of the independent variable. 

5. All sampled values are observed without error. This implies that usual (common) 

methods used in determining model parameters are applicable. However, if errors are 

not negligible, inferential analysis methods may be applied. 

From above assumptions, it would be seen that assumptions of nonlinear regression are the 

same as those for linear regression with exception of first assumption. Solutions to nonlinear 

regression models are usually obtained using methods such as, transformation to linear 

models, methods of separable least squares and iterative methods such as use of Gauss-

Newton algorithm. 

3.2.3.2     The Variogram     

The variogram is used to estimate the covariance structure of a time series.  It measures the 

variation between values of a given time series. It is described in below equation. 

2𝛾(ℎ) = 𝑣𝑎𝑟(𝑥𝑡 − 𝑥𝑡+ℎ)                                (31) 

where; 
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 2𝛾(ℎ) represents the variogram, 

 𝑥𝑡 and 𝑥𝑡+ℎ represent time series data at time points, 𝑖 and (𝑖 + ℎ), 

𝑣𝑎𝑟 represents variance. 

Time series data are more similar when there is little variability in their difference, and less 

similar when there is greater variability in their difference. The improved equation for 

computing classical variogram is described in below equation [45]. 

𝛾(ℎ) =
1

2𝑁
∑ (𝑥𝑡 − 𝑥𝑡+ℎ)2 

𝑁(ℎ)

𝑡=1

                        (32) 

where; 

𝑥𝑡 represents time series data at time index t, 

𝛾(ℎ) represents the semivariance at separation distance h, 

N represents number of data in the set N(h),  

𝑐𝑜𝑣 represents covariance. 

Variograms have low values at small separation distance. Their value increases with 

increasing distance until plateau is reached. The plateau is called sill and defined as point at 

which variogram reaches zero correlation distance [46]. The separation distance for which 

data are correlated is called range. Beyond the range is sill, and data are no longer correlated. 

Thus, range is defined as separation distance at which variogram reaches sill. The numerical 

value of variogram at zero separation distance is called nugget. Above-described terms are 

illustrated in figure below. 

 
Figure 27: Semivariogram of a stationary process with nugget effect (Culled from [45]). 

Variogram model of given time series is usually unknown. Therefore, following 

computational steps are required in order to determine it. 

1. Perform preceding analysis by checking if given time series is stationary.  

2. Determine experimental variogram (variogram cloud). 

3. Process and determine values of classical variogram estimator. 
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4. Fit model to values of classical variogram estimator. 

5. Validate variogram model. 

Preceding analysis consists of check to determine if given time series is stationary. In order 

obtain appropriate variogram models, the analysis requires the given time series to be 

stationary. If the given time series is not stationary, logarithmic or square root transformation 

of data is performed until stationarity is achieved. 

Experimental variograms are usually determined using time series data. As noted by 

Trauth [46], experimental variograms describe trends in time series data. This is useful in 

detecting outliers or anomalies. One shortcoming of experimental variogram is its difficulty in 

performing correlation analysis. To overcome this shortcoming, experimental variograms are 

replaced with classical variogram estimators. 

Classical variogram estimators are computed using equation (32) described earlier. They 

are plotted and model fitted to them. Various variogram models exist. They include: 

1. Power variogram model: This takes the form shown in equation below. If 𝑎 = 1, it 

becomes a linear variogram model. Thus, linear variogram model is a special case of 

power variogram model. 

   

𝛾(ℎ) = 𝑐0 + 𝑏ℎ𝑎                      (33𝑎) 

where; 

𝛾(ℎ) represents semivariance at separation distance h,  

𝑐0 represents nugget, 

b represents slope, 

a represents index of the model. 

2. Exponential variogram model: This takes the form shown in equation below.  

 

𝛾(ℎ) = 𝑐0 + 𝑐1 (1 − 𝑒−(ℎ
𝑎

))        (33𝑏) 

where; 

𝑐0 represents nugget, 

(𝑐0 + 𝑐1) represent sill, 

ℎ represents separation distance, 

a represents index of the model. 

3. Spherical variogram model: This takes the form shown in either equation (33c) or 

(33d). 

 

𝛾(ℎ) = 𝑐0 + 𝑐1 (
3ℎ

2𝑎
−

1

2
(

ℎ

𝑎
)3)  for  0 < ℎ ≤ 𝑎    (33c) 

 

𝛾(ℎ) = 𝑐0 + 𝑐1  for  ℎ ≥ 𝑎                                  (33d) 

where; 

𝑐0 represents nugget, 

(𝑐0 + 𝑐1) represent sill, 

ℎ represents separation distance, 

a represents index of the model. 
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Once variogram model is selected (i.e. chosen) and drawn (i.e. fitted), parameters of the 

model are determined using known values 𝛾(ℎ) and h that are on fitted model. They are used 

to setup system of equations involving the unknown parameters. The number of equations is 

determined by the number of unknown parameters. Read-out values of sill and nugget from 

model, sometimes, help in simplifying the equations. Another method of determining values 

of variogram model parameters is use of ordinary least square method discussed in section 

3.2.3.1. It evaluates for values of the parameters that minimize the sum of squared residuals. 

Iterative method is another method used in determining values of variogram model 

parameters. 

As noted by Burgess and Webster [47], and Oliver and Webster [48], an optimal sampling 

strategy can be determined through plot of sampling frequency against kriging variance. This 

requires estimation of kriging variance or prediction error of blocks. Estimating kriging 

variance requires knowledge of classical variogram estimator, kriging weight and block size. 

Example 3.2.3.2 has been provided to illustrate how empirical variogram is manually 

computed.  

Example 3.2.3.2: Consider stationary time series shown in Table below. Variogram analysis 

is performed and detailed below. 

Table 11: Variogram analysis 
Xi (Xi-Xi+1)

2 (Xi-Xi+2)
2 (Xi-Xi+3)

2 (Xi-Xi+4)
2 (Xi-Xi+5)

2 (Xi-Xi+6)
2 (Xi-Xi+7)

2 (Xi-Xi+8)
2 … (Xi-Xi+13)

2 

0.8417 63.9088 210.7549 387.3378 556.7901 695.667 791.2856 839.313 841.6033  444.7839 

8.836 42.5508 136.5766 243.4255 337.8685 405.4384 440.0177 441.6765 414.7577  113.8297 

15.359 26.6617 82.4282 140.6145 185.2974 208.9037 210.0470 191.6148 159.1029  2.886941 

20.523 15.3311 44.8177 71.3839 86.30410 87.03957 75.32504 55.50399 33.11312  33.87356 

24.438 7.7234 20.5517 28.8853 29.3114 22.69093 12.49340 3.381553 0.044944  141.3364 

27.217 3.0776 6.7361 6.9427 3.937843 0.57078 0.883976 8.946679 27.93757  272.4513 

28.972 0.7074 0.7755 0.0529 0.997601 7.26033 22.51882 49.56019 89.61273  387.0230 

29.813 0.0016 0.3733 3.3852 12.50047 31.20898 62.11016 106.2446 162.6747  457.4850 

29.852 0.4232 3.5321 12.7813 31.65188 62.73432 107.0604 163.6839 229.5104  468.9000 

29.202 1.5102 8.5533 24.7556 52.85290 94.02211 147.4622 210.2239 277.2891  418.9595 

27.973 2.8754 14.0370 36.49489 71.70025 119.1263 176.0982 237.8720 297.9628  317.9838 

26.277 4.2062 18.8825 45.85863 84.98627 133.9691 188.4415 242.2972 288.2661   

24.226 5.2647 22.2878 51.37879 90.69896 136.3407 182.6552 222.8303 249.7158   

21.932 5.8879 23.7500 52.25989 88.02192 125.8996 159.5927 182.4634 188.6118   

19.505 5.9873 23.0650 48.37898 77.33444 104.1726 122.7974 127.8505 116.0360   

17.058 5.5493 20.3275 40.28568 60.21139 74.55459 78.50314 69.30729 47.85319   

14.703 4.6350 15.9313 29.20214 39.42333 42.30852 35.63374 20.81093    

12.550 3.3801 10.5690 17.02305 18.93642 14.56567 5.803281     

10.711 1.9952 5.2322 6.315672 3.912484 0.325470      

9.299 0.7655 1.2113 0.31979 0.708964       

8.424 0.0509 0.0957 2.947746        

8.198 0.2863 3.7737         

8.733 1.9811          

10.141           

Sum (S) 204.7607 674.2625 1250.03 1833.447 2366.799 2818.73 3173.581 3424.092  3059.513 

N(h) 23 22 21 20 19 18 17 16  11 

𝛾(ℎ)=S/2h 4.4513 15.3241 29.76262 45.83617 62.28417 78.29805 93.34061 107.0029  139.0688 

Time index 1 2 3 4 5 6 7 8  13 

Figure 28a shows plot of the variogram estimator. Figure 28b shows a power model fitted 

to variogram estimator while figure 28c shows an exponential model fitted to variogram 

estimator. 
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Figure 28a: Plot of classical variogram estimator 

 
Figure 28b: Variogram estimator fitted with power model 

 

 
Figure 28c: Variogram estimator fitted with exponential model 

Fitted power variogram model is described in equation (33e) while that for exponential 

variogram model is described in equation (33f). 

𝛾(𝑡) = −0.0954𝑡3 + 1.3978𝑡2 + 9.1466𝑡 − 6.8993        (33𝑒) 

𝛾(𝑡) = 160 (1 − 𝑒−( 𝑡
6.5

))          (33𝑓) 

It would be seen that the power variogram model fits better than the exponential variogram 

model. It gave an R-squared value of 99.99% while exponential variogram model gave an R-

squared value of 92.68%. Both models have sill of 140. Power variogram model has a range 

of 13 while that for exponential variogram model is 12. 
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3.2.3.3     State-Space Methods   

State-space methods model time series data into distinct components made up of trends, 

seasonality, regression elements and noise.  These components when put together constitute a 

state-space model. This differs from Box Jenkins models where components are removed 

through differencing or transformations so that stationarity is achieved. Parameters of state-

space model are often called hyper-parameters. Hyper-parameters are estimated using 

methods such as maximum likelihood estimation, expectation maximization (EM) algorithm, 

etc. [49].  

The simplest of all state-space models is local level model. Local level model is basically 

an exponentially weighted moving average. Exponentially weighted moving average 

(EWMA) measures the degree of variation in time series data. It applies non-uniform 

weightings to a given time series. Its statistic is computed using the equation below [50]. 

𝐸𝑡 = 𝜆𝑋𝑡 + (1 − 𝜆)𝐸𝑡−1 ;  𝑡 = 1, 2, … , 𝑛                   (34) 

where: 

𝐸𝑡 represents calculated exponentially weighted moving average at time t, 

𝐸𝑡−1 represents exponentially weighted moving average at time t-1, 

𝑋𝑡 represents time series observation at time t, 

𝜆 represents a constant which varies from 0 to 1.  

𝜆 values are usually between 0.2 and 0.3. High values of 𝜆 imply recent data are given 

more weights. 𝜆 values can be obtained from EWMA look-up table. 

Example 3.2.3.3 illustrates how EWMA statistic (estimator) is computed. It also shows 

how EWMA model is fitted to time series data. 

Example 3.2.3.3: Consider time series data described in Example 3.2.2.1. Using equation 

(34), exponentially weighted moving average statistic (Et) is computed for each time-point. 

The series is shown in Table 12 where the EWMA analysis is summarized using 𝜆 = 0.3. 

Table 12: Exponentially weighted moving average analysis 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 

Xt 21.3 21.0 20.2 19.8 19.0 18.7 18.3 17.9 17.5 17.5 17.1 16.8 16.4 

Et 19.4 19.9 20.0 19.9 19.7 19.4 19.0 18.7 18.3 18.1 17.8 17.5 17.2 

 

 
Figure 29: EWMA model for air temperature series 
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The EWMA model gave an R-squared value of 71.3%. This is high enough; thus, the 

model can be used fit missed and future values to the series.  

Another state-space model is the Markov model. It is used to model randomly changing 

systems. Markov models are produced from discrete-time or continuous-time processes. 

Discrete-time Markov process is also called discrete-time Markov chain. It has finite discrete 

state-space and possesses Markov property. 

Definition 3.2.3.3: Let {𝑋𝑡: 𝑡 ≥ 0} be states of a stochastic process with finite state space 

𝑆 ⊂ {0,1,2, … }, the stochastic process is discrete-time Markov chain if it possesses Markov 

property defined as follows: 

𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖; 𝑋𝑡−1 = 𝑖𝑡−1, … , 𝑋0 = 𝑖0) = 𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖)           (35𝑎) 

for all 𝑡 ≥ 0; 𝑖, 𝑗, 𝑖0, 𝑖1, … , 𝑖𝑡−1 ⊂ 𝑆; 

where;  

𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) represents probability of the next state, given the current state. 

Thus, Markov property implies that probability of the next (future) state, given the current 

(present) state and the entire past states, depends only on the current state. Components of 

discrete-time Markov chain include set of states, set of transitions between states, and special 

start and end states. Transition between states is represented with an arc. The arc is associated 

to transition weight which defines the transition probability. Sum probability on all arcs 

leaving a state is equal to one. 

Continuous-time Markov process, just like discrete-time Markov process, has states’ 

transitions independent of the past. However, when in a certain state, it can remain in that 

state for an exponentially distributed amount of time before changing state. This is one of the 

differences between continuous-time Markov chain and discrete-time Markov chain. Another 

distinguishing factor is how time is being treated. Time is discrete in discrete-time Markov 

chain. This means time can take values such as {1, 2, …}. On the other hand, time is 

continuous in continuous-time Markov chain. This means time can take values like [0, ∞). 

Hidden Markov model (HMM) is one of the variants of Markov chain. It is used in time 

series analysis. HMM is a sequence model that allocates each time series data to a class or 

group. This results in generation of sequence of classes. The classes then act as new states. 

The new states are not directly observable. They are hidden or said to be latent. HMM 

therefore constitutes a baseline model for treating sequential or temporal data. It is useful for 

state-estimation of model parameters and also for inferential analysis of data [51].  

In order to understand the fundamentals of HMM, consider two different sets containing 

random values that are discrete, real and finite. The random values can be presented in Trellis 

diagram as shown in figure 30. 

 

Figure 30: Trellis diagram for HMM representation 
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(𝑋1, 𝑋2, … 𝑋𝑛) are the observed values while (𝑍1, 𝑍2, … 𝑍𝑛) are the hidden or latent values. In 

order to determine probability of the joint distribution, probability of hidden values and 

conditional probability of observed values are required. This is represented below. 

𝑃(𝑋1, … 𝑋𝑛, 𝑍1, … 𝑍𝑛) = (𝑃(𝑋1)) (𝑃(𝑋1│𝑍1)) ∏ (𝑃(𝑍𝑡│𝑍𝑡−1)) (𝑃(𝑋𝑡│𝑍𝑡))

𝑛

𝑡=2

     (35𝑏) 

Three types of probabilities are contained in equation (35b). They are: 

1. Initial state probability such as 𝑃(𝑋1). 

2. Emission probability such as 𝑃(𝑋1│𝑍1). It is also called observation probability and 

represents the probability of each state within the set of observed values.  

3. Transition probability such as 𝑃(𝑍𝑡│𝑍𝑡−1). It represents the probability of moving 

from one state to the other. 

According to Deng et al [37], Chen et al [52] and Box et al [53], state-space models when 

used in time series analysis are more expensive, less accurate and more computation-

demanding than Box-Jenkins method and artificial neural networks. Therefore greater efforts 

were made elaborating Box-Jenkins methodology and artificial neural networks. 

3.2.3.4     Box-Jenkins Method 

Box-Jenkins method is another time series parametric approach. It is a systematic method 

of identifying, fitting, checking, and using integrated autoregressive, moving average time 

series models. It is appropriate for analyzing time series of medium to long length - at least 50 

observations [54]. 

Box-Jenkins method adjusts time series to ensure stationarity through successive 

differencing of data. By so doing, it unravels autocorrelation and partial autocorrelation 

structures of the time series. This is essential since autocorrelation and partial autocorrelation 

analyses are vital in Box Jenkins methodology.  

Box-Jenkins method produces stationary models. The resulting residuals obtained are 

stationary and independent. Box-Jenkins method does not require that resulting residuals be 

normal distributed. Residuals in Box-Jenkins analysis can assume any probability distribution 

such as Laplace probability distribution, etc. Autoregressive integrated moving average 

(ARIMA) model and its variants are based on Box-Jenkins methodology. Variants of ARIMA 

include autoregressive (AR), moving average (MA), autoregressive moving average 

(ARMA), etc. The mathematical equation below describes Box-Jenkins model: 

𝑋𝑡 = ∑ 𝛷𝑖𝑋𝑡−𝑖 + 𝜖𝑡 − ∑ 𝜃𝑗𝜖𝑡−𝑗

𝑞

𝑗=1

𝑝

𝑖=1

     (36𝑎) 

where; 

𝑋𝑡 represents predicted value, 

𝛷𝑖, 𝜃𝑗  represent model parameters 

𝑋𝑡−𝑖 represents observed time series values 

𝜖𝑡−𝑗 represents uncorrelated random variables (residuals) with zero mean and finite variance. 

In simplified form, the equation becomes: 
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𝑋𝑡 = 𝛷1𝑋𝑡−1 + 𝛷2𝑋𝑡−2 + ⋯ + 𝛷𝑝𝑋𝑡−𝑝 + 𝜖𝑡 − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2 − ⋯ −  𝜃𝑞𝜖𝑡−𝑞      (36𝑏)   

where; 

𝑋𝑡 represents predicted value, 

𝑋𝑡−1, 𝑋𝑡−2, … 𝑋𝑡−𝑝 represent observed time series values, 

𝛷1, 𝛷2, … 𝛷𝑝, 𝜃1, 𝜃2, … 𝜃𝑞 represent model parameters, 

𝜖𝑡, 𝜖𝑡−1, … , 𝜖𝑡−𝑞 represent uncorrelated random variables with zero mean and finite variance. 

In compact form, the equation becomes: 

𝛷𝑝(𝐵)𝑋𝑡 = 𝜃𝑞(𝐵)𝜖𝑡          (37) 

where; 

𝐵 represents backward difference operator, such that: 

(𝐵)𝑋𝑡 = 𝑋𝑡−1      (38𝑎) 

(𝐵𝑛)𝑋𝑡 = 𝑋𝑡−𝑛    (38𝑏) 

The above Box-Jenkins equations require that time series be stationary. If time series is not 

stationary, differencing of the series is required. Thus, the equations become: 

𝛷𝑝(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃𝑞(𝐵)𝜖𝑡          (39) 

(1 − 𝛷1𝐵 − 𝛷2𝐵2 − ⋯ 𝛷𝑝𝐵𝑝)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃𝑞𝐵 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ 𝜃𝑞𝐵𝑞)𝜖𝑡     (40) 

Box-Jenkins model becomes an autoregressive moving (AR) model if d and q are set to 

zero. The equation becomes: 

(𝛷𝑝𝐵)𝑋𝑡 = 𝜖𝑡                (41) 

The term, (𝛷𝑝𝐵), represents the characteristic polynomial of the AR(p) process. In the 

same vein, if d and p are set to zero, Box-Jenkins model becomes an MA(q) process. Its 

equation is shown below. 

𝑋𝑡 = (𝜃𝑞𝐵)𝜖𝑡                    (42) 

Finite MA(q) process is always stationary since absolute values of roots of its 

characteristic equation are always greater than one.  

Furthermore, if only differencing, “d” in Box-Jenkins equation is set to zero, it results in 

ARMA(p,q) process. 

(𝛷𝑝𝐵)𝑋𝑡 = (𝜃𝑞𝐵)𝜖𝑡         (43) 

Box-Jenkins method has one challenge. That is, in order to update model due to recent 

changes such as arrival of new data, Box Jenkins method requires that parameters of model be 

re-estimated. The reason is that variance in Box-Jenkins model is not modeled. In Box-

Jenkins models, variance is unconditional and expected to remain constant at all time. 

Having discussed Box-Jenkins model equations, Box-Jenkins systematic steps for 

identifying models, estimating parameters and checking fitted models are discussed. This is 

followed by an example which demonstrates how it works. The steps are: 
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Box-Jenkins Step 1: Establish stationarity – check if time series is stationary. If series is not 

stationary, perform successive differencing or logarithmic transformation in order to establish 

stationarity.  

Box-Jenkins Step 2: Investigate autocorrelation function (ACF) and partial autocorrelation 

function (PACF) of the stationarized series.  If ACF decays exponentially while PACF cuts 

off after few lags, then the process is an autoregressive (AR) process. On the other hand, if 

ACF cuts off after few lags while PACF decays gradually, the process becomes a moving 

average (MA) process. However, if both ACF and PACF decay gradually, an autoregressive 

moving average (ARMA) model is considered. 

Box-Jenkins Step 3: Compute orders of the model and estimate parameters. This is achieved 

using any of the following methods - sample ACF and PACF analysis, maximum likelihood 

estimation (MLE) and Akaike information criterion (AIC). 

Definition 3.2.3.4a: Let {𝑋𝑡 = 𝑋1, 𝑋2, … , 𝑋𝑛}  be random samples of a variable whose 

distribution depends on unknown parameters {𝛷𝑖 = 𝛷1, 𝛷2, … , 𝛷𝑚}  with probability mass 

function 𝑓(𝑋𝑡; 𝛷1, 𝛷2, … , 𝛷𝑚), then: 

1. Joint probability mass function of {𝑋𝑡 = 𝑋1, 𝑋2, … , 𝑋𝑛} is given as:  

𝐿(𝛷𝑖) = 𝐿(𝛷1, 𝛷2, … , 𝛷𝑚) = ∏ 𝑓(𝑋𝑡; 𝛷1, 𝛷2, … , 𝛷𝑚)     (44𝑎)

𝑛

𝑡=2

 

           where 𝐿(𝛷𝑖) represents the likelihood function. 

2. Assuming [𝑘1(𝑋1, 𝑋2, … , 𝑋𝑛), 𝑘2(𝑋1, 𝑋2, … , 𝑋𝑛), … 𝑘𝑚(𝑋1, 𝑋2, … , 𝑋𝑛)]  maximizes the 

likelihood function, then: 

𝛷̂𝑖 = {𝛷̂1, 𝛷̂2, … , 𝛷̂𝑚} = 𝑘𝑖(𝑋1, 𝑋2, … , 𝑋𝑛)               (44𝑏) 

where 𝛷̂𝑖 represents the maximum likelihood estimates of 𝛷𝑖, for 𝑖 = 1, 2, … , 𝑚. 

Therefore, if the process is assumed to be normally distributed with mean of zero and finite 

variance, the likelihood function is as shown below.  

𝐿(𝛷𝑖, 𝜇, 𝜎2) = (2𝜋𝜎2)−
𝑛
2 ∗ (1 − 𝛷𝑖

2)
1
2 ∗ 𝑒

−(𝑆(𝛷𝑖,𝜇)

2𝜎2
)
        (44𝑐) 

where; 

𝐿(𝛷𝑖, 𝜇, 𝜎2) represents the likelihood function, 

𝛷𝑖 = (𝛷1, 𝛷2, … , 𝛷𝑚) represents parameters to be estimated, 

𝜇 represents mean, 

𝜎2 represents variance, 

n represents number of samples, 

S represents summation. 

Obtaining maximum likelihood estimates of the parameters is equivalent to minimizing the 

likelihood or log-likelihood function. Likelihood function is as shown above. Log-likelihood 

function in its simplified form is shown below. 

ln (
1

√2𝜋𝜎2
∗ 𝑒

−(
𝑆𝑆𝑅
2𝜎2)

)     (44𝑑) 
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where; 

LL represents log-likelihood function, 

𝜎2 represents variance, 

SSR represents sum of squares of residuals. 

SSR is also called residuals sum of squares. It is described below. 

𝑆𝑆𝑅 = ∑((𝜖𝑡)2)

𝑛

𝑡=1

           (44𝑒) 

where; 

𝜖𝑡 represents residuals, 

SSR represents sum of squares of residuals. 

 In order to have log-likelihood function minimized, SSR must be minimized. How this is 

been performed is shown in Example 3.2.3.4 provided at the end of this section.  

Definition 3.2.3.4b: Akaike information criterion (AIC) which compares quality of models is 

defined as shown below. 

𝐴𝐼𝐶 = 𝑛 ∗ ln (
𝜎𝑒

2

𝑛
) +2𝑝     (45𝑎) 

where; 

𝐴𝐼𝐶 represents Akaike information criterion, 

n represents number of observations, 

p represents number of model parameters, 

𝜎𝑒
2 represents sum of squares of residuals. 

If number of observations divided by number of model parameters (
n

p
) is less than 40, 

improved version of AIC known as corrected Akaike information criterion (AICC) is 

recommended [33]. 

𝐴𝐼𝐶𝐶 = (𝑁 ∗ log (
𝑆𝑆

𝑁
)) + (

2𝑁(𝑝 + 𝑞 + 1)

𝑁 − 𝑝 − 𝑞 − 2
)         (45𝑏) 

where; 

N represents number of observations after differencing, 

SS represents sum of squares of differences, 

p and q represent orders of the model.                                                                                                                          

This has been demonstrated in Example 3.2.3.4 provided at end of this section.  

Box-Jenkins Step 4: Perform goodness-of-fit check to ensure model adequately represents 

the given time series. Check to ensure that residuals are independent and stationary. If 

residuals are not independent and stationary, Box-Cox transformation may be performed [55]. 

Box-Jenkins Step 5: Fitted model can be used to predict future values as well as missed 

values.  

Example 3.2.3.4 has been provided to demonstrate above-discussed Box-Jenkins steps. It 

also demonstrates how maximum likelihood stimation and AIC analysis are performed. 
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Example 3.2.3.4: Consider air temperature series described in Example 3.2.3.3. The series is 

shown in Table 13. The series was differenced twice to secure stationarity (Table 13). All 

activities undertaken for an ARIMA model to be fitted to the series are discussed below. 

Step 1: Secure stationarity. 

  Table 13: Air temperature time series for ARIMA analysis 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 

Xt 21,3 21,0 20,2 19,8 19,0 18,7 18,3 17,9 17,5 17,5 17,1 16,8 16,4 

∆Xt
(1) N/A -0,3 -0,8 -0,4 -0,8 -0,3 -0,4 -0,4 -0,4 0,0 -0,4 -0,3 -0,4 

∆Xt
(2) N/A N/A -0,5 0,4 -0,4 0,5 -0,1 0,0 0,0 0,4 -0,4 0,1 -0,1 

Step 2: Investigate autocorrelation and partial autocorrelation plots - Autocorrelation function 

(ACF) and partial autocorrelation plots shown below. 

 
Figure 31: ACF plot of stationarized air temperature series 

 

Figure 32: PACF plot of stationarized air temperature series 

Step 3: Determine orders of model. 

In above ACF plot, only one spike was significant at lag 1. This suggests an AR of order 1. 

Similarly, PACF plot shows one significant spike at lag 1. This suggests an MA of order 1. 

Therefore, the time series can be fitted with an ARIMA of orders (p = 1, d = 2, q = 1). d = 2 

because the time series was differenced twice. 
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Besides autocorrelation analysis method, corrected Akaike information criterion (AICC) 

method was used to verify if above-selected orders were the most suitable. AICC method 

requires that model with lowest AICC value be selected. AICC values were computed using 

AICC equation discussed above (equation 45b). Table 14 presents the models and their AICC 

values. 

  Table 14: Models and their AICC values 

Model (p,d,q) (1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5) (2,2,1) 

AICC value 37.23 46.23 61.23 91.23 181.23 58.56 

It would be seen in Table 14 that model (1,2,1) has lowest AICC value. Therefore, it 

should be selected. This validates model selection result obtained earlier using autocorrelation 

analysis (ACF and PACF) method. 

Step 4: Estimate model parameters (i.e. model coefficients). 

Maximum likelihood estimation method was used to estimate the model parameters. In 

order to apply maximum likelihood estimation method, model has to be written in standard 

form since orders are already known (i.e. p = 1, d = 2, q = 1). Therefore, applying Box-

Jenkins equation, it becomes: 

𝛷𝑝(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃𝑞(𝐵)𝜖𝑡 => (1 − 𝛷1𝐵)(1 − 𝐵)1𝑋𝑡 = (1 − 𝜃1𝐵)𝜖𝑡    (46) 

Simplifying further gives: 

𝜖𝑡 = 𝑋𝑡 − 𝐵𝑋𝑡 − 𝛷1𝐵𝑋𝑡 + 𝛷1𝐵2𝑋𝑡 + 𝜃1𝐵𝜖𝑡     (47𝑎) 

It further simplifies to: 

𝜖𝑡 = 𝑋𝑡 − 𝑋𝑡−1 − 𝛷1𝑋𝑡−1 + 𝛷1𝑋𝑡−2 + 𝜃1𝜖𝑡−1    (47𝑏) 

where; 

𝛷1and 𝜃1represent model parameters that are to be estimated,  

𝜖𝑡 and 𝜖𝑡−1represent residuals at time t and t-1 respectively,  

𝑋𝑡, 𝑋𝑡−1, and 𝑋𝑡−2 represent time series values at t, t-1 and t-2 respectively. 

Using equation (47b) and setting initial values of 𝛷1 , 𝜃1 and 𝜖𝑡−1  to zero, values of 𝜖𝑡 

(residuals) were computed. Square of each residual was evaluated and sum of all squared 

residuals evaluated. This resulted in sum of squares of residuals (SSR). Using Excel Solver, 

SSR was minimized by changing values of 𝛷1  and 𝜃1 , subject to constraint that mean of 

residuals should be zero. The results were -0.7376 for AR component and -0.136 for MA 

component. To access Excel Solver, open Excel and select Data on main menu. In Data menu, 

select Data Analysis and then Solver. Screen shot of above-performed analysis is shown 

below. 
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Figure 33: Screen shot showing implementation of maximum likelihood estimation method using Excel 

The model equation was determined by substituting values of obtained parameters into 

equation (47b). This resulted in equations shown below. 

𝑋𝑡 = 𝑋𝑡−1 − 0.7376𝑋𝑡−1 + 0.7376𝑋𝑡−2 + 𝜖𝑡 + 0.1363𝜖𝑡−1   (48𝑎) 

That is,  𝑋𝑡 = 0.2624𝑋𝑡−1 + 0.7376𝑋𝑡−2 + 𝜖𝑡 + 0.1363𝜖𝑡−1  (48𝑏) 

Step 5: Compare fitted model to actual (original) time series. Also examine residuals. 

 
Figure 34: Plot of model fitted values and actual values 

Figure 34 shows plot of model and actual (original) series. The model is stationary since 

absolute values of estimated parameters are less than one. The residuals are stationary with 

mean of 0.06 and variance 0.16. They are also uncorrelated as would be seen in its ACF and 

PACF plots shown in figures below. ACF and PACF plots show no significant autocorrelation 

occurred at any lag.  
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Figure 35a: ACF plot of air temperature residuals 

 
Figure 35b: PACF plot of air temperature residuals 

3.2.3.5     Conditional Heteroscedasticity Methods 

Conditional heteroscedasticity methods are time series parametric approach. 

Autoregressive conditional heteroscedasticity (ARCH) is its simplest form. Variants of ARCH 

include: generalized autoregressive conditional heteroscedasticity (GARCH), exponential 

generalized autoregressive conditional heteroscedasticity (EGARCH), among others. 

Conditional heteroscedasticity methods are used to model variance in time series data. They 

aim to ensure that recent changes and fluctuations in the time series are taken into account.  

With conditional heteroscedasticity methods, variance of residuals becomes 

heteroscedastic (that is, not constant). They become conditionally dependent on past 

variances. As a result, they can be modeled autoregressively. ARCH model being the simplest 

conditional heteroscedastic method is usually used. Equation (49) shows the generalized form 

of ARCH model while equation (50) shows an ARCH(1) model [56]. 

Var(at|at−1, … an) = (σ2)𝑡 = α0 + α1(a2)t−1 + ⋯ + αn(an)t−n        (49) 

(σ2)𝑡 = α0 + α1(a2)𝑡−1             (50) 

where: 

n represents number of data in the series, 

α0 and α1 represent the coefficients. To secure positive variance, α0 > 0 and α1 ≥ 0, 
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(σ2)𝑡 represents variance of residuals at time t, 

(a2)𝑡−1 represents one-step lag of squared residuals. 

The terms are demonstrated in the example that shall follow. 

GARCH model uses values of past squared residuals and past variances to model present 

(current) variance in time series. Consequently, GARCH(p,q) model implies that past 

conditional variance describing the GARCH component is of order p while the past squared 

residual is of order q. An example is GARCH(1,1) which is described in equation below. 

(σ2)𝑡 = α0 + α1(a2)𝑡−1 +  β (σ2)𝑡−1      (51) 

where: 

α0, α1, and β represent the coefficients; To secure positive variance, α0 > 0 and α1 ≥ 0, 

n represents number of data in the series, 

(σ2)𝑡 represents variance of residual at time t, 

(a2)𝑡−1 represents one-step lag of squared residuals, 

(σ2)𝑡−1 represents variance of residuals at time t-1, 

The terms are demonstrated in the example that shall follow. 

One method of identifying if ARCH/GARCH model is by investigating if several clusters 

of variances (changes in variance) exist in squared time series plots. If squared time series is 

serially correlated, conditional variance will vary with time and cluster of variances will be 

seen. This helps ensure that series captures all new changes and fluctuations in variance [57]. 

Example 3.2.3.5: GARCH model analysis 

Using air temperature series described in Example 3.2.3.4, GARCH model was evaluated 

as follows: 

Step 1: Plot squared time series of the variable to determine if changes in variance exist. Also 

examine its ACF and PACF plots to determine if values are correlated. Actual (original) series 

together with its squares series is shown in table below. Also plot of squared time series is 

shown below. 

Table 15: Air temperature time series for GARCH analysis 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 

Xt 21.3 21.0 20.2 19.8 19.0 18.7 18.3 17.9 17.5 17.5 17.1 16.8 16.4 

(Xt)
2 453.7 441 408 392 361 349.7 334.9 320.4 306.3 306.3 292.4 282.2 269 

 

Figure 36: Squared time series plot of air temperature 
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Figure 37a: ACF plot of squared time series 

 

 
 

Figure 37b: PACF plot of squared time series 

Squared time series of the variable is not stationary. It shows some changes in variance. 

Additionally, its ACF and PACF plots reveal existence of significant correlations at lag 1. 

Thus, GARCH model can be used to stabilize the variance.  

Step 2: Identify orders of the model  

It would be seen from above plots that autocorrelation coefficient is only significant at lag 

1. With Box Jenkins method, it means order of AR component of the model is 1. Since 

ARCH(1) model is an AR(1) model impressed on squared residuals, it then means the series 

has ARCH(1) component [56]. 

In order to improve accuracy, past variance needs to be considered. Therefore, 

GARCH(1,1) which is GARCH corresponding model for ARCH(1) model with past variance 

consideration was selected. 
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Step 3: Determine coefficients of model.  

In order to determine model coefficients, the differenced series which is called residuals in 

conditional heteroscedasticity analysis has to be determined. They were obtained by 

subtracting each of the time series data from its succeeding data in the series. For example, at 

time index 2, the residual was obtained by subtracting air temperature data at time index 1 

from the value at time index 2. The complete residual series can be seen in the analysis table 

below. With residuals known, squared residuals series was computed.  

Next was to determine lagged squared residuals. This was obtained by shifting (lagging) 

squared residual series by one. For example, lagged squared residual at time index 3 is value 

representing squared residual at time index 2. 

Next was to determine conditional variances. Their values were computed using 

GARCH(1,1) equation for conditional variance described earlier (i.e. equation 51). Initial 

values of coefficients were set to α0 = 0.19, α1 = 0.09, β = −1.52. They were not set to zero 

which is the common practice. This is because log-likelihood values do not exist if they were 

set to zero. Values of lagged squared residuals ((a2)𝑡−1) were already known. Start value for 

variance of residuals at time t-1 (that is (σ2)𝑡−1) was set to value representing the conditional 

variance (i.e. variance of the time series data). Consequently, conditional variance for each 

time index was computed. This was done so that log-likelihood function could be determined 

and minimized. In line with maximum, likelihood estimation method discussed earlier, values 

of the coefficients (in this case α0, α1, and β) that give lowest possible value of log-likelihood 

function are the appropriate values (estimates) of the model coefficient. 

Next was to compute values of log-likelihood function. This was done using its equation 

described earlier (i.e. equation 44d). Sum of log-likelihood values was determined and 

minimized using Excel Solver by changing values of 𝛼0 , 𝛼1 , and β . The analysis is 

summarized and shown in table below. Its screen shot is also shown below. 

  Table 16a: GARCH model analysis before minimization of log-likelihood function 

Time 

index 

Air 

temp. 

(
o
C) 

Residuals 

(
o
C) 

Squared 

residuals   

(
o
C) 

Lagged 

squared 

residuals (
o
C) 

Conditional 

variance of 

residuals 

Unconditional 

variance of 

residuals 

Values of 

log 

likelihood 

function 

1 21.3 - - - - - - 

2 21.0 -0.3 0.09 - 0.046 0.046 - 

3 20.2 -0.8 0.64 0.09 0.125 0.046 -2.4440 

4 19.8 -0.4 0.16 0.64 0.057 0.046 -0.8900 

5 19.0 -0.8 0.64 0.16 0.115 0.046 -2.6207 

6 18.7 -0.3 0.09 0.64 0.072 0.046 -0.2287 

7 18.3 -0.4 0.16 0.09 0.086 0.046 -0.6231 

8 17.9 -0.4 0.16 0.16 0.071 0.046 -0.7227 

9 17.5 -0.4 0.16 0.16 0.094 0.046 -0.5893 

10 17.5 0.00 0.00 0.16 0.059 0.046 0.4935 

11 17.1 -0.4 0.16 0.00 0.096 0.046                                                     -0.5790 

12 16.8 -0.3 0.09 0.16 0.055 0.046 -0.2871 

13 16.4 -0.4 0.16 0.09 0.112 0.046 -0.5395 

 Sum -9.0306 

 

 



70 
 

 

Figure 38a: Screen shot showing GARCH analysis after minimization of log-likelihood function 

The model parameters were determined to be α0 = 0.14, α1 = 0.12 ,  β = −1.52 . Thus 

model equation is as shown in equation (52). The variance plot is also shown below. 

(σ2)𝑡 = 0.14 + 0.12(a2)𝑡−1 − 1.52(σ2)𝑡−1         (52) 

 
Figure 38b: Conditional and unconditional variances of air temperature residuals  

Observe that unconditional variance cuts through the conditional variance model. This is 

typical in variance modeling since unconditional variance is one of the time-independent 

components of conditional variance. It approximates to weighted average of conditional 

variance if variance of conditional mean is neglected. This is in line with the law of total 

variance (Eve’s law) which states that if variance of conditional mean is neglected due to low 

uncertainity in measured values of a variable, then unconditional variance becomes the 

weighted average of conditional variance [58]. 

Recall that what was modeled is variance of residuals, and air temperature values were 

differenced in order to obtain the residuals (see Table 16a). Then values obtained at various 

time instants using variance model equation 52 represent changes in present values of air 

temperature with respect to their immediate past values. This is the variance of residuals that 

was modeled. Consequently, model-computed air temperature values were determined. They 
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are shown in the table below. Plot of model-predicted values together with actual (original) 

time series and variance of residuals is also shown below. 

  Table 16b: Summary table for computed air temperature values 

Time index Actual air temp. 

(
o
C) 

Variance of residuals 

(
o
C) 

Model-computed air temp. 

(
o
C) 

1 21.3 - - 

2 21.0 - - 

3 20.2 0.0804 21.0804 

4 19.8 0.0945 20.2945 

5 19.0 0.0155 19.8155 

6 18.7 0.1932 19.1932 

7 18.3 -0.1429 18.5571 

8 17.9 0.3764 18.6764 

9 17.5 -0.4129 17.4871 

10 17.5 0.7868 18.2868 

11 17.1 -1.0559 16.4441 

12 16.8 1.7642 18.8642 

13 16.4 -2.5308 14.2692 

 
Figure 38c: Plot of model predicted air temperature values and original time series 

It would be seen that model computed values did not fit well with actual time series data at 

higher time instants. This is due to significant variation of air temperature residuals at higher 

time instants. Although GARCH models for conditional variance while Box Jenkins models 

for conditional mean, Box Jenkins’ ARMA model is still applied without performing 

differencing or data transformation in time series that exhibit time-dependency in variance. 

The resulting residuals would be non-stationary and correlated. The residuals are then 

modeled using GARCH. Thus, ARMA-GARCH model combination is common in 

engineering applications. 

3.2.3.6     Artificial Neural Networks 

Artificial neural networks are examples of time series parametric approach. They are 

classified into feedforward and recurrent networks. The presence of feedback connections in 

recurrent neural networks (RNN) is the main difference between feedforward and recurrent 

networks. The feedback connections provide RNNs the ability to process sequences, such as 

time series. They also endow the network with memory for saving past inputs. Therefore, 
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outputs of RNNs are influenced not only by current inputs, but also by history of past network 

inputs.  

RNNs are classified into Elman, Jordan, time-delay and echo-state recurrent neural 

networks [59]. Elman network is becoming obsolete. In time-delay RNNs, additional 

parameters (abstract memories) are usually available. They are used to store inputs that arrive 

at hidden units at different times. Consequently, they influence subsequent inputs. RNN 

models may possess time-windows or intervals. The time-windows are time delays. It is for 

this reason that time-delay RNN models are considered as autoregressive models.  

While artificial neural networks help understand pattern in time series data, they also help 

classify and predict missing and future data. They achieve this by training time series data 

into models. The models, having identified patterns and structures of the series, are then used 

to perform predictions. Each neural network is composed of input layers of neutrons, hidden 

layers of neutrons and output layers of neutrons. The neutrons are connected with lines which 

represents their weights. The weights are strength of the neural network. The weights, 

together with input-output transfer function, determine performance and behavior of neural 

networks. 

Sigmoid transfer function shown in figure 39 was used as the input-output function 

(transfer function) for the units in the network. Sigmoid transfer function is popular and more 

commonly used over other functions (e.g. linear, threshold transfer functions, etc.). It has also 

the additional feature of representing real neutrons closer than other transfer functions. It also 

has the capability of forcing inputs into the range [0, 1]. Furthermore, its derivative is simple 

and easy to obtain [60]. This is required for back-propagation of the residuals into the units.  

 
Figure 39: Sigmoid transfer function 

Example 3.2.3.6: Consider time series described in Table 15 of Example 3.2.3.5. The time 

series data were trained into a neural network model using back-propagation method. The 

method produces an output from given input data by multiplying input with weight and 

transfer function. The produced output is compared with desired (expected) output so that 

residual is obtained. Obtained residual is squared and sum of squared residuals (SSR) 

processed. SSR is then minimized by varying values of weight. The above is presented in 

steps below. 

Step 1: Present given time series and define applicable neural network structure. The given 

time series is shown in table below. 
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Table 17: Neural network output table for prediction 

Time index 1 2 3 4 5 6 7 8 9 10 11 12 13 

Actual 

(expected) air 

temp. value 

21.3 21 20.2 19.8 19 18.7 18.3 17.9 17.5 17.5 17.1 16.8 16.4 

There is one variable, which is air temperature. Thus, there is one input layer with one 

neutron, one output layer with one neutron and one hidden layer. Hidden layer has two 

neutrons, in line with rule of thumb that number of neutrons for hidden layer must be at least 

twice the number of neutron in input layer. Also, there are 13 time-points and input layer has 

13 patterns which were mapped to 13 expected outputs. The neural network structure is 

therefore shown below. 

 

Figure 40: Neural network structure for Example 3.2.3.6 

Step 2: Select transfer function and determine weights and biases. Also compute values of 

hidden neutrons. To achieve this, first assign random values to weights (w1, w2, w3 and w4) 

and biases. Sigmoid transfer function was selected and Excel’s “RAND” function used to 

assign random values to weights and biases. Consequently, values of hidden neutrons were 

computed as follows: 

𝐻1(𝑡) =
1

1 + 𝑒−𝑥(𝑡)
∗ ((𝑤1 ∗ 𝑥(𝑡)) − 𝑏1)       (53𝑎) 

𝐻2(𝑡) =
1

1 + 𝑒−𝑥(𝑡)
∗ ((𝑤2 ∗ 𝑥(𝑡)) − 𝑏1)        (53𝑏) 

where: 

𝐻1(𝑡) represents value of hidden neutron 1 at time index (time-point) t, 

𝐻2(𝑡) represents value of hidden neutron 2 at time index (time-point) t, 

𝑥(𝑡) represents input value at time index (time-point) t, 

𝑤1 represents weight between input neutron and hidden neutron 1,  

𝑤2 represents weight between input neutron and hidden neutron 2, 

𝑏1 represents bias for hidden layer. 

Note that in neural network, biases are not assigned to input layers because activations 

received from bias neutrons at inputs are overridden by input data. The above computation 

was done in Excel. Its screenshot is shown in figure 41a. 
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Step 3: Compute neural network output. Transfer function between neural network output and 

hidden neutron is usually linear. Thus, network output is computed using below equation. 

𝑦(𝑡) = ((𝐻1(𝑡) ∗ 𝑤3) − 𝑏2) +  ((𝐻2(𝑡) ∗ 𝑤4) − 𝑏2)      (53𝑐) 

where: 

𝐻1(𝑡) represents value of hidden neutron 1 at time index (time-point) t, 

𝐻2(𝑡) represents value of hidden neutron 2 at time index (time-point) t, 

𝑦(𝑡) represents output value at time index (time-point) t, 

𝑤3 represents weight between hidden neutron 1 and output neutron,  

𝑤4 represents weight between hidden neutron 2 and output neutron, 

𝑏2 represents bias for output layer. 

Step 4: Compute residuals, square of each residual and sum of squared residuals (SSR). 

Residual is difference between the actual (expected) output and output computed by neural 

network. Computed residuals were squared and sum of squared residuals determined. This is 

shown in screenshot of figure 41a. 

Step 5: Minimize SSR by changing values assigned to weights and biases. This was done in 

Excel using Excel’s Solver. To access Excel Solver, select “Data” in Excel main menu and 

then “Solver”.  Figure 41a shows screenshot summarizing all computations involved while 

figure 41b shows graph of outputs computed by neural network with actual (original) series.

 

Figure 41a: Screenshot showing neural network computations in Excel 

 

Figure 41b: Air temperature model using artificial neural network 

R-squared value was computed as 99.9%, and outputs computed by neural network fit 

perfectly the actual time series.  
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3.2.4     Outlook on other Dynamic Stochastic Models 

Dynamic stochastic models and their parametric qualities were discussed in section 3.2.3. 

Other dynamic stochastic models exist. According to Hipel and McLeod [55], they include:  

1. Long memory models such as fractional autoregressive integrated moving average 

(FARIMA or ARFIMA), fractional Gaussian model (FGM), etc. 

2. Point process models such as Poisson process model (PPM). 

3. Stochastic differential equations (SDE). 

In fractional autoregressive integrated moving average (FARIMA or ARFIMA), order of 

differencing takes non-integer values unlike ARIMA which takes only integer values. The 

remaining orders of FARIMA (i.e. p, q) are integer values. Even though order of differencing 

in FARIMA can take non-integer values between -0.5 and 0.5, it cannot predict values for 

non-integer time indexes. FARIMA is mostly used in analyzing time series with long-range 

dependence such as those with structural break or gap. They make the series to be fractionally 

integrated by allowing order of differencing assume a fractional value between -0.5 and 0.5. 

Model representation of FARIMA is shown below.                              

∅(𝐵)(1 − 𝐵)𝑑(𝑋𝑡 − 𝜇) = 𝜃(𝐵)𝜀𝑡           (54𝑎) 

where: 

𝜇 represents mean 

∅ and 𝜃 represent model estimates. 

Backward-shift operators are defined as: 

∅(𝐵) = 1 − ∅1𝐵 − ⋯ − ∅𝑝𝐵𝑝                 (54𝑏) 

𝜃(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞                  (54𝑐) 

Point process models are simple stochastic processes used to model observations that occur 

randomly. They are without memory and analyze observations over a definite period of time. 

Poisson distribution is an example of Poisson process model. 

Stochastic differential equation (SDE) model is another dynamic stochastic model. It is 

based on diffusion process where both time and state variables are continuous. Diffusion 

process is a special type of Markov process with continuous small paths and no jumps. It 

should be recalled that a Markov process consists of three parts – drift (deterministic), random 

process and jump. Although Markov chain and Markov process exhibit Markov property (i.e. 

memorylessness), they differ in their index set. That is, Markov chain has discrete time while 

Markov process has continuous time.  

SDE model is different from discrete-time Markov chain model which has both time and 

state variables discrete. It is also different from continuous-time Markov chain model which 

has continuous time but discrete state variables. SDE model can also be linear or reducible. 

Linear SDE model is common and easy to solve. Its representation is shown below. 

𝑑𝑋𝑡 = ∅(𝑡, 𝑋𝑡)𝑑𝑡 + 𝜃(𝑡, 𝑋𝑡)𝑑𝐸𝑡      (55) 

with; 

∅(𝑡, 𝑋𝑡) = ∅1(𝑡)𝑋𝑡 + ∅2(𝑡)                (56𝑎)  

𝜃(𝑡, 𝑋𝑡) = 𝜃1(𝑡)𝑋𝑡 + 𝜃2(𝑡)                 (56𝑏)                        

where,∅ and 𝜃 represent model parameters; 𝐸𝑡 represents noise component; and 𝑋𝑡 represents 

time series state variables. 
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CHAPTER FOUR 

Case Study I 

4.1     Site Area and Sampling Design  

Site area is within a forest canopy in central western part of Brazil. One sensor station, 

MC8 understory, was used to measure and record photosynthetically active radiation (PAR), 

air temperature, relative humidity and soil moisture. Another sensor station, MC8 PAR array, 

was used for four separate PAR measurements. MC8 understory operated with sampling rate 

of 30 seconds. Sampled average data were logged at 30 minutes interval, implying a 

resolution of 30 minutes from August 24, 2007 to May 31, 2014. MC8 PAR array sampled 

and logged at high frequency (30 seconds resolution) from midday March 16, 2007 to Mach 

18, 2012. 

4.2     Descriptive and Inferential Statistical Analysis  

The two major components of statistical analysis – descriptive and inferential statistical 

analysis were used to numerically and graphically summarize field data, and also infer on 

probability distribution of the datasets. Descriptive statistical analysis of field data were 

performed and presented. Estimates of their test statistics were used in determining 

appropriate probability distribution functions that describe datasets. 

The analysis investigated if observations followed any well-known discrete probability 

distribution. This is required since it forms basis for determining optimal sampling interval. 

4.2.1 Probability Distribution Analysis  

Probability distribution functions that fit field data were investigated. Non-parametric 

methods (such as kernel density estimation method) were not applied since it is usually 

recommended that normality and moments of distribution be investigated first.  

As a result, normality analysis was performed. Besides examining whether observations 

follow normal distribution, normality analysis also provides information about first, second, 

third and fourth moments of distribution. These statistics give clue on nature of the 

characteristic function. Consequently, they contribute in determining the appropriate 

probability distribution function. In order to perform above analysis, variability among 

observations (data) needs to be reduced.  

In order to reduce variability among data, they were classified based on natural cycles - 

daytime and nighttime datasets. This is common and generally accepted in temporal sampling 

programs where data are taken at regular intervals [4]. Moreover, due to changes in physical, 

chemical and biological properties that occur in the environment during diurnal cycles, 

daytime and nighttime measurements are seen as two different stochastic processes. 

Therefore, field data described in section 4.1 were classified into daytime and nighttime 

datasets. Daytime dataset constitutes set of values taken from 06:13:08 to 17:43:08. Nighttime 

dataset constitutes set of values taken from 18:13:08 till 05:43:08 the following day. Data 

analysis revealed that nighttime datasets for photosynthetically active radiation (PAR) are 

constant and do not vary. Consequently, PAR values have to be measured once during 

nighttime. Daytime PAR values together with daytime and nighttime values of other variables 
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(air temperature, relative humidity and soil moisture) are normal distributed. This would be 

seen in histogram plots and chi-square tables shown below. Analysis involving daytime 

distribution has been shown as an example. The histograms represent typical daytime 

distribution of variables while chi-square tables test their goodness-of-fit to normal 

distribution. The null hypothesis is that dataset for each variable fits a normal distribution. 

Chi-square tests gave p-values that are greater than the statistical significance value (0.05). 

Thus, null hypotheses were accepted implying datasets were normal distributed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Table 18a: Chi-square test of normality for PAR 

PAR values in bins 

(W/m2) 

PAR observed 

frequency (𝑂𝑖) 

PAR expected 

frequency (𝐸𝑖) 
Chi-square value = 

(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 

0 - 335 9 7.1553 0.4756 

336 - 671 10 10.4666 0.0208 

672 - 1007 4 3.7467 0.0171 

Sum 0.5135 

Degree of freedom = 3 – 1 = 2 p-value 0.7736 

       

 

 

 

Figure 42a: Histogram plot of PAR                                              Figure 42b: Histogram plot of air temperature 

 

Figure 42c: Histogram plot of soil moisture                                             Figure 42d: Histogram plot of humidity 
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      Table 18b: Chi-square test of normality for air temperature 

Air temperature 

values in bins (oC) 

 

Air temperature 

observed frequency 

(𝑂𝑖) 

Air temperature 

expected frequency 

(𝐸𝑖) 

Chi-square value = 
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 

 

22.48 - 25.00 4 2.0424 1.8763 

25.10 - 27.62 3 5.9754 1.4816 

27.72 -30.24 7 7.8200 0.0860 

30.34 - 32.86 9 4.5908 4.2348 

Sum 7.6787 

Degree of freedom = 4 – 1 = 3 p-value 0.0531 

     Table 18c: Chi-square test of normality for soil moisture 

Soil moisture values 

in bins (kg/kg) 

 

Soil moisture 

observed frequency 

(𝑂𝑖) 

Soil moisture 

expected frequency 

(𝐸𝑖) 

Chi-square value = 
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 

 

0.1565 - 0.1576 11 7.2864 1.8927 

0.1577 - 0.1586 7 7.2450 0.0083 

0.1587 - 0.1598 5 3.8410 0.3497 

Sum 2.2507 

Degree of freedom = 3 – 1 = 2 p-value 0.3245 

      Table 18d: Chi-square test of normality for humidity 

Humidity values in 

bins (g/g)  

Humidity observed 

frequency (𝑂𝑖) 

Humidity expected 

frequency (𝐸𝑖) 

Chi-square value = 
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 

 

46.75 - 61.17 10 5.5131 3,6517 

61.18 - 75.6 6 8.5859 0,7788 

75.61 - 90.03 4 5.5683 0,4417 

90.04 - 104.46 3 1.4996 1,5012 

Sum 6.3734 

Degree of freedom = 4 – 1 = 3 p-value 0.0948 

The tables below show seasonal statistical estimates of nighttime and daytime measurements 

respectively. 

Table 19: Nighttime seasonal descriptive statistics - summary table for Brazil data (PAR constant at 1.2 W/m2) 

Variable Statistics  Estimate Standard Error 
Nighttime air temperature (oC) - Spring  

(Sept 2010 - Nov 2010)  

 

Mean 26.4032 0.08631 

Variance 32.525 - 

Skewness 0.239 0.037 

Kurtosis -0.776 0.074 

Nighttime humidity (g/kg) – Spring 

(Sept 2010 - Nov 2010) 

 

Mean 51.6414 0.44467 

Variance 863.277 - 

Skewness 0.178 0.037 

Kurtosis -1.256 0.074 

Nighttime soil moisture (kg/kg) – Spring 

(Sept 2010 – Nov 2010) 

Mean 0.104455 0.000533 

Variance 0.001 - 

Skewness 1.426 0.037 

Kurtosis 0.497 0.074 

Nighttime air temperature (oC) - Summer  

(Dec 2010 – Feb 2011) 
Mean 22.0889 0.0397 

Variance 3.245 - 

Skewness 0.499 0.054 

Kurtosis 0.376 0.108 

Nighttime humidity (g/g) – Summer Mean 91.2118 0.23096 



79 
 

(Dec 2010 – Feb 2011) Variance 109.83 - 

Skewness -1.201 0.054 

Kurtosis 0.836 0.108 

Nighttime soil moisture (kg/kg) - Summer  

(Dec 2010 – Feb 2011) 
Mean 0.131942 0.000717 

Variance 0.001 - 

Skewness 0.258 0.054 

Kurtosis -1.143 0.108 

Nighttime air temperature (oC) – Autumn 

(Mar 2011 – May 2011) 

 

Mean 20.8653 0.0495 

Variance 5.54 - 

Skewness -0.517 0.051 

Kurtosis 0.039 0.103 

Nighttime humidity (g/g) - Autumn  

(Mar 2011 – May 2011) 
Mean 93.2801 0.000712 

Variance 69.084 - 

Skewness -1.74 0.051 

Kurtosis 3.731 0.103 

Nighttime soil moisture (kg/kg) - Autumn  

(Mar 2011 – May 2011) 
Mean 0.118066 0.000712 

Variance 0.001 - 

Skewness 0.727 0.051 

Kurtosis -0.981 0.103 

Nighttime air temperature (oC) – Winter 

(June 2011 – Aug 2011) 

Mean 18.341 0.07484 

Variance 12.833 - 

Skewness 0.516 0.051 

Kurtosis -0.249 0.102 

Nighttime humidity (g/g) - Winter  

(June 2010 – Aug 2011) 
Mean 53.2205 0.40301 

Variance 372.097 - 

Skewness -0.008 0.051 

Kurtosis -0.864 0.102 

Nighttime soil moisture (kg/kg) - Winter  

(June 2010 – Aug 2011) 

Mean 0.072916 0.00004153 

Variance 0 - 

Skewness 1.114 0.051 

Kurtosis 1.073 0.102 

 

 Table 20: Daytime seasonal descriptive statistics estimates - summary table for Brazil field data 

Variable Statistics  Estimate Standard Error 
Daytime PAR (W/m2) - Spring  

(Sept 2010 – Nov 2010) 

 

Mean 650.809 12.37135 

Variance 337629 - 

Skewness 0.668 0.052 

Kurtosis -0.832 0.104 

Daytime air temperature (oC) - Spring  

(Sept 2010 - Nov 2010)  

 

Mean 29.5104 0.11737 

Variance 30.389 - 

Skewness -0.475 0.052 

Kurtosis -0.567 0.104 

Daytime humidity (g/g) - Spring  

(Sept 2010 - Nov 2010) 

Mean 41.7316 0.61824 

Variance 843.189 - 

Skewness 0.603 0.052 

Kurtosis -0.93 0.104 

Daytime soil moisture (kg/kg) - Spring  

(Sept 2010 – Nov 2010) 

Mean 0.104419 0.000765 

Variance 0.001 - 

Skewness 1.386 0.052 

Kurtosis 0.367 0.104 

Daytime PAR (W/m2) - Summer  

(Dec 2010 – Feb 2011) 

Mean 423.7972 9.64403 

Variance 210475.7 - 

Skewness 1.376 0.051 

Kurtosis 1.243 0.103 

Daytime air temperature (oC) - Summer  

(Dec 2010 – Feb 2011) 

Mean 27.4812 0.08902 

Variance 17.933 - 

Skewness 0.001 0.051 
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Kurtosis -0.9 0.103 

Daytime Humidity (g/g) - Summer  

(Dec 2010 – Feb 2011)                                                                                                                                                                                                                 
Mean 69.4829 0.51476 

Variance 599.636 - 

Skewness -0.287 0.051 

Kurtosis -1.069 0.103 

Daytime soil moisture (kg/kg) - Summer  

(Dec 2010 – Feb 2011) 

Mean 0.131987 0.000673 

Variance 0.001 - 

Skewness 0.173 0.051 

Kurtosis -1.21 0.103 

Daytime PAR (W/m2) - Autumn  

(Mar 2011 – May 2011) 

Mean 239.7565 6.31984 

Variance 86390.96 - 

Skewness 2.179 0.053 

Kurtosis 5.187 0.103 

Daytime air temperature (oC) - Autumn  

(Mar 2011 – May 2011) 

Mean 25.3851 0.07951 

Variance 13.674 - 

Skewness -0.629 0.053 

Kurtosis -0.266 0.105 

Daytime humidity (g/g) – Autumn 

(Mar 2011 – May 2011) 

Mean 74.2216 0.45914 

Variance 455.982 - 

Skewness -0.494 0.053 

Kurtosis -0.646 0.105 

Daytime soil moisture (kg/kg) - Autumn  

(Mar 2011 – May 2011) 

Mean 0.118253 0.000726 

Variance 0.001 - 

Skewness 0.695 0.053 

Kurtosis -1.08 0.105 

Daytime PAR (W/m2) – Winter 

(June 2011 – Aug 2011) 

Mean 508.8828 8.808 

Variance 165479.9 - 

Skewness 0.59 8 0.053 

Kurtosis -0.543 0.106 

Daytime air temperature (oC) – Winter 

(June 2011 – Aug 2011) 

Mean 27.6505                                                                                                           0.13446 

Variance 38.561 - 

Skewness -0.919 0.053 

Kurtosis -0.121 0.106 

Daytime humidity (g/g) - Winter  

(June 2010 – Aug 2011) 

Mean 29.059 0.4993 

Variance 531.755 - 

Skewness 1.222 0.053 

Kurtosis 0.444 0.106 

Daytime soil moisture (kg/kg) - Winter  

(June 2010 – Aug 2011) 

Mean 0.071555 0.0000465 

Variance 0 - 

Skewness 1.111 0.053 

Kurtosis 0.924 0.106 

One seasonal cycle comprises of four seasons – spring, summer, autumn and winter. For 

nighttime datasets, null hypothesis is that values are normal distributed. Similarly, null 

hypothesis for daytime datasets is that values are normal distributed.  Some variables have 

statistical significances (p-values) below 0.05. Although some p-values were below 0.05, their 

null hypotheses were still accepted. This is because a variable is reasonably close to normal 

distribution, and considered being normal-distributed if both skewness and kurtosis lie 

between -1.5 and +1.5 [61, 62]. These are fulfilled as could be seen in Tables 19 and 20. The 

above normality test involving skewness and kurtosis is a rule of thumb within statistical 

methods of testing for normality. Diagnostic hypothesis tests such as use of chi-square test are 

also part of statistical methods. They are different from graphical methods such as use of 

histogram. Buttressing further, it is well-known and established that daytime and nighttime 

measurements of most environmental variables are normal distributed [63]. 



81 
 

Considering that 20 is the minimum number of data required for good computation of first 

and second moments of a normal-distributed data [64], optimum sampling interval was 

computed using the equation below.  

𝑆𝑀 =
𝑀𝐷

𝑆𝑍
                   (57) 

where; 

 𝑆𝑀 represents optimum sampling interval, 

 𝑀𝐷 represents total measurement duration, 

 𝑆𝑍 represents sample size. 

Using Brazil field data, 690 minutes was measurement duration for each daytime and 

nighttime variable. Optimum sampling interval was calculated as 34.5 minutes. The 

probability distribution function can then be determined. 

A similar work was done by Kish [65]. Kish stated that optimum sampling interval within 

a given stratum is proportional to square-root of sample variance of the stratum. 

𝑆𝑀 =  𝑘 ∗ √𝑉𝑎𝑟𝑠            (58) 

where; 

𝑆𝑀 represents optimum sampling interval,  

𝑉𝑎𝑟𝑠 represents variance of the stratum, 

𝑘 represents proportionality constant which depends on stratum sample size and total 

population. 

4.2.2     Analysis of Variance and Homogeneity  

In this section, one-way analysis of variance (ANOVA) and homogeneity of distributions 

were used to investigate if observations differ significantly from year to year. ANOVA 

evaluates if there is significant difference in means (averages). Comparing means of 

distributions is common since it helps in determining if measurements made for a particular 

year can stand-in for other years.  This helps save energy if realized. For each variable, the 

null hypothesis was that no significant difference in mean values occurred over the years. 

Tables 21a, 21b, 21c and 22d summarize the results.  

 Table 21a: ANOVA results for PAR 

 Mean values (M) 

(subset for alpha = 0.05) 

Standard 

deviation 

(SD) 

Coefficient of 

variation 

(SD/M) Year No of 

dataset 

1 2 3 4 5 

2013 4269 158.5956     310.6729 1.958900 

2009 4368 183.1706     325,4224 1.776608 

2008 4301  241.4372    380,4278 1.575680 

2011 4366   285.7036 285.7036  478.0617 1.673278 

2012 4269    304.2241  494.9873 1.627048 

2010 4366     337.663 529.5169 1.568182 

Sig.  0.188 0.565 0.184 0.667 1   
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        Table 21b: ANOVA results for air temperature 

 Mean values (M) 

 

Standard 

deviation 

(SD) 

Coefficient of 

variation 

(SD/M) Year No of 

dataset 

1 2 

2011 4366 24.7816  5.7582 0.232358 

2013 4269 24.853  4.78698 0.192612 

2010 4366  26.4032 5.70306 0.215999 

2012 4269  26.5770 6.0345 0.227057 

2008 4301  26.7333 5.8539 0.218974 

2009 4368  26.7643 5.04843 0.188626 

Sig.  1 0.084   

  Table 21c: ANOVA results for humidity 

 Mean of values (M) 

 

Standard 

deviation 

(SD) 

Coefficient of 

variation 

(SD/M) Year No of 

dataset 

1 2 3 4 

2012 4269 42.6054    33.11612 0.777275 

2008 4301 42.9912    30.29296 0.703236 

2010 4366  51.6414   29.38157 0.568954 

2011 4366  52.4455   31.99193 0.610003 

2009 4368   54.5219  27.57314 0.505726 

2013 4269    80.4237 21.09720 0.262326 

Sig.  1 0.993 1 1   

   Table 21d: ANOVA results for soil moisture 

 Mean of values (M) 

 

Standard 

deviation 

(SD) 

Coefficient 

of variation 

(SD/M) Year No of 

dataset 

1 2 3 4 

2008 4301 0.086144    0.036117 0.419268 

2012 4269  0.098416   0.049115 0.499054 

2009 4368  0.098834   0.034936 0.353477 

2010 4366   0.104455  0.035217 0.337146 

2011 4366   0.105215  0.041529 0.394707 

2013 4269    0.135233 0.039762 0.294024 

Sig.  1 1 1 1   

From Tables 21a – 21d, it would be seen that none of the variables has same mean value 

for all years investigated. This indicates that none of the yearly observations could be used for 

all the years investigated. However, for certain years, some of the variables have 

approximately same mean value. This indicates homogeneity in mean. This means 

observations could be seen as being drawn from the same population. They possess the same 

distribution and consequently same distribution parameters such as mean.  

Additional tests performed such as chi-squared test of homogeneity indicates that yearly 

distributions of the variables whose means (averages) belong to the same group or subset are 

homogeneous. Furthermore, estimates of coefficient of variation shown in above tables 

indicate that variability of yearly observations did not change significantly. This means that 

yearly observations have similar distribution. Air temperature has the lowest level of 

variability since its coefficient of variation is approximately constant at 0.2.  

Key findings made in this section are summarized as follows: 

1. None of the yearly observations could stand-in as observations for all the years 

investigated.  
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2. Some yearly observations of the variables have the same type of probability 

distribution.  

3. Some yearly observations of the variables have the same distribution parameters such 

as mean. They are considered homogeneous and can stand-in for each other. 

The variogram method was used to investigate the observations. This is discussed in the 

succeeding section. 

4.2.3     Variogram Analysis 

Yearly observations of the variables were analyzed using classical variogram. The aim was 

to determine how often variables should be measured. This is another form in which sampling 

interval can be represented. Results obtained are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From above figures, it would be seen that: 

1. PAR values are correlated at low lag with small percentage change in variances. This is 

due to high nugget and reduced variability among values. Percentage change in 

variances was further reduced within the amplitude region. Thus, nighttime values are 

more similar and less correlated than daytime values. Consequently, nighttime values 

should be measured less frequently - about twice during nighttime period. Daytime 

values should be measured frequently - about six or seven times during daytime period.  

   

Figure 43a: Variogram of PAR                                                                Figure 43b: Variogram of air temperature 

 

Figure 43c: Variogram of soil moisture                                                  Figure 43d: Variogram of humidity      
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1. Air temperature values are correlated at low lag with significant percentage change in 

variances. This indicates values are not as similar as they were for nighttime PAR. 

However, within the region after amplitude, variability was reduced. Thus, daytime values 

should be measured more frequently - about eleven or twelve times during daytime period. 

Nighttime values should be measured frequently – about six or seven times during 

nighttime period. 

2. Variogram of humidity is periodic with constant sill and range. Sill is represented by 

amplitude while range is represented by wavelength [66]. Considering symmetrical nature 

of the variogram half-waveform, both daytime and nighttime values have same variance 

dependency on lag. That is, at lags before and after amplitude, values are correlated with 

significant percentage change in variances. Thus, both daytime and nighttime values 

should be measured more frequently - about eleven or twelve times during each daytime 

and nighttime period.  

3. Variogram of soil moisture is also periodic with constant sill and range. Due to symmetric 

nature of the variogram half-waveform, both daytime and nighttime values have same 

variance dependency on lag. At lags before and after amplitude, unlike humidity 

variogram, soil moisture values are correlated with lower percentage change in variances. 

Thus, both daytime and nighttime values should be measured frequently - about six or 

seven times during each daytime and nighttime period.  

It should be recalled that periods representing daytime and nighttime are as explained earlier. 

That is, daytime is from 06:13:08 to 17:43:08 while nighttime is from 18:13:08 to 05:43:08 the 

following day. 

Monthly observations (datasets) were investigated using variogram. The variograms examined 

and compared observations of variables on monthly basis from 2008 to 2011. In order to simplify 

analysis, months of January to April were selected. The datasets were logarithmic-transformed 

twice in order to secure stationarity. During first transformation, ten was added to each data 

before it was log-transformed. This aligns with additive rule of log-transformation performed 

when data being transformed is close to zero or below zero. Figures below show 2-day variogram 

of PAR observations for months of January, February, March and April in 2008 – 2011. 

 

 

 

 

 

 

 

 
Figure 44a: 2-day variogram of PAR for January                              Figure 44b: 2-day variogram of PAR for February 
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From above figures, it would be seen that all variograms are periodic. Their sills and range are 

deduced from variograms since according to Funk [66], sill of periodic variogram is represented 

by its amplitude while range is represented by wavelength. Comparing the variograms, it would 

be seen that all months investigated with exception of February have approximately the same 

variogram for each of the years. That is, variograms of January 2008, 2009, 2010 and 2011 were 

close to one another. The same applies to March and April variograms. Their amplitudes (sill) did  

not differ significantly like those in February variograms. Significant variabilities among yearly 

observations were noticeable in February variograms. This may have been caused by physical 

factors such as changes in urbanization or natural factors such as change in weather. This was not 

investigated since it is not within the scope of this work. 

For air temperature, figures below show its 2-day variogram for months of January, February, 

March and April in 2008 – 2011. 

 

 

 

    

Figure 44c: 2-day variogram of PAR for March                                        Figure 44d: 2-day variogram of PAR for April 
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              Figure 44e: 2-day variogram of air temperature for January                  Figure 44f: 2-day variogram of air temperature for February 
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From above figures, it would be seen that all variograms are periodic. Their sills and range 

are deduced from variograms since according to Funk [66], sill of periodic variogram is 

represented by its amplitude while range is represented by wavelength. Comparing the 

variograms, it would be seen that all months investigated with exception of February have  

From above figures, it would be seen that variograms are periodic. It would also been seen 

that they vary significantly unlike those for PAR variable that were closely related. In some 

months, they formed groups of homogeneous pair with variability reduced within groups. 

Figures below show 2-day variograms of humidity for months of January, February, March 

and April in 2008 – 2011. 

 

   

           Figure 44g: 2-day variogram of air temperature for March                              Figure 44h: 2-day variogram of air temperature for April 
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           Figure 44i: 2-day variogram of humidity for January                              Figure 44j: 2-day variogram of humidity for February 

 

    Figure 44k: 2-day variogram of humidity for March                              Figure 44l: 2-day variogram of humidity for April 
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From above figures, it would be seen that variograms are periodic. It would also been seen 

that they vary significantly more than those for PAR and air temperature variables. In some 

months, they formed groups of homogeneous pair with variability reduced within groups. 

For soil moisture, figures below show its 2-day variogram for each months of January, 

February, March and April in 2008 – 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above figures, it would be seen that soil moisture variograms are linear with some  

gentle slopes. Some slopes were almost flat (horizontal), indicating a near constant variance. 

This represents sill and variability among dataset is reduced.  In other cases where numerical 

value of slope is significant (e.g. January variograms), sill was not available since such linear 

variograms have no sill. Since values of variance on ordinate (vertical) axis are low, it is 

acceptable to cut off variogram at its population variance; otherwise dataset is modeled using 

other methods. 

4.3     Box-Jenkins Analysis 

Box-Jenkins stochastic method was used to investigate seasonal relationship existing 

between observations of same months of successive years. For this analysis, two variables – 

air temperature and PAR were selected. Measures for assessing goodness-of-fit in Box-

    

                   Figure 44m: 2-day variogram of soil moisture for January                              Figure 44n: 2-day variogram of soil moisture for February 

      

                        Figure 44o: 2-day variogram of soil moisture for March                              Figure 44p: 2-day variogram of soil moisture for April 
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Jenkins models discussed earlier were used to assess if fitted models could be used to predict 

same month of other years. 

Monthly observations of variables for given year were used to estimate orders of model 

and their coefficients. These constitute the calibrated models and their model equations called 

calibrated model equations. Calibrated models are used to test same month observations of 

other years. Testing same month observations of another year means using some observations 

of the month and calibrated model equation of another year to predict values for the remaining 

period of the month. For example, calibrated model equation of January 2008 air temperature 

was obtained by fitting ARIMA model to air temperature observations of January 2008. 

Computed calibrated model equation of January 2008 together with air temperature 

observations of January 2009 (that are useable in January 2008 model equation) were used to 

predict values for remaining period of January 2009. Similar analyses were done for January 

2010 and January 2011. Performance results obtained were compared with those obtained 

using calibrated models. They are summarized below. 

Table 22: ARIMA results summary for air temperature - January observations  

    Jan 2008 model Jan 2009 model Jan 2010 model Jan 2011 model 

With Jan 

2008 data 

Model orders (2,1,2) (1,1,1) (2,1,2) (2,2,2) 

Coefficients  

(AR; MA) 

(0.13, 0.58; 1.12,   

-0.52) (0.846; -0.408) 

(0.83, 0.2; -0.32, -

0.11) 

(0.04, 0.67; 0.4,    

-0.24) 

AIC value 2496.62 2507.79 2726.01 3129.68 

R-squared 

value 0.981 0.663 0.609 0.488 

Residuals 

Uncorrelated with 

mean of 0 and 

variance of 0.3 

Uncorrelated with 

mean of 0.2 and 

variance of 5.3 

Uncorrelated with 

mean of -0.6 and 

variance of 5.9 

Uncorrelated with 

mean of 0.1 and 

variance of 8.1 

With Jan 

2009 data 

Model orders (2,1,2) (1,1,1) (2,1,2) (2,2,2) 

Coefficients  

(AR; MA) 

(0.13, 0.58; 1.12,   

-0.52) (0.846,-0.408) 

(0.83, 0.2; -0.32,    

-0.11) 

(0.04, 0.67; 0.4,    

-0.24) 

AIC value 2569.08 1974.54 2297.02 2350.87 

R-squared 

value 0.481 0.982 0.567 0.552 

Residuals 

Uncorrelated with 

mean of -0.2 and 

variance of 5.6 

Uncorrelated with 

mean of 0 and 

variance of 0.8  

Uncorrelated with 

mean of -0.8 and 

variance of 4.1 

Uncorrelated with 

mean of -0.1 and 

variance of 4.8 

With Jan 

2010 data 

Model orders (2,1,2) (1,1,1) (2,1,2) (2,2,2) 

Coefficients  

(AR; MA) 

(0.13, 0.58; 1.12,   

-0.52) (0.846; -0.408) 

(0.83, 0.2; -0.32,    

-0.11) 

(0.04, 0.67; 0.4,    

-0.24) 

AIC value 2787.42 2416.40 2410.43 2415.09 

R-squared 

value 0.572 0.687 0.981 0.733 

Residuals 

Uncorrelated with 

mean of 0.6 and 

variance of 6.1 

Uncorrelated with 

mean of 0.8 and 

variance of 4.2 

Uncorrelated with 

mean of 0 and 

variance of 0.3 

Uncorrelated with 

mean of 0.7 and 

variance of 3.6 

With Jan 

2011 data 

Model orders (2,1,2) (1,1,1) (2,1,2) (2,2,2) 

Coefficients  

(AR; MA) 

(0.13, 0.58; 1.12,   

-0.52) (0.846; -0.408) 

(0.83, 0.2; -0.32,    

-0.11) 

(0.04, 0.67; 0.4,    

-0.24) 

 AIC value 3104.58 2418.57 2408.03 2406.18 

 

R-squared 

value 0.52 0.723 0.782 0.982 
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With Jan 

2011 data 
Residuals 

Uncorrelated with 

mean of -0.1 and 

variance of 8.0 

Uncorrelated with 

mean of 0.08 and 

variance of 4.6 

Uncorrelated with 

mean of -0.7 and 

variance of 3.1 

Uncorrelated with 

mean of 0 and 

variance of 0.3 

Key 

     
  Represents calibrated model 

   
Table 23: ARIMA results summary for PAR - January observations 

    Jan 2008 model Jan 2009 model Jan 2010 model Jan 2011 model 

With Jan 

2008 

data 

Model orders (1,0,2) (1,0,2) (1,0,2) (1,0,2) 

Coefficients  

(AR; MA) (0.94; 0.25, 0.16) (0.94; 0.16, 0.15) (0.94; 0.24, 0.10) (0.94; 0.24, 0.20) 

AIC value -93,37 -93,37 -93,37 -93,37 

R-squared 

value 0.998 0.998 0.998 0.998 

Residuals 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

With Jan 

2009 

data 

Model orders (1,0,2) (1, 0, 2) (1,0,2) (1,0,2) 

Coefficients  

(AR; MA) (0.94; 0.25,0.16) (0.94; 0.16, 0.15) (0.94; 0.24, 0.1) (0.94; 0.24, 0.20) 

AIC value -47.01 -47.01 -47.01 -47.01 

R-squared 

value 0.998 0.998 0.998 0.998 

Residuals 

Uncorrelated with 

mean of -0.1 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of -0.1 and 

variance of 0.1 

Uncorrelated with 

mean of -0.1 and 

variance of 0.1 

With Jan 

2010 

data 

Model orders (1,0,2) (1,0,2) (1,0,2) (1,0,2) 

Coefficients  

(AR; MA) (0.94;0.25,0.16) (0.94; 0.16, 0.15) (0.94; 0.24, 0.10) (0.94; 0.24, 0.20) 

AIC value -18.91 -18.91 -18.91 -18.91 

R-squared 

value 0.998 0.998 0.998 0.998 

Residuals 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

With Jan 

2011 

data 

Model orders (1,0,2) (1,0,2) (1,0,2) (1,0,2) 

Coefficients  

(AR; MA) (0.94; 0.25,0.16) (0.94; 0.16, 0.15) (0.94; 0.24, 0.1) (0.94; 0.24, 0.20) 

AIC value 434.29 434.29 434.29 434.29 

R-squared 

value 0.995 0.995 0.995 0.995 

 
Residuals 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Uncorrelated with 

mean of 0 and 

variance of 0.1 

Key 

     
  Represents calibrated model 

   
From Tables 22 and 23, it would be seen that calibrated models showed best performance 

for monthly observations they were trained and calibrated with. They gave lowest AIC values 

and maximum R-squared values. Their AIC values were in line with Box-Jenkins statement 
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on parsimony of models which demands that the lowest possible model be selected in order to 

reduce variability among residuals.  

From Table 22, it would be seen that January 2008 air temperature model when tested with 

January 2009 air temperature data did not give good results. It gave an R-squared value of 

0.481. Variability in residuals was high with variance of 5.6. Similar results were obtained 

when the model was tested with January 2010 and January 2011 observations. Furthermore, 

air temperature models of January 2009, 2010 and 2011 did not give good results when tested 

with January 2008 air temperature observations. Variability in residuals was high with 

variance reaching highest value of 8.1. Consequently, none of the monthly model equations 

could give good prediction of monthly values of the variable in other years. 

For PAR, it would be seen from Table 23 that both calibrated models and non-calibrated 

models performed well. R-squared values were high with low variability among residuals. 

The residuals approximated to strict white noise - a true innovation that does not require 

further modeling or investigation. Consequently, each monthly model equations could give 

good prediction of monthly values of the variable in other years. These results are in 

agreement with those obtained using variogram method where all yearly January variograms 

were found to be approximately the same for PAR whereas for air temperature, they differ. 
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CHAPTER FIVE 

Case Study II 

5.1     Site Area and Sampling Design 

Field data used in this case study was obtained through measurements taken within a 

residential area in the city of Edmonton, Alberta.   Three sensors were deployed at different 

locations within the site. The sensors measured photosynthetically active radiation (PAR). 

One PAR sensor (identified as PAR1) was installed near fence so that partial shading of the 

fence cast over it. Another sensor (PAR2) was installed under a canopy formed by trees. The 

third sensor (PAR3) was installed so that it receives solar radiation directly with no shadow or 

canopy over it. An additional sensor was installed and used for air temperature measurement. 

Data were collected from May 3, 2015 to July 2, 2015 with intervals between measurements 

changing from 5 to 30 seconds in several steps (5, 10, 15, and 30).  

The sensors were powered by solar harvester supplemented by supercapacitor and backup 

primary batteries. They were mounted such that sufficient distance exists between them. This 

is required so as to fulfill sensing range specification which helps avoid electromagnetic 

interferences. Summary of measurement (sampling) plan used is shown below. 

Table 24: Sampling plan 

Sampling interval used 

(seconds) 

Start date (yy-mm-dd)/ 

Time (hh:mm:ss) 

Finish date (yy-mm-dd)/  

Time (hh:mm:ss) 

5 2005-05-03/16:00:00 2005-05-10/22:20:30 

10 2005-05-10/22:42:05 2005-05-13/22:12:45 

15 2005-05-13/22:21:15 2005-05-23/22:48:00 

30 2005-05-23/22:53:15 2005-07-02/22:58:15 

5.2     Descriptive and Inferential Statistical Analysis 

Concepts of one-way analysis of variance (ANOVA) and homogeneity of distribution were 

used to investigate the observations. This is essential since it helps determine if observations 

have the same distribution, among others. Measurements were not repeated at the same time 

in successive years. Therefore, the observations constitute a special type of longitudinal data 

since they were taken progressively with different time intervals. 

Observations referred in this context are measurements recorded at 5, 10, 15 and 30 

seconds. The variables are PAR1, PAR2, PAR3 and air temperature. 25744 observations were 

obtained while sampling at 10 seconds interval. This is lowest number of observations 

obtained during measurements. Consequently in this analysis and for each variable, first 

25744 observations were drawn from all observations recorded while sampling at 5, 10, 15 

and 30 seconds. Results obtained are shown in the tables below. 

 Table 25a: ANOVA results for air temperature  

 Mean values Standard 

error of 

mean 

Standard 

deviation 

Coefficient 

of variation Sampling interval 

(s) 

No of 

dataset 

1 2 3 

15 25744 16.4125   0.0808 12.9602 10.2341 

5 25744 17.4867   0.0709 11.3710 7.3942 

10 25744  19.2160  0.0961 15.4151 12.3661 

30 25744   23.3507 0.0691 11.0902 5.2672 
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 Table 25b: ANOVA results for PAR1 

 Mean values Standard 

error of 

mean 

Standard 

deviation 

Coefficient 

of variation Sampling 

interval (s) 

No of 

dataset 

1 2 3 

5 25744 222.8274   2.2643 363.2834 592.2738 

10 25744 210.7321   2.0861 334.6825 531.5394 

15 25744  150.026  1.6552 265.5555 470.0500 

30 25744   102.9498 1.2391 198.8049 383.9094 

 Table 25c: ANOVA results for PAR2 

 Mean values Standard 

error of 

mean 

Standard 

deviation 

Coefficient 

of variation Sampling interval 

(s) 

No of 

dataset 

1 2 3 

5 25744 273.2411   2.5530 409.6017 614.0129 

10 25744 281.1414   2.4352 390.7058 542.9688 

15 25744  202.3197  1.9836 318.2485 500.6045 

30 25744   152.5282 1.6106 258.4038 437.7716 

Table 25d: ANOVA results for PAR3 

 Mean values Standard 

error of 

mean 

Standard 

deviation 

Coefficient 

of 

variation 

Sampling interval 

(s) 

No of 

dataset 

1 2 3 

5 25744 253.6795   2.2696 364.1408 522.701 

10 25744  345.0743  2.7629 443.2721 569.4141 

15 25744 236.7537   2.2390 359.2229 545.0437 

30 25744   206.5156 2.0510 329.0581 524.3148 

From Tables 25a – 25d, it would be seen that for each variable, only observations from two 

different sampling intervals could be approximated as being homogeneous. Such observations 

possess the same probability distribution and consequently same distribution parameters such 

as mean. It would also be seen that air temperature and PAR3 each has a fairly constant 

standard error of mean. This indicates that mean values of air temperature and PAR3 did not 

deviate significantly from their respective observations. This suggests that variability of 

observations with respect to mean value is approximately constant. Thus, air temperature 

observations obtained using each of the sampling intervals have the same type of probability 

distribution.  

Furthermore, it would be seen that lowest estimate of standard error of mean occurred at 

sampling interval of 30 seconds. Standard deviation and coefficient of variation were also at 

lowest values when sampling interval was 30s. This is in agreement with results published in 

Åstrom [67] where optimal sampling interval occurred when variance of sample mean was 

minimal.  

Finally, figure 45 and its corresponding time series revealed that battery voltage lasted for 

168,471 seconds when sampling interval was 5 seconds. When sampling interval was 

increased to 10 seconds, battery voltage lasted for 204,720 seconds. With further increase of 

sampling interval to 15 seconds, battery voltage lasted till 1,521,800 seconds. Increasing 

sampling interval further to 30 seconds resulted in battery voltage lasting for 2,849,000 

seconds. This implies battery lifetime was extended by more than 87% when sampling 

interval was increased from 15 to 30 seconds. Battery was recharged and restored to full-

charge capacity before change in sampling interval was made. 
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Figure 45: Time series of battery voltage for different sampling frequencies 

5.3     Box-Jenkins Analysis 

Box-Jenkins method was used to analyze field datasets. The analysis investigated 

autocorrelation nature of the datasets. This is required in order to fit stochastic models to 

datasets. With accurate stochastic model, missed values as well as future values can be 

predicted. It also serves as gateway to determining optimal sampling interval. Steps involved 

in using Box-Jenkins method and how they are implemented have been demonstrated in 

section 3.2.3.4 using a typical time series. Following the steps, air temperature data obtained 

using 30 seconds sampling interval (from 2015-05-23 to 2015-07-02) were analyzed below. 

Stationarity for time series was established by differencing the dataset once. ACF plot of 

differenced series indicates a non-zero autocorrelation value at lag 1. PACF plot also indicates 

non-zero partial autocorrelation values at lag 1. This indicates AR component is of order 1 

while MA component is of order 1. The ACF and PACF plots are shown below. 

 
Figure 46a: Autocorrelation function plot of stationarized air temperature series 
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Figure 46b: Partial autocorrelation function plot for stationarized air temperature series 

Model coefficients were estimated. Results obtained are summarized below. 

                     Table 26: ARIMA model orders and parameters - air temperature 

ARIMA Type/Order = ARIMA(1,1,1) 

ARIMA Parameters Estimates Standard Error 

Constant term 0.000 0.000 

AR Lag 1 -0.091 0.003 

Difference 1 - 

MA Lag 1 0.474 0.003 

 

Therefore, model equation becomes: 

(1 − 𝛷1𝐵)(1 − 𝐵)1𝑋𝑡 = (1 − 𝜃1𝐵)𝜖𝑡 => (1 − 𝐵 − 𝛷1𝐵 + 𝛷1𝐵2)𝑋𝑡 = 𝜖𝑡 − (𝜃1𝐵)𝜖𝑡  (59𝑎) 

 

𝑋𝑡 − 𝑋𝑡−1 − (−0.091)𝑋𝑡−1 + (−0.091)𝑋𝑡−2 = 𝜖𝑡 − (0.474)𝜖𝑡−1                          (59𝑏) 

 

=>  𝑋𝑡 − 0.909𝑋𝑡−1 − 0.091𝑋𝑡−2 = 𝜖𝑡 − 0.474𝜖𝑡−1      (59𝑐) 

 

=>  𝑋𝑡 = 0.909𝑋𝑡−1 + 0.091𝑋𝑡−2 + 𝜖𝑡 − 0.474𝜖𝑡−1       (59𝑑) 

For simplicity purpose and also to avoid cloudy graph due to large number of observations 

investigated (25744 observations), graph of the model is provided below showing first 1500 

observations and their corresponding predicted values. It would be seen that the model is a 

good fit of the actual series. R-squared value was computed as 99%. 
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Figure 46c: Graph of first 1500 actual observations of air temperature against their predicted values 

Resulting residuals were investigated. Figure below shows its histogram while table below 

provides estimates of its descriptive statistics.  

 

                 Figure 46d: Distribution of air temperature residuals obtained after model fitting 
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                                 Table 27: Descriptive statistics estimates of air temperature residuals 

Statistics Estimate 

Mean 0.00 

Median 0.00 

Mode 0.00 

Variance 0.01 

Standard deviation 0.11 

Kurtosis 0.57 

Skewness 0.42 

From figure 46d and Table 27, it would be seen that resulting residuals are normal 

distributed. However, it should be noted that in Box Jenkins methodology, it is not mandatory 

that residuals be normal distributed. Residuals can assume any probability distribution but 

they must be stationary and independent with zero mean and finite variance [68]. 

For PAR1, PAR2 and PAR3, ten was added to their observations before being logarithmic-

transformed. This is required in order to achieve stationarity. It is in line with additive rule of 

logarithmic-transformation which requires the addition of positive integers in cases where 

values being transformed are zero or near zero. However, when absolute values are required, 

back-transformation of values is performed. 

Using Box-Jenkins methodology, model orders and their coefficients for PAR3, PAR2 and 

PAR1 were estimated. Their results are summarized in Tables 28, 29 and 30 respectively. 

Similarly, their model equations are shown in equation (60) for PAR3, equation (61) for 

PAR2 and equation (62) for PAR1. 

             Table 28: ARIMA model orders and parameters – PAR3 

ARIMA Type/Order = ARIMA(1,0,1) 

ARIMA Parameters Estimates Standard Error 

Constant 1.910 0.116000 

AR Lag 1 0.999 0.000074 

Difference 0.000 0.000000 

MA Lag 1 0.282 0.002000 

             Table 29: ARIMA model orders and parameters – PAR2 

ARIMA Type/Order = ARIMA(1,0,1) 

ARIMA Parameters Estimates Standard Error 

Constant 1.909 0.105000 

AR Lag 1 0.999 0.000077 

Difference 0.000 0.000000 

MA Lag 1 0.403 0.002000 

             Table 30: ARIMA model orders and parameters – PAR1 

ARIMA Type/Order = ARIMA(1,0,1) 

ARIMA Parameters Estimates Standard Error 

Constant 1.846 0.098000 

AR Lag 1 0.999 0.000076 

Difference 0.000 0.000000 

MA Lag 1 0.365 0.002000 

Xt = 1.910 + 0.999Xt−1 + ϵ𝑡 − 0.282ϵ𝑡−1      (60) 

Xt = 1.909 + 0.999Xt−1 + ϵt − 0.403ϵt−1      (61) 

Xt = 1.846 + 0.999Xt−1 + ϵt − 0.365ϵt−1      (62) 
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Histogram plots of PAR3, PAR2 and PAR1 residuals are shown in figures 47a, 47b and 

47c respectively. Their descriptive statistics estimates are presented in Table 31. 

 
                         Figure 47a: Histogram plot of PAR3 residuals 

                                   
                                Figure 47b: Histogram plot of PAR2 residuals 

            
                                Figure 47c: Histogram plot of PAR1 residuals 

Table 31: Descriptive statistics estimates of PAR3, PAR2 and PAR1 residuals 

PAR3 PAR2 PAR1 

Statistics Estimate Statistics Estimate Statistics Estimate 

Mean -0.0002 Mean -0.0003 Mean -0.0002 

Median -0.0010 Median -0.0016 Median -0.0009 

Variance 0.0003 Variance 0.0003 Variance 0.0004 

Standard deviation 0.0168 Standard deviation 0.0174 Standard deviation 0.0184 

Kurtosis 91.4797 Kurtosis 113.8473 Kurtosis 99.2863 

Skewness -2.1378 Skewness -2.0748 Skewness -1.9228 
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It would be seen from figures 47a, 47b and 47c that residuals of PAR3, PAR2 and PAR1 

are not normal distributed. Their computed values of kurtosis shown in Table 31 further 

support this since they exceed 1.5. As noted earlier, variables are reasonably close to normal 

distribution, and considered being normal distributed if both skewness and kurtosis lie 

between -1.5 and +1.5 [61, 62]. It is acceptable in Box Jenkins methodology for the residuals 

to assume any distribution provided they are stationary and independent with zero mean and 

finite variance. Therefore, the residuals do not need to be further analyzed or modeled using 

GARCH model, etc. However, their probability distribution needs to be characterized. A few 

paragraphs below have been denoted to this. The need for this is due to the fact that most 

symmetrical probability distributions look-alike. This would be seen in figure below. 

 

Figure 48: Graph of density function of some distributions (Culled from Wilson [69]) 

Additionally, Wilson [69] did emphasize the need for accurate analysis of data and 

residuals, and role they play in determining their statistical distributions. According to 

Wilson, it is unsafe to rush ahead and apply the second law of Laplace (i.e. normal 

distribution) or any of its various extensions without proper analysis of data. 

Therefore, if S1, S2, S3, S4 represent mean deviation, mean squared deviation, mean cubed 

deviation and fourth-power of mean deviation respectively, and ratio of S1: S2: S3: S4 nearer to 

the ratio 1.000: 1.414: 1.817: 2.213 than the ratio 1.000: 1.253: 1.465: 1.645, then the 
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distribution is nearer to Laplace first law (i.e. Laplace distribution) than Laplace second law 

(i.e. normal distribution) [69]. Residuals of PAR3, PAR2 and PAR1 were found to be nearer 

to Laplace first law based on above statement.  

Furthermore, ratio of mean deviation of PAR3 residuals to standard deviation of PAR3 

residuals was computed as 0.5. Those for PAR2 and PAR1 were computed as 0.45 and 0.6 

respectively. They were all nearer to 0.707 than 0.798. This further confirms that residuals are 

Laplace distributed since Laplace distributions have ratio of mean deviation to standard 

deviation close to 0.707 while normal distributions have it close to 0.798 [69]. 

Having established that residuals are Laplace distributed, scale and location parameters of 

the Laplace distributions were estimated. According to Norton [70], location parameter of 

Laplace distributed iid series is its median while the scale parameter is mean deviation of the 

series. Consequently, scale parameter was determined using equation (63a) while equation 

(63b) shows probability density function of a Laplace distribution. 

𝛽 =  
1

𝑁
∗  ∑ │𝑋𝑡 − 𝑥│

𝑁

𝑡=1
   (63a) 

𝑃(𝑥) =
1

2𝛽
𝑒

−(𝑥−𝜇)
𝛽                  (63𝑏) 

where: 

 β  represents scale parameter, 

𝑁  represents number of residuals, 

𝑋𝑡  represents residual at time t, 

𝑥 represents mean of residual distribution, 

𝜇 represents location parameter, 

𝑃(𝑥) represents probability density function. 

The table below shows values calculated for location and scale parameters of the residuals.  

Table 32: Location and scale parameter estimates of the residuals 

Variable whose residuals 

distribution is being 

characterized 

Median Estimated location 

parameter 

Estimated scale 

parameter 

PAR3 (µmolm-2s-1) -0.0010 -0.0010 0.00839 

PAR2 (µmolm-2s-1) -0.0016 -0.0016 0.00781 

PAR1 (µmolm-2s-1) -0.0009 -0.0009 0.0110 

Having fitted models to the variables (air temperature, PAR3, PAR2 and PAR1), they are 

validated and used in estimation of missed and future values. How this is implemented is 

discussed in section 6.1.2. 

5.4     Artificial Neural Network 

Artificial neural network was discussed in detail in section 3.2.3.6 were all steps involved 

were presented. An example was also provided to demonstrate how it is used to model time 

series data.  
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In this section, artificial neural network is used to train, test and validate field data 

discussed in section 5.1. Since four variables (air temperature, PAR1, PAR2 and PAR3) are 

involved, four separate networks are therefore required. Each network consists of an input of 

one neutron, one hidden layer and an output of one neutron. Number of neutrons for hidden 

layer was set to standard default value of 10. Considering equation (64) which is usually used 

in determining number of weights in neural network, it follows that each network has 31 

weights. 

𝑁𝑤 = (𝑛 ∗ ℎ) + ℎ + (ℎ ∗ 𝑚) + 𝑚                        (64) 

where: 

𝑁𝑤 represents number of weights, 

𝑛 represents number of input nodes, 

ℎ represents number of hidden nodes,  

𝑚 represents number of output nodes. 

Levenberg-Marquardt algorithm was considered and used as training function. Training 

process helped assign values to weights so that residuals are minimized. 

Data selection method was in line with rule of thumb for training-validating and testing in 

neural network. It requires that 60 percent of datasets be used to train the network and 

remaining datasets shared between validations and testing. This selection method is called 

test-technique. On the other hand, all-train technique uses all datasets for training while train-

test technique uses 80 percent of dataset for training and the remaining for testing.  

Structure of the network is presented below while performance results obtained with 

sampling interval of 30 seconds are summarized in Table below. Similarly, figure 50 depicts 

testing and validation results for PAR1. Plots for PAR2, PAR3 and air temperature are shown 

in figures 51 – 53 respectively.  

 
Figure 49: Network structure used for each variable 

Table 33: Performance summary table 

Parameters PAR1 

(µmolm-2s-1) 

PAR2 

(µmolm-2s-1) 

PAR3 

(µmolm-2s-1) 

Air Temperature 

(oC) 

Epoch (iterations) 7 8 8 12 

Performance (MSE) 0.0146 0.0139 0.0145 0.0115 

Gradient 0.00210 0.00178 0.00110 0.00341 

Validation checks 6 6 6 6 

Overall MSE performance 0.0225 0.0202 0.0199 0.0190 
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Figure 50: Training and validation of PAR1 in (µmolm-2s-1). 

 
Figure 51: Training and validation of PAR2 in (µmolm-2s-1). 

 
Figure 52: Training and validation of PAR3 in (µmolm-2s-1). 
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Figure 53: Training and validation of air temperature in (oC) 

From Table 31, it would be seen that PAR1 iteration stopped after 7 training epochs. It 

resulted in mean square normalized error (MSE) less than 0.015. Also its overall MSE 

performance was 0.0225. Similar results apply to other variables. None of the variables gave 

an MSE greater than 0.015. Also, their overall MSE performance never exceeded 0.025. All 

these indicate good performance in computation and that of the model. 

Furthermore, regression plots showed good R-values which indicate good fit for each of 

the variables. Also the regression lines did not deviate significantly from the dotted center line 

which is the ideal (perfect) regression line where output equals target with R-value as 1. 

Relationship between outputs of the network and targets was deduced for each of the 

variables. This helps in determination of outputs for given targets. Targets were normalized 

between -0.4 and 0.4 so as to secure all input data within range. 
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CHAPTER SIX 

Main Contributions of the Thesis 

6.1     New Adaptive Sampling Method 

6.1.1     Description of method 

A new adaptive sampling method for measurement of environmental variables was 

proposed and evaluated using real environmental field data. The new method allows sampling 

with high sampling interval (low sampling frequency) so that energy consumed is reduced. To 

balance trade-off on data quality, the new method requires accurate stochastic model of 

variable be estimated so that forward and backward predictions are performed accurately. It 

also requires that its stochastic model be continually updated to ensure alignment with 

changes in input data.  

Stochastic models obtained while using this new method are used in determining optimal 

sampling interval. This is discussed in section 6.2. On top level, the new adaptive sampling 

method is composed of following steps: 

1. Estimate stochastic model that fits measured dataset - Few measurements are taken 

using high sampling interval and appropriate ARIMA model fitted to dataset. 

2. Compute residuals - Residuals are computed using predicted and measured values. 

Ensure that residuals are stationary and independent so that fitted ARIMA model 

could be used to estimate missed and future values.  

3. Update model – This is achieved by re-estimating model parameters while keeping 

stochastic orders of model constant. This holds for cases where time series and its 

stochastic model represent a defined period such as summer period or winter period, 

etc. However, if residuals deviate significantly from threshold interval (i.e. if it 

deviates by more than four multiples of threshold interval), both stochastic orders and 

model parameters are updated. 

Explicitly, the method allows skip of sensor sampling and use of model-predicted values 

when an adaptive sampling condition is met. On a lower level, the new adaptive sampling 

method is guided as follows: 

1. Take few measurements of the variable.  

2. Determine the stochastic model and compute residuals. Numerical value of the 

threshold interval is also computed. This is value representing 95
th

 percentile of 

residuals distribution.  Thus, if 95
th

 percentile of residuals distribution is determined as, 

say k1inital, threshold interval is then set as [-k1initial, +k1initial]. 

3. Let sensor continue sampling. The program computes new k1 value (and new threshold 

interval) each time sensor samples. The new value (k1new) is compared with initial 

(stored) value computed in step 2. Result from the comparison is noted and stored (i.e., 

is -k1initial ≤ k1new ≤ +k1initial). 

4. Step 3 is repeated four more times, each time comparison performed and result stored. 

5. If at least 3 cases out of the 5 cases (times) of step 3 gave threshold intervals that are 

within predefined range computed in step 2, sensor stops sampling and resumes 
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sampling after time for 20 samplings has elapsed. The program returns to step 3 after 

this time has elapsed. 

6. However, if not up to 3 cases out of the 5 cases (times) of step 3 gave threshold 

intervals that are within predefined range computed in step 2, sensor continues 

sampling. The program only stores sampled data. It stops computing new k1 values and 

performing comparisons, until after time corresponding to 20 samplings has elapsed. 

The program returns to step 3 after this time has elapsed. However, before program 

returns to step 3, it uses stored sampled data to update model and threshold interval 

(that is, step 2 is performed again).  

7. During time period described in step 5 when sensor stopped sampling, if need for 

missed data is required, program computes and releases model-predicted value. 

The above is described in flow chart shown below. 

 
Figure 54: Flow chart describing the new adaptive sampling method 
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The new adaptive sampling method when commercialized shall be useful in numerous 

engineering applications and industrial processes, among others. Of particular interest is 

the automotive industry where current drive to reduce energy consumption and limit 

sensing activities of some variables in autonomous vehicles is in focus. Further details 

relating to the new adaptive sampling method are available in Ezeora et al [71]. 

6.1.2     Estimation of Missed Values 

A stationary time series looks the same if moved forward or backward in time. 

Consequently, the same model used for forward predictions can be used for backward 

predictions. In order to estimate missed values, two cases were considered. The first case 

considered values missed due to use of high sampling interval (for example, sampling every 

30 seconds instead of 15 seconds). For such cases, Box Jenkins models such as ARIMA 

cannot be used. This is because they require time index to be a positive or negative integer. If 

time index is an integer, data required in their model equation is available.  

Illustrating further, assume a sampling interval of 30 seconds. At time index 1 (i.e. start of 

sampling), sampled (measured) value is known. At time index 2 (i.e. 30 seconds away from 

start), measured value is also known. For time index 1.5 (15 seconds away from start), 

ARIMA model equation cannot be used since data are not available for non-integer time 

indexes. For this type of case, techniques such as use of numerical interpolation methods are 

considered.  

On the other hand, the second case concerns values missed at time indexes that are integer 

multiples of sampling interval. Illustrating further, assume the sampling interval is 30 

seconds. At time index 1 (i.e. start of sampling), sampled (measured) value is known. 

Assuming that at time index 2 (30 seconds after starting), measured value was missed due to 

reasons such as adaptive sampling. Assuming also that at time index 3 (60 seconds after 

starting), measured value was taken. Thus, Box Jenkins models can be used to estimate 

missed value at time index 2. This is because time index 2 is an integer multiple of the 

sampling interval. 

An excerpt for first case discussed above is shown in Table 34. It shows results obtained 

using numerical interpolation methods. Similarly, an excerpt for the second case is shown in 

Table 35.  

Table 34: Estimation of missed values due to high sampling interval 

Date 

(ddmmyy)/ 

Time 

(hh:mm:ss) 

Measured 

Temp. (oC) 
Measured 

PAR1 

(µmolm-2s-1) 

Linear Inter. 

Temp. (oC) 
Linear 

Inter. PAR1 

(µmolm-2s-1) 

 

Cubic Inter. 

Temp. (oC) 
Cubic Inter. 

PAR1 

(µmolm-2s-1) 

10-06-2015 

13:09:15 
30.7 195.0 - - - - 

10-06-2015 

13:09:30 
Missed 

value 
Missed  

value 
30.65 182.50 30.65 179.69 

10-06-2015 

13:09:45 
30.6 170.0 - - - - 

10-06-2015 

13:10:00 
Missed 

value 

Missed 

value 
30.60 166.00 30.60 167.24 

10-06-2015 

13:10:15 
30.6 162.0 - - - - 

10-06-2015 

13:10:30 
Missed 

value 
Missed 

value 
30.60 161.00 30.60 158.21 
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10-06-2015 

13:10:45 
30.6 160.0 - - - - 

10-06-2015 

13:11:00 
Missed 

value 
Missed 

value 
30.60 178 30.60 171.12 

10-06-2015 

13:11:15 
30.6 196.0 - - - - 

10-06-2015 

13:11:30 
Missed 

value 
Missed  

value 
30.55 355 30.57 238 

10-06-2015 

13:11:45 
30.5 514.0 - - - - 

Key: Temp. = Air temperature; Cubic Inter = Cubic spline interpolation; Inter = Interpolation 

 
Table 35: Estimation of missed values due to adaptive sampling 

Date (dd-mm-yy)/ 

Time (hh:mm:ss) 
Measured 

Temp. (oC) 
ARIMA Estimated 

Temp. (oC) 
Linear Inter. Temp. 

(oC) 
Cubic Inter. 

Temp. (oC) 
10-06-2015 

13:09:15 
30.7 - - - 

10-06-2015 

13:09:45 
AM (30.6) 30.65 30.65 30.65 

10-06-2015 

13:10:15 
30.6 - - - 

10-06-2015 

13:10:45 
AM (30.6) 30.60 30.60 30.60 

10-06-2015 

13:11:15 
30.6 - - - 

10-06-2015 

13:11:45 
AM (30.5) 30.60 30.60 30.61 

10-06-2015 

13:12:15 
30.6 - - - 

10-06-2015 

13:12:45 
AM (30.5) 30.56 30.60 30.60 

10-06-2015 

13:13:15 
30.6 - - - 

Legend: Temp. = Air temperature; Cubic Inter = Cubic spline interpolation; AM (XX) = Assumed missing                

and XX represents the measured value if it were not assumed missing. 

For case due to high sampling interval, it would be seen in Table 34 that linear 

interpolation gives better estimation results. For case due to adaptive sampling, it would be 

seen in Table 35 that ARIMA performs better. 

6.1.3     Validations 

The new adaptive sampling method was validated through a step-by-step approach that 

establishes validity of constituents. The models were validated based on: 

• Evaluation of performance parameters of models and their residuals. Results were 

compared with those obtained using other methods. Performance parameters used 

include standard error, coefficient of determination, mean and variances, etc. Mean 

and variance estimates computed using the new method were compared with those 

computed using bootstrap technique. They were found to differ by less than 5%. 

Similarly, standard error estimated using the new method was found to be close to 

those estimated using bootstrap method. 

• Checking with command syntax in order to identify how many measured values lie 

outside the lower and upper confidence interval limits of model predicted values. It 

was found that more than 95 percent of measured values lie within the limits.  
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• Analysis discussed and shown in Table 35 above contributes in validating the method. 

6.2     Determination of Optimal Sampling interval  

In addition to deterministic method of finding optimal sampling interval discussed in 

section 4.2.1, a new stochastic method was proposed and discussed. The new method requires 

that some measured values be available. This is needed in order to determine the stochastic 

model of the variable. The new stochastic method takes into account dynamics associated 

with the variable being measured. It considered properties of the variable in relation to 

process and system used in measuring the variable.  

These are dynamics which vary from system to system, and from variable to variable. Such 

dynamics are often difficult to be represented accurately in mathematical form. This is one of 

the reasons why the new method is data-driven instead of being based completely on first 

principle approach.  

With the new method, continuous measurement is not required after stochastic model has 

been determined. Future values are estimated using model equation. Only few measurements 

at certain time instants are taken so that model is checked and updated if necessary. This may 

also require update of optimal sampling interval. Thus, using estimated stochastic model, 

optimal sampling interval is determined. This is achieved by finding a local maximum time 

index that allows new measured values to fall within the acceptable tolerance of previously 

measured value. The acceptable tolerance is obtained using maximum permissible error 

(MPE). Based on well-known 1:3 ratio of MPE - uncertainty relation, maximum permissible 

error (MPE) is expected to be three times more than uncertainty. This relation is based on 

international standards of ISO 10012:1998, ISO 22514-7:2012, OMIL-R and EA-4/02 M: 

2013 [72 - 75]. 

Uncertainty, which is related to accuracy of measurement, is deduced from technical 

datasheet of measuring device. Consequently, maximum permissible error (i.e. tolerance) of 

measured value can be computed. It then follows that all values of a variable that are within 

tolerance range of its measured value are acceptable based on international standard.  

Therefore, optimal sampling interval is that maximum length of time for which measured 

values are still within the acceptable tolerance range of previously measured value. For 

example, considering data on technical datasheet for Hobo sensor S-THB-M002, its 

maximum permissible error should be (± 0.2)*(3) = ± 0.6 
o
C. Hence, measured temperature 

value of say, 20
o
C has temperature values within 20 ± 0.6

o
C acceptable as accurate and close 

enough to nominal value of 20
o
C. 

The question becomes: “why set sampling interval of air temperature involving this 

instrument to perform several samplings (measurements) within this range (20 ± 0.6
o
C)?” 

Considering above discussion and need to minimize energy consumption, one sampling 

(measurement) suffices for the range 20 ± 0.6
o
C. Air temperature values that lie within the 

range (20 ± 0.6
o
C) are considered as good as the nominal value (20

o
C). Any value within the 

tolerance range can stand in for others. This contributes in reducing energy consumption of 

the system. 

However, in systems where responsiveness to small temperature changes is mandatory, 

repeated temperature measurements are usually required within the tolerance range. For such 

systems, smaller instrument with lower uncertainties and energy consumption should be 
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considered. Alternatively, temperature values could be predicted from measured values. This 

obviously requires a model. Model development methods and steps discussed in this work are 

recommended. The table below shows an excerpt analysis for air temperature measurement 

taken on 2015-05-31 at 22:53:15. 

  Table 36: Optimal sampling interval – air temperature 

Date, Time Measured value (oC) Acceptable tolerance range (oC) Predicted value (oC) 
2015-05-31 

22:53:15 
16.5 15.9 - 17.1 16.5 

2015-05-31 

23:24:45 
 15.9 

From Table 36, it would be seen that for a measured value of 16.5
o
C, length of time 

corresponding to its lower limit of acceptable tolerance range was estimated using stochastic 

model. It was found to be 1890 seconds (31.5 minutes). The upper limit value could as well 

be used and backward prediction performed. This is because air temperature values are 

decreasing with time during the period investigated.  

The analysis was repeated using other measured values of the variable. All results obtained 

were in agreement. Model used in this analysis was based on data obtained using an initial 30 

seconds sampling interval. Therefore using above described system, values obtained when air 

temperature is measured at 31 minutes time interval are within the acceptable tolerance range 

of immediate past measured value. Therefore, 31 minutes is considered as the optimal 

sampling interval. It gives reduction in energy consumption while guaranteeing data quality.  

The above analysis is repeated after some time using measured data. This is required in 

order to update optimum sampling interval in event significant changes occur in measured 

values. For cases involving big data (large and varied datasets), even though stationarity is 

achievable during model fitting, it is recommended that datasets be classified based on 

homogeneity before being modeled. This will reduce variability and simplify models. It will 

also result in several optimal sampling intervals. Impact of various sampling intervals on 

energy consumption has been discussed in section 5.2. For extended reading on determination 

of optimal sampling interval, please see Ezeora et al [76]. 

6.3     New Event-Triggered Sampling Method  

6.3.1     Description of method 

A new event-triggered sampling method was proposed and its algorithm developed. Event-

triggered sampling just like adaptive sampling belongs to the same group known as energy-

aware data acquisition method (see figure 1 in chapter one). Both methods are event-driven. 

They take into account past information. Unlike the conventional (periodic) sampling method 

which is open-loop process, event-triggered and adaptive sampling methods are closed-loop 

processes. This is because data stored in memory are compared against input data appearing at 

sampler or sensing unit. Rate at which this is performed is among the distinguishing factors 

between event-triggered and adaptive sampling methods. Event-triggered sampling is quite 

popular and widely used in applications where quality of data is of main focus. 

In traditional event-triggered sampling method, comparison is made once there is data at 

sensor input. The trigger mechanism is activated and it compares data retrieved from memory 

against data appearing at sensor input. Based on outcome of the comparison, decision is made 
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whether data appearing at sensor input should be sampled or not. In certain designs, feedback 

circuits comprising of hardware components such as digital-to-analog converters are involved. 

They help restore data retrieved from memory to be the same form as the analog data 

appearing at sensor input.  

In this work, new event-triggered sampling method was proposed and discussed. Unlike 

the conventional event-triggered sampling method, adjustments were made in the new method 

in order to improve energy-efficiency. One key adjustment is use of software-only solution 

working with limited hardware. Also, whenever sampling interval is increased, length of time 

for sensor subunit to hibernate (be inactive) is increased since it must make one sensing 

within the adjusted sampling interval. It takes only a few milliseconds for the subunit to sense 

data. Therefore, the new event-triggered sampling method works to reduce total energy 

consumption while maintaining data quality.  

Linear time algorithms that implement the new method were developed and demonstrated 

using PAR and air temperature data obtained from Brazil. The algorithms use statistical 

changepoint detection methods to determine changepoints. Changepoints represent states 

within a series where numerical values of certain statistical properties of the series change. 

The statistical properties may be mean, variance, etc. With fixed sampling rate, data are 

analyzed and compared with estimate. This is to determine if changepoint has occurred. If 

established that changepoint has occurred, the algorithm activates a signal which controls 

ADC clock so that clock frequency is adjusted. Sampling interval is also adapted accordingly 

and sensor senses within the adjusted sampling interval. This adjusts the duty cycle. As a 

result, energy is efficiently managed. 

6.3.2     The Algorithms  

Program and data used in computing and comparing changepoints are saved in a memory 

array. As a result, time required to retrieve and update data from the array is linear. This 

reduces run time of the algorithm. In addition, the algorithm uses only one “for” loop, further 

contributing to linear run time. The table below shows algorithms for PAR and air 

temperature.  

Table 37: Algorithms for PAR and air temperature 

Algorithm for PAR Algorithm for air temperature 

1: ADCcycle = 30 {Initialize ADC total cycle to 30s} 

2: let Sleep = Inactive {initialize sleep} 

3: let S = [] {initialize empty array to store values} 

4: for i = 1 to n do 

5:     if S[i]%2 = 0 ∧ S[i] - S[i-1] = 2 then 

6:        ADCcycle = 300 {let ADC total cycle = 300s} 

7:        while ADCcycle ≤ 300 ∧ Data Register = TRUE 

           do 

8:            let Sleep = Active 

9:        end while 

10:   else 

11:      S = S + 1 {update S[]} 

12:   end if 

13:   increment - ADCcycle 

14: end for 

1: ADCcycle = 30 {Initialize ADC total cycle to 30s} 

2: let Sleep = Inactive {initialize sleep} 

3: let S = [] {initialize empty array to store values} 

4: for i = 1 to n do 

5:     if S[i]%2 = 0 ∧ S[i] - S[i-1] = (-2…+2)  

                            ∧ S[i] <18  

        then 

6:        ADCcycle = 300 {let ADC total cycle = 300s} 

7:     while ADCcycle ≤ 300 ∧ Data Register = TRUE 

         do 

8:            let Sleep = Active 

9:      end while 

10:  else 

11:      S = S + 1 {update S[]} 

12:  end if 
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13:   increment - ADCcycle 

14: end for 

Similarly, Table 38 provides an overview of estimated daily energy consumption of a 

typical ADC (AD7980) using field data from Brazil discussed in case study I.  

 Table 38: Estimated 1-day energy consumption of an ADC without (w/o) and with (w/) proposed algorithm. 

Sampled period 

(every 30 seconds) 
PAR (W/m2) Energy consumed (mJ) 

Without algorithm With algorithm 

Night 

09-09-02 18:00:30 

09-09-03 06:00:00 

Constant at 1.2 

(discussed in section 4.2.1) 
10.06 

(A1) 
1.03 

(A2 + A3 + A4) 

Day 

09-09-03 06:00:30 

09-09-03 18:00:00 

Normal distributed  

(discussed in section 4.2.1) 
10.06 

(A1) 
10.07 

(A1) 

Total 20.12 11.10 

 

where: 

𝐴1 = 1439 ∗ 1000 ∗ (10−9) ∗ 30𝑠 ∗ (106) ∗ (0.000233 ∗ 10−3𝑊) = 10.06 𝑚𝐽    (65)  

 

𝐴2 = 4 ∗ 1000 ∗ (10−9) ∗ 30𝑠 ∗ (106) ∗ (0.000233 ∗ 10−3𝑊) = 0.03 𝑚 𝐽             (66)       

 

𝐴3 = 72 ∗ 1000 ∗ (10−9) ∗ 300𝑠 ∗ (106) ∗ (0.0000233 ∗ 10−3𝑊) = 0.50 𝑚𝐽       (67)   

 

𝐴4 =  71.5 ∗ 1000 ∗ (10−9) ∗ 300𝑠 ∗ (106) ∗ (0.0000233 ∗ 10−3𝑊) = 0.50 𝑚𝐽   (68)                                     

From the above, it would be seen that daily savings up to 45% of ADC energy consumption 

would be achieved while using the proposed algorithm. Performance of the algorithms was 

evaluated with favorable results. Further details are available in Ezeora et al [77].  

6.4     Energy Analysis 

In order to understand better how energy is consumed within sensing unit, energy analysis 

was performed. This is vital since it reveals components whose energy consumption is 

affected most by changes in sampling interval. This is helpful since it could allow the use 

reverse engineering methodology in determining optimum sampling interval. That is, energy 

consumption being a function of sampling interval could be treated as a minimization 

problem. Once solutions to constraint optimization problem are known, optimum sampling 

interval could be deduced. Constraint minimization of energy consumption is not performed 

in this work. It is outside the scope of this work.  

Sensing unit shown in figure 4 of section 1.4 was considered for the energy analysis. Its 

energy model is sum of energy consumption of various modules that constitute the unit. This 

is shown in equation (69). 

𝐸𝑡𝑜𝑡 = 𝐸𝑠𝑒𝑛 + 𝐸𝑠𝑎𝑚 + 𝐸𝑐𝑜𝑚 + 𝐸𝑐𝑎𝑝 + 𝐸𝑐𝑜𝑛           (69)   

where: 

𝐸𝑡𝑜𝑡 represents total energy consumed per conversion, 

𝐸𝑠𝑒𝑛 represents energy consumed by sensor per conversion, 

𝐸𝑠𝑎𝑚 represents energy consumed by charged sampling capacitor per conversion, 
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𝐸𝑐𝑜𝑚 represents energy consumed by ADC comparator per conversion, 

𝐸𝑐𝑎𝑝 represents energy consumed by ADC capacitor array per conversion, 

𝐸𝑐𝑜𝑛 represents energy consumed by ADC control logic per conversion. 

𝐸𝑠𝑒𝑛 constitutes resistive losses dissipated during the sampling (charging) mode. It is 

usually due to sensor output resistance and ADC input resistance. 𝐸𝑠𝑒𝑛 is expressed in 

equation below. 

𝐸𝑠𝑒𝑛 =  
(𝑉𝑟𝑒𝑓 − 𝑉𝑛𝑜𝑚)2

(𝑅𝑜 + 𝑅𝑖)
∗ 𝑇𝑠𝑎𝑚𝑝𝑙𝑒                   (70) 

where: 

𝑉𝑟𝑒𝑓 represents the reference voltage in volt, 

𝑅𝑜 represents sensor output resistance in ohms, 

𝑅𝑖 represents ADC input resistance in ohm, 

𝑉𝑛𝑜𝑚 represents voltage at ADC input. This considers voltage drop due to 𝑅𝑜 and 𝑅𝑖, 

𝑓𝑐𝑙𝑜𝑐𝑘 represents ADC clock frequency in Hertz, 

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 represents number of clock periods or cycles made during the sampling mode when 

sampling capacitor is been charged, 

𝑇𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑓𝑐𝑙𝑜𝑐𝑘

. It represents time required to charge the sampling capacitor. This is the 

same as the acquisition time of the ADC. 

An illustration to help understand the above is provided in figure 55. tp shown in figure 55 

represents time required to complete one clock cycle. 

 
Figure 55: SAR ADC - Sampling time and hold time 

Similarly, 𝐸𝑠𝑎𝑚 is the energy used to charge sampling capacitor. This is twice the energy 

stored in the charged sampling capacitor. This is due to the fact that energy in form of heat, is 

always lost during charging of capacitors due to parasitic resistance effect (capacitor 

equivalent series resistance). Therefore energy stored in a charged capacitor is always half of 

the energy utilized in charging it. 𝐸𝑠𝑎𝑚 is represented in equation below. 

𝐸𝑠𝑎𝑚 = 𝐶𝑠𝑎𝑚𝑝𝑙𝑒 ∗ (𝑉𝑛𝑜𝑚)2                (71) 

where: 

𝐶𝑠𝑎𝑚𝑝𝑙𝑒 represents sampling capacitor in Farad, 

𝑉𝑛𝑜𝑚 represents the analog voltage at ADC input. 
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Furthermore, 𝐸𝑐𝑜𝑚 is energy dissipated by the comparator. Dissipated energy did not 

consider bubble errors at comparator output. It also did not consider losses due to non-

idealities such as jitter, switching and flicker noise. According to Fredenburg and Flynn [29],  

𝐸𝑐𝑜𝑚 is represented in equation below. 

𝐸𝑐𝑜𝑚 = 𝑆𝐹∗𝐶𝑜 ∗ (𝑉𝑑𝑑)2                  (72) 

where:  

𝐶𝑜 represents ADC output capacitance in Farad, 

𝑉𝑑𝑑 represents ADC digital voltage supply in volt, 

N represents ADC resolution, 

𝑆𝐹 =
4

23
(𝑁2 + 12𝑁 + 2). This represents scaling parameter. 

Similarly, 𝐸𝑐𝑎𝑝 is energy consumed by DAC block. DAC block is a set of binary-scaled 

array of capacitors which converts most significant bits to analog voltage references. This is 

required so that comparator can successively compare analog voltage references with input 

voltage. According to Ginsburg [28],  𝐸𝑐𝑎𝑝 is represented by equation (73). 

𝐸𝑐𝑎𝑝 = 2𝑏+1 ∗ 𝜂 ∗ 𝐶𝑢 ∗ 𝑉𝑑𝑑 ∗ 𝑉𝑓𝑠             (73) 

where: 

𝜂 represents efficiency; usually set to 0.7, 

b represents number of binary-scaled capacitors, 

𝐶𝑢 represents unit capacitance, 

𝑉𝑓𝑠 represents full-scale input voltage, 

𝑉𝑑𝑑 represents digital voltage supply. 

Additionally, 𝐸𝑐𝑜𝑛 is energy consumed due to logical operations of ADC. It did not contain 

energy consumed due to fanout. Fanout was not considered because capacitive load of 

capacitor switches are low. According to Fredenburg, J., and Flynn [29], 𝐸𝑐𝑜𝑛 is represented by 

equation (74). 

𝐸𝑐𝑜𝑛 = 𝑏𝑤 ∗ 𝐶𝑠𝑤 ∗ (𝑉𝑑𝑑)2                      (74) 

where:  

𝐶𝑠𝑤 represents the switched capacitance, 

𝑉𝑑𝑑 represents digital voltage supply, 

𝑏𝑤 represents width of shift registers. Control logic unit is assumed to be of shift register type. 

Therefore, total energy consumed becomes sum of all energy consumption components 

deduced above as guided by equation (69). 
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CHAPTER SEVEN 

Conclusions 

7.1     General Conclusions 

In this dissertation, both stochastic and deterministic methods of investigating field data 

have been presented and discussed. Stochastic methods such as Box-Jenkins method, hidden 

Markov model (HMM) and artificial neural network were thoroughly reviewed.  

Both predictive and empirical approaches were applied in studying and analyzing field 

data. With predictive approach, a new stochastic method that gives optimized solutions was 

developed. The new method gives models that accurately predict missed and future values 

with minimal energy. The new method is also useful in determining optimal sampling 

interval. This was demonstrated using real environmental field data. Results obtained were 

validated and satisfactory results obtained. Using the new stochastic method gave estimates 

that were within the acceptable tolerance of missed data. Therefore with the new method, 

missed data are adequately covered since their estimated values are within the acceptable 

range. Data sampling using the new method results in reduced energy consumption with no 

loss to data quality. This fulfills the objective of this work.  

On the other hand, empirical part of this work focused on sampled data. Consequently, 

new type of event-triggered mechanism was proposed and discussed. The mechanism 

investigates sampled data to determine if statistical changepoint has occurred. Based on the 

outcome, it evaluates and decides if sampling interval should be adjusted. Algorithm for the 

mechanism was developed. The algorithm activates a signal which controls ADC clock so 

that clock frequency is adjusted. Sampling interval is also adapted accordingly and sensor 

senses within the adjusted sampling interval. The algorithm has a linear run time and also uses 

one “for” loop. This was demonstrated using real environmental field data. The amount of 

energy that would be saved while using the algorithm in a typical system was estimated. 

Results obtained for PAR indicate a daily savings of 45% in ADC energy consumption. 

Artificial neural network was also used to investigate the field data. Overall mean square 

normalized error performance was good with good R-square values. They indicate good fit of 

model to data. It was also found that datasets of PAR obtained directly under solar radiation 

were more homogenous than those obtained under canopy and in shadow area. This was 

supported by results obtained using the datasets in a descriptive statistical analysis. 

Descriptive statistical results revealed that datasets of PAR obtained directly under solar 

radiation have reduced variability than those within canopy and in shadow area. 

Finally, energy savings in form of extended battery-lifetime was realized when sampling 

interval increased in steps. Results obtained showed that battery lifetime was extended by 

87% when sampling interval was increased from 15 to 30 seconds. 

7.2   Future Work 

One part of the future work is software implementation of developed algorithms and its 

associated test on field. The algorithms should be written in low-level language such as C 

programming language. Thereafter compiled using any complier or with Atmel AVR studio. 

The resulting machine code should be programmed in a microcontroller chip such as AVR 
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microcontroller. The final system should be field-tested. The above is required for validation 

data needed for patent to be obtained. Dongmei et al [78] who developed new compressive 

sampling method while working within the same focus area, has already sought for US Patent. 

Such footstep is recommended.  

In addition, proposed algorithms may have to be standardized using standard changepoint 

detection mathematical equations such as those of Mann-Whitney or Moody. This shall 

broaden scope of its application. However, caution should be exercised so that linear run-time 

order of the algorithm is not altered. As worst case, the algorithms may take quadratic run-

time order. This is important because energy-savings effectiveness of an algorithm depends 

on its run-time order.  

Finally, emerging deep learning methods for time series analysis such as conditional 

restricted Boltzmann machine have to be investigated. At present, information and tools 

relating to them are limited. 
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