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Abstract

SEJKOROVÁ MARIE. 2017. Application of FTIR Spectrometry Using Multivariate Analysis for 
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This work presents the potentiality of partial least squares (PLS) regression associated with Fourier 
transform infrared spectroscopy (FTIR spectrometry) for detecting penetration of diesel fuel into 
the mineral engine oil SAE 15W‑40 in the concentration range from 0 % to 9.5 % (w/w).
As a best practice has proven FTIR‑PLS model, which uses the data file in the spectral range 
835 – 688 cm−1.The quality of the model was evaluated using the root mean square error of calibration 
(RMSEC) and cross validation (RMSECV). A correlation coefficient R = 0.999 and values of RMSEC, 
RMSECV were obtained 0.11 % and 0.38 % respectively. After the calibration of the FTIR spectrometer, 
the contamination engine oil with diesel fuel could be obtained in 1 – 2 min per sample.

Keywords: engine oil, FTIR spectrometry, multivariate analysis, lubricant analysis, lubricant quality, 
diesel fuel, partial least squares (PLS) regression.

INTRODUCTION
Reliability and a length of a service life of vehicles 

or other machines depend not only on operational 
use of the given device but also on features of the oil 
that is used for lubrication (Stodola and Mazal, 2016; 
Raffai et al., 2015; Glos and Sejkorová, 2016).

Lubricants play a key role in extending 
the working life of industrial machines and transport 
means. Lubrication oils are during their operation 
in the lubrication system of an engine exposed to 
high temperatures (Pošta et al., 2016), pressures and 
contamination by undesired materials from outside. 
These factors cause troubles with the operational 
quality of oils and materials of mechanical 
components of a lubrication system. The origin of 
degradation products and the contamination of oil 
from outside cause the additives to decrease.

Among the most basic observed parameters of the 
engine oils that have a direct relation with their 
performance and therefore also with their change 
interval, we can include viscosity, viscosity index 

(VI) and a total base number (TBN) (Al‑Ghouti et al., 
2010).

Based on a change of viscosity, it is possible to 
determine the engine oil degradation as a result of 
thermo‑oxidation reactions, destruction of viscosity 
modifiers due to shear forces, contamination by 
mechanical dirt, water, glycol and fuel (Burg et al., 
1997; Knothe and Steidley, 2007). The effect of 
lubricating oil degradation to the viscosity followed 
Kumbár and Dostál (2013), Kosiba et al. (2013). 
In diesel engines fuel dilution is usually caused 
by excessive idling, defective injectors, or loose 
connections. Most engine oil producers define 
the maximum allowed volume of fuel in the oil as 
4 – 5 % (Glos, 2015).

Veselá et al. (2014) evaluated the effect of biofuels 
E85 and fuel with 95 octane values types on 
the quality and purity of engine oil Mobil 10W‑40 
used in three types of cars. Fluid purity is also one of 
the important features in the entire process (Máchal 
et al., 2013). Hönig and Hromádko (2014) analyzed 
the impact of biofuels on the quality of oil used to 
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fill diesel engines, and established an optimal oil 
change interval.

Penetration of fuel into the engine oil also affects 
another physical characteristics of oil – the flash 
point. A new oil must have a low resistance and 
therefore a high flash point level, usually between 
230 – 240 °C. Penetration of fuel into the oil causes 
that the flash point decreases. The limit value 
for diesel engines is usually defined on a level of 
180 – 190 °C.

The amount by gasoline in the lubricant can be 
determined by distillation and gas chromatography 
(GC) (Mujahid and Dickert, 2012). There are also 
sensors to observe intrusion of contaminants in to 
the motor oil such as fuel (Capone et al., 2008) which 
indicates a defect of the engine, usually the fuel 
injection. There analyzer fuel dilution meter 
(Sejkorová et al., 2016), which employs a surface 
acoustic wave vapor microsensor to measure 
the concentration of fuel in used lubricating oil 
samples by sampling the head‑space in the sample 
bottle.

In recent years, research has been carried out 
to apply FTIR spectrometry with chemometrics 
algorithm for the quality control of lubricant oils. 
Chemometrics is the science discipline that applies 
the mathematic‑statistical methods to the results of 
chemical measuring for the purpose of extracting 
as much relevant information as possible from 
the chemical data (Sejkorová, 2014). The most 
applied multivariate methods are classical least 
squares (CLS), inverse least squares (ILS), principal 
component regression (PCR) and partial least 
squares (PLS) regression. Accordig to Sejkorová 
(2013) and Bassbasi et al. (2013) FTIR spectrometry 
as methods for lubricating oil analysis it is generally 
rapid, can be automated and can reduce the need 
for solvents and toxic reagents associated with wet 
chemical methods.

Al‑Ghouti et al. (2010) dealt with application 
of chemometry in combination with the FTIR 
spectrometry to define the viscosity index and 
the total base number. Caneca et al. (2006) applied 
the FTIR spectrometry in connection with multiple 
linear regression (MLR), PCR and PLS in order 
to predict a viscosity of the motor oil suitable 
for compression‑ignition (diesel) engines. FTIR 
spectroscopy in combination with a PLS (iPLS) 
used Borin and Poppi (2005) for the quantitative 
determination of the penetration of contaminants 
(gasoline, ethylene glycol and water) into 
the lubricating oil.

Glos (2015) and Glos and Svoboda (2015) applied 
special FTIR analyzer Spectro Oil Q400 for 
the determination of contamination and depletion 
of additives in used mineral engines oils.

MATERIALS AND METHODS

Oil samples
In total, 26 samples of motor oil with added diesel 

were prepared for the experiment. The set consisted 
of 10 samples of motor oil Shell Helix HX3 15W‑40 
contaminated by diesel with added rapeseed oil 
methyl ester (RME) in concentration of 0 – 7.62 % of 
mass, and 16 samples of motor oil Rubia 15W‑40 
contaminated by a pure diesel in concentration of 
0 – 9.5 % of mass.

For weighting, the laboratory scales Denver 
Instrument SI‑2002 accurate to ±0.01 g were used.

Acquisition of IR spectra
Infrared spectra were recorded by a FTIR 

spectrometer Nicolet iS10 (Thermo Scientific) 
equipped with deuterated triglycine sulfate detectors 
(DTGS) and a horizontal attenuated total reflectance 
(ATR) with ZnSe crystal. The device is equipped with 
an OMNIC software that allows setting parameters 
of the spectrometer, controls the measurement itself 
and runs subsequent operations with the spectra. 
MIR spectra of the motor oil samples were 
collected over the spectral range 4,000 – 650 cm−1. 
Measurement parameters: resolution 4 cm−1, 
number of spectrum accumulations 64.

Obtained data were processed by TQ analyst 
version 8 (Thermo Scientific, Inc., USA), QC Expert 
version 2.5 (TriloByte, Czech Republic).

Data analysis
In the research, the PLS regression algorithm was 

employed to build quantitative calibration model 
for concentration diesel fuel in mineral engine 
oil. Helland (1990), Yeniay and Goktas (2002) 
describes the principle of the PLS regression.

The evaluation of the calibration performance was 
assessed by root mean squared error of calibration 
(RMSEC) and correlation coefficient (R) (Sejkorová, 
2014).

The FTIR‑PLS calibration model was obtained 
with optimum number of latent PLS factor; it was 
selected based on the predicted residual error sum 
of squares (PRESS) by the cross‑validation results. 
PRESS (Yeniay and Goktas, 2002) is described in Eq. 
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where (cie) are values predicted by FTIR‑PLS model, 
(cir) are actual values and mc is a number of calibration 
standards. PRESS diagnostics tested a change of 
value of root mean square error of cross validation 
(RMSECV) when a factor is added to the calibration 
model (Helland, 1990). The performance of the final 
PLS model is evaluated according to RMSECV, 
a leave‑one‑sample‑out cross‑validation (Juránek 
et al., 2012) is performed: the spectrum of one sample 
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of the calibration set is deleted from this set and 
the PLS model is built with the remaining spectra of 
the calibration set. The left‑out sample is predicted 
with this model and the procedure is repeated with 
leaving out each of the samples of the calibration set.

RESULTS AND DISCUSSION
The infra red (IR) spectra of two new engine 

oils: Shell Helix HX3 15W‑40 (red) and Rubia 
15W‑40 (blue) are shown in Fig. 1. The main 
peaks observed in Fig. 1 are associated with major 
functional groups present in this type of engine 
oils. Infrared peaks at 2,954, 2,920 and 2,848 cm−1 

correspond to CH stretching of saturated n‑alkyl 
groups (Hirri et al., 2013).

The band at 1,707 cm−1 can be referred to as 
polymethacrylate in the oil samples. According 
(Al‑Ghouti and Al‑Atoum, 2009) polymethacrylate 
is being used as a viscosity modifier and a pour‑
point depresant additive for engine oil and typically 
exhibits the bands at 1,707 and 1,156 cm−1. According 
to Kupareva (2012) IR spectra at 1,456 cm−1 show 
CH deformation of CH2 and CH3 groups, which 
are associated with the carbonates of overbased 
sulfonates. Vibrations at 1,376 cm−1 and 1,156 cm−1 

correspond to CH3 vibrations of n‑alkanes. Spectral 
band associated with the P–O–C bond of Zinc 
dialkyl dithiophosphates (ZDDPs) is around 
974 cm−1. ZDDPs are organometallic compounds, 
which are one of the most effective antioxidants. 
The characteristic frequency of ZDDPs (P = S bond) 
is also around 660 cm−1.

The PLS regression method was used to 
construct the calibration models. These methods 
work with the whole spectrum or its parts; their 
basis is to compress the spectral information into 
new variables – PLS factors that represent linear 
combinations of original absorbances and that 
have no mutual correlation. Each component is 
a linear combination of original absorbances; its 

fundamental attribute is the degree if variability − 
dispersion.

Previous studies of the author’s paper (Sejkorová, 
2014) have shown that spectral region and 
the number of latent PLS factor are key parameters 
for construction of good calibration models.

The two statistics ware used for identifying 
outliers in the calibration set, it was sample leverage 
and the studentized residuals (Marinović et al., 
2012a). One sample of 26 set samples was identified 
as an outlier. For model was chosen spectral region 
where the change in absorbance correlates the most 
with varying the concentration of fuel in the engine 
oil. The calibration model for the spectral range 
835 – 688 cm−1, ie. matrix of range (25×147), was 
tested. Fig. 2 shows spectrum for new oil and diesel 
fuel in the studied spectral region. The bands in 
IR spectrum between 700 and 850 cm−1 can be 
associared to large number of skeletar vibration 
of various ring structures (Marinović et al., 2012b). 
Those vibrations in IR spectrum corresponding to 
out‑of‑plain aromatic CH stretching exhibit stronger 
intensity (Andrade et al., 2003) and well‑separated 
peaks at 803, 764, 740, 722, and 697 cm−1.

Borin and Poppi (2005) state that for gasoline 
determination the region from 650−784 cm−1, 
attributed to aromatics, was selected.

In determination of the optimal number of 
factors RMSECV is very important, because it 
shows the changes in the RMSECV value with 
an increasing number of factors that are used in 
model development of each single characteristic. 
When a PLS model is calibrated, all of the relevant 
concentration information of diesel fuel and 
spectral information in the analysis region or 
regions of the calibration standards is condensed 
into a set of factors. The parameter RMSECV 
reached the minimum value 0.38 % with use of 8 PLS 
factors (Fig. 3).

In Fig. 4, we observe the excellent correlation 
coefficient (R = 0.999) between actual and 
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predicted values for calibration sets. The value 
RMSEC = 0.11 %.

The calibration, set used to construct FTIR‑PLS 
model, to determine the concentration diesel fuel 
in engine oil was also tested by cross‑validation 
with sequential leaving one calibration point out. 
An important result is a correlation coefficient of 
cross validation (Rcv) (Sejkorová, 2014) that reached 
the value of Rcv = 0.989 with RMSECV = 0.38 %. 

Borin and Poppi (2005) reached the almost the same 
errors when testing external standard lubricating oil 
with gasoline (RMSEP = 0.34 %).

Values of diesel fuel predicted by the FTIR‑PLS 
model were then statistically compared by QC 
Expert software against results the actual values. 
The pair t‑test (α = 0.05) proved that differences 
between actual and predicted values were not 
statistically significant.
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CONCLUSION
Fast instrumental methods which provide qualitative as well as quantitative data about degradation 
processes in the exploited oil fill include FTIR spectrometry. With the development of information 
technologies and the expansion of software equipment of spectrometers with highly‑demanding 
mathematic‑statistical methods, chemometric predictive models are developed which allow for 
obtaining many parameters of non‑chemical (most often physical) character, from a single spectrum 
by means of multi‑component analysis of oils.
In the paper, we present a methodology for construction of the FTIR‑PLS regression model for 
purposes of determination of contamination of the mineral engine oil by a pure diesel and by a diesel 
with added rapeseed oil methyl ester.
The region from 835 – 688 cm−1, attributed to aromatics, was selected for diesel fuel determination. In 
the determination, the RMSEC = 0.11 %, R = 0.999 and RMSECV = 0.38 %, Rcv = 0.989.
If the developed methodology for other monitored parameters of degradation and contamination of 
the engine oil (e.g. viscosity, viscosity index, total base number, total acid number, ethylene glycol 
and water), it would be possible within 1 – 2 min of a single spectrum provide several monitored 
quantitative parameters per sample.
Common evaluation of engine oil samples by means of classical standardized methods does not lead to 
results in time that would be short enough; this delays remediary actions in operation. Disadvantages 
of FTIR‑PLS procedures include lower precision as compared to primary methods and considerable 
experimental demands of creating a quality model.
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