
Detection of Errors in the Layout Design of Websites for
Mobile Devices Based on Capturing User Behaviour

Lukáš Čegan and Petr Filip

University of Pardubice, Pardubice 530 02, Czech Republic
Email: lukas.cegan @upce.cz; petr.filip1@student.upce.cz;

Abstract — Smart mobile touch devices with a small screen
such as mobile phones or tablets have become part of everyday
life. These devices are taking over conventional personal
computers and are increasingly used for accessing web-content.
For website developers it is a new challenge which brings issues
in the development strategy, because PCs are used differently
than mobile touch devices. Adapting web design for every
device has become a necessity and a responsive web-design has
become standard for every newly developed website. Even if
the website development is driven by best practices and
developer`s experiences, issues that decrease user experience
(UX) on the specific device still exist. This paper presents
architecture for capturing user behaviour, followed by a
statistical evaluation process which helps to detect errors in the
layout design of websites. Information on website use is
gathered from real users. Evaluated data is used as feedback for
UX-designers who can improve web-design for specific devices
and increase user experience.

Index Terms—User Experience, Analytical Tool, Web
User Behaviour, HTML5

I. INTRODUCTION

According to the stats1, the popularity of smart mobile
touch devices like smart phones and tablets is growing
year by year (see Fig. 1). In the past five years, the
worldwide market share of using devices for web content
accessing has totally changed. Due to lower prices,
mobile devices became more available for more people
and in 4Q2016, mobile devices began to dominate the
worldwide market share and the trend is still continuous.
Because the worldwide market share of these smart
devices is still growing, we should pay more attention to
them.

Fig. 1. Chart: Desktop vs Mobile vs Tablet Market Share

Worldwide

1 http://gs.statcounter.com/platform-market-share/desktop-mobile-
tablet/worldwide/#monthly-201306-201706

The web content consumed on a mobile web browser
is different from that on a desktop web browser. The
main difference between these platforms is the size of the
screen and the way of control. While a conventional
desktop computer is controlled by a mouse and a
keyboard, phones and tablets are controlled by touch
gestures.

Nowadays, website development is not a job for only
one person but for whole teams. These teams are mainly
composed from roles like UX-designer, web-designer,
programmer and server administrator. Together they
create a chain, which covers the basic needs of modern
website development.

Web-designers mostly collaborate with UX-designers
and they have to face this situation of web design
optimizing, which means updating page style and content
for the best user experience on different devices. This is
because users use devices with different screen
resolution, screen size and web browser. All of these
aspects can affect the final look of the web-page and that
affects user behaviour and user experience on the device.

In the following list are three options that can be used
for dealing with the difference between desktop and
touch devices:

• Responsive web-design (RWD) — the key idea
is to manage one website which can be used
across multiple devices with different screen
sizes. To achieve RWD, flexible grid, fluid
images and media, and CSS32, media queries are
used. The web content is adapted according to
the rules specified in CSS files [1]. Many free
CSS frameworks were developed to make web-
development easier. These CSS frameworks are
solving problems such as cross-browser
incompatibility or RWD. In addition, they
contain typography style definitions for HTML
elements and CSS helpers classes for more
advanced components [2]. For example, the well
known CSS frameworks are Bootstrap3 (created
at Twitter) and MaterializeCSS 4 . Differences
between them are mainly in the complexity.
Some CSS frameworks are more lightweight and

2 Cascading Style Sheets
3 http://getbootstrap.com/
4 http://materializecss.com/

it is therefore intended for simpler and smaller
websites.

• Native mobile web — can be realized as another
website on a sub-domain. An example of this
implementation is Facebook which has a website
running on http://facebook.com and a native
mobile web is available on
http://m.facebook.com. This solution can meet
specific requirements of mobile devices such as
backward compatibility with an older mobile
browser, which does not support new HTML55
and CSS3 standard. Next is to save data
bandwidth because images can have appropriate
(lower) resolution, smaller CSS, and optimized
JavaScript files.

• Native application — solution is very different
in comparison with the previous options. Native
application can access the device hardware via
an API6 of OS7. On the other hand, development
of native application is related to a specific OS
and different technologies can be used [3].

Page loading is another aspect of user experience [4].
In the case of mobile devices, consideration of device
performance and network connection is needed, because
users naturally prefer fast page loading with minimum
data bandwidth. That is the reason why CSS files of
frameworks are minified and placed to the CDNs 8 . It
helps to reduce network latency [5-6].

 Page loading is not only about page size but also about
code structure of HTML file. Even small change such as
placing JavaScript code at the end of the source code file
will improve page loading [7].

II. STUDY BACKGROUND

This study attempts to explore some of the information
that can be gathered by tracking user behaviour and
evaluating it. User behaviour tracking can make the UX-
designer aware of how, in fact, the mobile web is used.
Evaluating of gathered data can point out barriers,
bottlenecks and problems. It can also show unexpected
user behaviour like content zooming, scrolling or device
rotating, which decreases user experience because
consuming of the web content must be with minimum
effort and without barriers.

For gestures such as click, move and scroll, only one
finger (and one hand) is needed. However, during zoom
(pinch-to-zoom) action, the user is forced to use two
fingers, which means using both hands. This can be
understood as increased effort. Content zooming can
indicate problems such as low contrast between font and
background, small font size, or badly designed elements.

Fig. 2 shows the difference between user behaviour on
non-responsive and responsive websites. In the case of

5 HyperText Markup Language
6 Application Programming Interface
7 Operating System
8 Content Delivery Network

responsive web design, the user immediately knows the
website layout because common practice is placing the
navigation collapsible bar on the top and content
underneath.

In the case of non-responsive web design, navigation
could be on the top, left or right side. It needs focusing on
a thumbnail element and zooming to it. After that, the
user does not find the required navigation link and needs
additional zoom or move action. This could be followed
by a click on the navigation link.

Bad user experience is also presented in Fig. 3 ,which
shows different user experience during reading an article
using both non-responsive and responsive web designs.
The responsive web design is much easier to use for
reading on small touch screens [8]. Also, the sum of
gestures for non-responsive design is higher than for
responsive design.

Another kind of problem is using disabled gestures
such as zoom on responsive websites. Typically, it may
be images or tables which sometimes the user wants to
explore in more detail. Currently available tracking tools
cannot detect this problem, and UX-designers cannot
reflect the user's needs.

Fig. 2. Non-responsive web design vs. responsive web design:

navigation on website

Fig. 3. Non-responsive web design vs. responsive web design:

article reading

III. RELATED WORK

A. User Experience

Problem exploring can be generalized. Based on this
information, tools and techniques for automated web
design adaption can be developed.

One of the tools which helps to make a better user
experience is W3Touch. This tool uses a missed links
ratio (how often touches miss an intended target to
register actions that were intended, but did not get
triggered) and zoom level as metrics. From this
information, it is possible to make rules which adapt the
web interface [9].

Another UX issue is related to cross-browser
compatibilities. Web standards such as HTML5 and
CSS3 introduce new capabilities, which are not
supported in some web-browsers. For sure, these new
capabilities could be implemented differently by
developers or companies. Both circumstances could lead
to different layout representation. This problem occurred
more frequently in the past and web-developers had to
make many hacks to display the web-pages correctly on
the most used web-browsers.

The study aimed at solving this issue by introducing an
alignment graph (AG) which is created from DOM and
page layout. The AG is used to represent two kinds of
relationships between the elements of the layout of a web
page. Evaluation is based on a comparison of two AG
[10].

Consideration of a different web-browser is not
enough, and RWD has to be in mind. Upon concepts
associated with the AG was made a study that introduces
Responsive Layout Graph and a method that can
automatically detect potential layout faults in
responsively designed web sites [11].

Another study applies techniques from the field of
image processing to analyze the visual representation of a
web page, identify presentation failures, and then
determine which elements in the HTML source of the
page could be responsible for the observed failures [12].
As already mentioned, modern CSS frameworks solve
this issue, but more research? is still needed.

Another research is focused on prioritizing the content
most relevant to user’s preferences. In this work the
design and implementation of KLOTSKI is presented —
a practical dynamic reprioritization layer that delivers a
better user experience [13].

Eye tracking is another practice which can help
increase user experience. This technique allows to record
places on the web-page where the user is looking [14].
Variety of solutions exist (many of them commercial) but
all suffer from one or more of the following:

• high cost,
• custom or invasive hardware
• inaccuracy under real-world conditions.

One of the research from academic environment which
tried to overcome this problem is iTracker, a deep
convolutional neural network for predicting gaze [14].

It is only a matter of time when a web-camera or a
mobile-front-camera will be used as a common part of a
device to control such touch gestures.

B. Platform for Remote User Tracking

For the purpose of user tracking, a lot of platforms are
available. One of the best known is Google Analytics9
(GA), which is focused on business needs such as
conversion ratios. These ratios are highly connected to
advertisement evaluation. Very similar but paid and very
advanced tool for tracking users is Kissmetrics10. This
software provides easy and powerful user interface and
allows to create custom metrics easily.

The best known open source representatives from the
category of analytical software are Piwik11 and Open
Web Analytics12 (OWA). Both of them are based on

• PHP 13 — scripting language for web
development,

• MySQL14 — database system,
• JavaScript.

Due to that it is possible to install them on their own
server and use it without limitation of the service provider.

None of them provide fully detailed information about
users' steps. The granularity is on a page request level,
which could be insufficient for the UX-designer since
more detailed information is needed. Even though
gathered information can provide useful information for
the UX-designer, detailed data cannot be analyzed
because page layout information is missing.

Unamo15 is a software for web analysis providing a
functionality feature such as session replay that allows
users steps to be seen, even on touch devices. But this
tool does not provide any automated evaluation, only an
individual session replay that could be time-consuming.
A similar software is Smartlook 16 ,which provides
additional session recording offer heatmaps of clicking
and scrolling.

The next kind of UX analytical tools is based on
surveys. The UX-designer specifies scenarios, defines
representative person profiles, and then a website is
served to the tester (survey participant). An example of a
system like this is TryMyUI17.

IV. USER TRACKING SYSTEM ARCHITECTURE

Fig. 4 shows a proposed tracking system architecture
with dominant data flow processing. Architecture is
divided into the following parts:

9 https://www.google.com/analytics
10 https://www.kissmetrics.com/
11 https://piwik.org
12 http://www.openwebanalytics.com
13 http://php.net/
14 https://www.mysql.com/
15 https://unamo.com/
16 https://www.smartlook.com/
17 http://www.trymyui.com

• Web-client — is represented as the user who
uses touch mobile device for web browsing.

• Web-server — contains the whole website
source code, and provides web-page when the
web-client sends request for page and resources.

• Tracking library — provides JavaScript tracking
code and receives all data gathered from client
web browser and sends to Tracker repository.

• Tracker repository — keeps data for evaluation
systems.

• Evaluator — processes data from Tracker
repository. Results are used as feedback for UX-
designers.

A. Tracking Implementation

For evaluation purposes, it is crucial to obtain device
identification which is represented as a device fingerprint.
The fingerprint can be computed from device properties
like user agent, screen resolution, color depth, etc. Due to
computing from many device properties, each fingerprint
should be unique but depend on the algorithm used. For
lab purposes, Fingerprintjs18 is used.

Tracking library is JavaScript based. For tracking user
action, the method addEventListener()19 is used, which
waits for a user action that invokes a web-browser event.
Examples of accepted event types 20 are "touchstart",
"touchend", "orientationchange", etc.

Explanation for Fig. 4 (numbers in the following
paragraph are related to the figure): Firstly, web-page
loading from web-server (1) is needed and then tracking
library code (2) is loaded. When a listened web-browser
event is invoked, then it is processed by an event specific
method. Data is then sent to the Tracker repository (3)
where it is saved to the directory whose name
corresponds to device fingerprints. Every event is saved
separately with a unique identifier to this directory. After
that, the Evaluator loads data from the Tracker repository
and uses evaluation algorithms (4).

Fig. 4. Tracking system architecture

18 https://github.com/Valve/fingerprintjs2
19 https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/a

ddEventListener
20 https://developer.mozilla.org/en-US/docs/Web/Events

B. Captured Data

Captured data is stored to a JavaScript object which is
composed of

• meta-data,
• event specific data,
• view-port snapshot,
• whole page snapshot.

Triggered events are based on user action
• on page loaded — is sent information about user

device and about loading performance,
• on touch gesture — it includes touch gestures as

zooming, scrolling and tapping,
• on changed device orientation (portrait,

landscape).
Every captured event contains different kinds of data.

For example, during device orientation change, it is
useful to get current coordinates of view-port and zoom
level, but in the case of loading performance information,
it is not necessary to gather zoom level.

For data evaluation it is necessary to attach basic meta-
data such as

• device fingerprint,
• time stamp,
• website identifier,
• current page,
• current page parameters,
• event type — on page load, zoom, tap, device

orientation change,
• message number — ordinal number of captured

action.
In order to relate captured user action, it is necessary to

make a screen-shot of the view-port and the whole
rendered page.

Elements which are fully in view-port height are
considered, as is shown in Fig. 5.

A more accurate and more complicated solution is to
find out how much area of element is in view-port, but it
may decrease web performance (dependent on the
algorithm).

Information about visible elements in view-port is sent
as a collection of full path in DOM21 which is used in the
evaluation process. Example of full path in DOM of
visible element in view-port:

Fig. 5. Elements that are considered for view-port evaluation

21 Document Object Model

body>div#box>table#myTable>tbody>tr:nth-
child(2)>td:nth-child(0)

The reason why element Id's are not used, is that not
every element has one. This way of proposed view-port
data representation is inconvenient because of the transfer
of large amounts of data, but it is very accurate. To
reduce data volume, it is possible to use a data
compression library.

Almost similar, are represented DOM elements of a
page snapshot, but x and y coordinates, width, height and
element background color is added. This information
suffices for reverse rendering of a rough page skeleton,
which can be seen in Fig. 5. For better network
performance, sending a page snapshot can be considered,
only if the DOM is changed.

Another way how to implement capturing of visible
elements is to use hardware or software emulation.
Limitation of both solutions is that it is possible to render
only pages without any interaction, and only those which
are publicly accessible.

C. Sending Data

Communication between Web-client and Tracker
repository is provided by XMLHttpRequest22 API, due to
the possibility of sending gathered data. Example of how
data is sent via HTTP23 POST method to the Tracker
repository.
var c = new XMLHttpRequest();
c.open("POST", "http://srv.com/", true);
c.setRequestHeader("Content-Type",
"application/json");
var jsonData = JSON.stringify(jsObject);
c.send(jsonData);

Code example shown sending data in JSON24 format.

V. EVALUATION

The evaluation of measured data is based on statistical
processing using the Pearson's chi-squared test. In the
first step, it is necessary to divide the captured data into
groups according to the size of the device screen.
According to the standard sizes of displays, the following
groups are proposed: 240 x 320, 320 x 480, 360 x 640,
480 x 800, 640 x 960, 750 x 1334, 1080 x 1920 (px).
Data in each group will be assessed separately. In the
second step, there is excluded data from each group
which meets the following conditions:

(a) user zoom in content of a page,
(b) the page was oriented on landscape.

In the third step, each page
(i) was split to segments,
(j) according to the height of the group (Fig. 6).

22 https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpR e

quest
23 HyperText Transfer Protocol
24 JavaScript Object Notation

Fig. 6. Segments of web-pages

In the fourth step, there is a test to determine whether

the occurrence of rotation in each segment is only a
matter of coincidence, or whether the rotation between
the segments is the occurrence of a systematic problem.
For this reason, a null hypothesis H0 is constructed and it
is accepted or rejected by the Pearson's chi-squared test.
An equation (2) is used to calculate the theoretical
incidence of rotations, provided that (1).

 00 : pppH ji == (1)

∧

= iii pnσ
(2)

where:

in

= total impressions i-th segment,

∧

ip

= expected rotation probability of the i-th
segment (3)

N

f
pp

i

i

∑==
∧∧

0

(3)

where:

N = total number of hits on all segments,

if
= empirical frequency of rotation.
Subsequently it is necessary to test the
hypothesis H0 using (4)

 ∑
−

=
k

i i

if
X

σ
σ 2

2)(

(4)

where:

k = the total number of segments.
If (5) is valid, then the hypothesis is rejected.

Otherwise, the hypothesis is accepted.

)(> 2
1

2 α−kXX (5)

To be able to determine in which segment the users
rotate the screen due to errors in page layout, the Tukey's
method can be used for multiple comparisons (6).

)
11

(
2

1
)(,

ji

InIji
nn

sqpp +≥




 − −

∧∧
α

(6)

where:

s = standard deviation of

∧
p ,

)(, αInIsq −
= critical value of studentizet distribution.

For better graphical representation of defective
segments (Fig. 7), the color scheme is proposed where:

• extreme values are red,
• outlying values are orange,
• the rest values are yellow.

VI. DISCUSSION

Unlike the related studies that are based on pages
transformation to the graphs or to the images, which are
followed by comparing them, a different approach was
proposed based on a statistical evaluation which brings a
new point of view. In the proposed approach the final
web-page appearance or UX-designer intention is not
important, but it is aimed at uncovering a bottleneck in
the user-experience. Actually, the proposed evaluation
method is limited only to the display rotation. Other
research should be directed to combine multiple metrics
such as pinch-to-zoom, page-scroll and touch moves to
the one method. It is also possible to find other
overlooked data from sensors such as gyroscope or
accelerometer, which could be used for adaption of user
interface.

VII. LIMITATION AND FUTURE WORK

The possible limitation of the proposed method is that
the badly designed elements are not exactly highlighted,
only the segments are. The right combination of gathered
information about visible elements in the viewport helps
to identify the bad element. But every resolution can
affect different elements. Experienced UX-developer
should immediately recognize the badly designed element
in the segment according to the evaluated data.

Fig. 7. Example of graphical representation of defective

segments

One of the biggest technical issues is how to get a real
screen-shot of layout from the device. As is described, the
proposal is to get only coordinates, width and height of
all elements and according to these attributes, create a
page skeleton as a canvas image. For this purpose it is
possible to use an existing JavaScript library named
HTML2Canvas25 which provides page rendering based
on coordinates and properties of page elements. But
techniques of reverse rendering may not be accurate, and
that means pages may look different on a real mobile
device than a reassembled page render. HTML2Canvas
generates images that are not reasonable to transfer
because of the image size. Because of that, transferring
only coordinates of page element is considered.
According to this information the page on the server is
rendered.

For mobile users, it is reasonable that data bandwidth
should be as low as possible. In the production version of
the tracking application, considering appropriate data
compression is needed.

The next issue is a fingerprint. If a fingerprint is not
unique for all devices, it is not possible to distinguish
them. This error affects the final evaluation and will
influence its results. For evaluation based on the proposed
method, it is not necessary to consider fingerprints.

Every user can have more than one device and
according to the fingerprint, it is not possible to identify
the user of the device, but only the device itself. This
problem can be solved by adding extra information about
the user (such as email) from the web application.

Gathered data can be used as a basis for other tools for
automated updating of mobile user interface, such as the
already mentioned W3Touch or web-page prefetching.

VIII. CONCLUSIONS

Smart touch mobile devices are having a bigger impact
on everyday life. Nowadays these devices are used for
consuming information on the internet more than ever.
One of the biggest disciplines is how to provide perfect
user experience on any device. That is the new challenge
for web developers who have to deal with developing
websites for heterogeneous devices, with different screen
size, screen resolution, operating system and many more
aspects. This paper described architecture for tracking
user action such as gestures. Every user action is saved to
a data repository and then provided for statistical
evaluation. Results can notify the UX-designers of any
badly designed element which is needed to update CSS
files. Also, the evaluated data shows unexpected user
behaviour on specific segment of web-pages.

ACKNOWLEDGMENT

This work is published thanks to the financial support
of the Faculty of Electrical Engineering and Informatics,

25 https://html2canvas.hertzen.com/

University of Pardubice under the grant SGS_2017_025
“Active Monitoring of Web Users Behaviour”.

REFERENCES

[1] C. Sharkie, A. Fisher, Jump Start Responsive Web Design,
2013

[2] N. Jain, “Review of different responsive CSS Front-End
Frameworks,” In Journal of Global Research in Computer

Science, 2014, vol. 5, no. 11, pp. 5-10
[3] W. Jobe, “Native Apps Vs. Mobile Web Apps,”

International Journal of Interactive Mobile Technologies
(iJIM), 2013, vol. 7, no. 4, p. 27, doi:
10.3991/ijim.v7i4.3226

[4] E. Bocchi, L. D. Cicco, D. Rossi, “Measuring the Quality
of Experience of Web users,” In ACM SIGCOMM

Computer Communication Review, 2016, vol. 46, no. 4, pp.
8-13, doi:10.1145/3027947.3027949

[5] M. Pathan, R. Buyya, A. Vakali, “Content delivery
networks: State of the art, insights, and imperatives,” in
Content Delivery Networks, 2008, pp. 3-32, doi:
10.1007/978-3-540-77887-5_1

[6] M. Wang, et al., “An overview of Cloud based Content
Delivery Networks: Research Dimensions and state-of-the-
art,” In Transactions on Large-Scale Data- and

Knowledge-Centered Systems XX: Special Issue on

Advanced Techniques for Big Data Management, 2015, pp.
131-158, doi: 10.1007/978-3-662-46703-9_6

[7] W. Li, et al., “Reordering Webpage Objects for Optimizing
Quality-of-Experience,” In IEEE Access, 2017, vol. 5, pp.
6626-6635, doi: 10.1109/ACCESS.2017.2689002

[8] N. Yu, J. Kong, “User experience with web browsing on
small screens: Experimental investigations of mobile-page
interface design and homepage design for news websites,”
Informatics Science, February 2016, vol. 330, pp. 427-443,
doi: 10.1016/j.ins.2015.06.004

[9] M. Nebeling, M. Speicher, M. Norrie, “W3touch: metrics-
based web page adaptation for touch,” In Proc. SIGCHI

Conference on Human Factors in Computing Systems,
Paris, 2013, pp. 2311–2320, doi:
10.1145/2470654.2481319

[10] R. S. Choudary, M. R. Prasad, A. Orso, “X-PERT:
accurate identification of cross-browser issues in web
applications,” In Proceedings of the 2013 International

Conference on Software Engineering, 2013, IEEE Press,
pp. 702–711, doi: 10.1109/ICSE.2013.6606616

[11] T. A. Walsh, P. McMinn, G. M. Kapfhammer, “Automatic
Detection of Potential Layout Faults Following Changes to
Responsive Web Pages (N),” In 2015 30th IEEE/ACM

International Conference on Automated Software

Engineering (ASE), 2015, pp. 709-714, doi:
10.1109/ASE.2015.31¨

[12] S. Mahajan, W. G. J. Halfond, “Finding HTML
Presentation Failures Using Image Comparison
Techniques,” In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software

Engineering, September 2014, pp. 91-96 doi:
10.1145/2642937.2642966

[13] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, V.
Sekar, “Klotski: Reprioritizing Web Content to Improve
User Experience on Mobile Devices,” In 12th USENIX

Symposium on Networked Systems Design and

Implementation (NSDI ’15), 2015, CA: USENIX
Association, isbn: 978-1-931971-218, pp. 439-453

[14] S. Djamasbi, “Eye Tracking and Web Experience,” AIS

Transactions on Human-Computer Interaction, 2014, vol.
6, no. 2, pp. 16-31.

[15] K. Krafka, et al., “Eye tracking for everyone,” In
Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 2176-2184, doi:
10.1109/CVPR.2016.239

Lukáš Čegan received his M.Sc. and Ph.D.
from the Czech Technical University in Prague. He is currently
a vice-dean for international development and external relations
at the University of Pardubice. He is a member of the research
team engaged in the development of mobile navigation systems
in transport area. His main research areas are enterprise system
integration and development of middleware applications.

Petr Filip received his B.Sc. from Jan
Evangelista Purkyně University in Ústí nad Labem. Then he
received M.Sc. from the University of Pardubice where he is
currently studying a Ph.D. program. His dissertation work is
aimed at performance and user experience of web applications.

