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Abstract— It is common in engineering to model time-
dependent variables as diffusion process represented by 
stochastic differential equations. This is usually helpful when 
empirical datasets describing time evolution of variables are 
available. This helps in accurate estimation of parameters of the 
stochastic differential equation which describes the dynamic 
system. Additionally, it helps in characterization and 
determination of optimal performance of the system. The above 
have been conducted in this study using real environmental field 
data. Linear stochastic model was fitted to longitudinal datasets 
and optimum sampling interval investigated. A new method has 
been proposed for determination of optimum sampling interval. 
Results obtained differ from those of hypothetical optimum 
which do not take energy consumption into consideration. 
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I.  INTRODUCTION 

The application of stochastic differential equations (SDE) 
and stochastic partial differential equations (SPDE) in 
modeling and analysis of electronic and embedded systems is 
gaining huge attention. In wireless communication systems, 
SDE models are developed and used to analyze networks [1]. 
SDE models are also been used to model and analyze electrical 
power networks and systems [2, 3, 4 and 5].  

For measurement systems, limited work involving 
stochastic differential analyses exist. This study is timely now 
there is strong focus on energy-efficient ways of determining 
optimum sampling interval of measurement systems. While it 
helps to realize an energy-efficient system, it also contributes 
in the integration and use of electric power from low-grade 
energy sources. 

In complex systems which operate with numerous 
measurement systems, such as autonomous vehicles, 
determining optimum sampling interval and filtering of noise 
emanating from sensors are vital. They help in the development 
of algorithms required for effective and efficient operations of 
the system. Determining optimum sampling interval and noise 

filtering complement each other. Optimum sampling interval 
requires that accurate model and its statistical estimates be 
computed. They represent important statistical properties of the 
variable, in the mist of noisy and partial sensor observations. 
Consequently, they require modern stochastic filtering 
techniques. Studies relating to dynamic stochastic processes 
cannot be separated from this. It is on this framework that this 
study is based.  

In this study, a stochastic method of modeling longitudinal 
datasets is discussed. It also proposed a new method of 
determining energy-efficient optimum sampling interval. 
Impacts of various sampling intervals on model estimates were 
also discussed. Hypothetical optimum sampling interval is also 
discussed. 

At this juncture, it shall be noted that sampling interval as 
used in this context refers to sampling time-interval. It is the 
time interval separating successive samplings or observations.  

Finally, this study consists of eight sections. Section I 
provides background information relating to problem 
statement, objectives and areas of applicability of the results. 
Section II provides the mathematical background.  Section III 
provides information on sampling design and characterization 
of data used in the analysis. The methodology is discussed in 
section IV while results obtained are explained in section V. 
Determination of energy-efficient (optimum) sampling interval 
is discussed in section VI while impacts of using different 
sampling intervals are discussed in section VII. Concluding 
statements are presented in section VIII. 

II. MATHEMATICAL PRELIMINARIES 

A stochastic differential equation (SDE) can be represented 
as shown in equation (1). ݀ܺ௧ሺ߱ሻ = ௧݂൫ܺ௧ሺ߱ሻ൯݀ݐ + ௧൫ܺ௧ሺ߱ሻ൯݀ߪ ௧ܹሺ߱ሻ	[6]          (1)  

Deterministic part of the SDE which is represented by 
function, f, is called drift. The function ߪ௧, represents diffusion 
coefficient while ݀ ௧ܹሺ߱ሻ represents the noise term. 

Equation (1) is a diffusion process and follows a continuous 
path. Therefore, equation (1) can be better represented with an This work has been mainly supported by the University of Pardubice via
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integral, such as Ito integral. This will help discretize the 
continuous path for solutions. The implementation involves 
numerically methods such as Euler-Maruyama or Milstein 
approximation schemes so that SDE coefficients are estimated.   

However, in order to reduce complexity and iteration run-
time without sacrificing on accuracy, both drift and diffusion 
terms in equation (1) were considered as first order 
polynomials.  This reduces equation (1) to linear stochastic 
differential equation shown in equation (2). ݀ܺ௧ሺ߱ሻ = ൫ߙ௧ + ݐ௧ܺ௧ሺ߱ሻ൯݀ߚ + ௧݀ߴ ௧ܹሺ߱ሻ	[6, 7]       (2) 

Where ߙ, ,ߚ   .represent deterministic functions	ߴ

Equation (2) can be written in a clearer form of linear 
stochastic differential equation. This is shown in equation (3) 
[6, 7]. ܺ௧ାଵ − ܽܺ௧ = ܾ + ݐ				,௧ାଵܼߩ = 0, 1, 2, …                    (3)                 

Where: ܽ, ܾ,   .are scalars and always greater than zero ߩ
 ܺ଴	is represented by ݔ଴, and ሼܼ௧ሽ is a set of exogenous 
stochastic process [6, 7, 8]. ሼܼ௧ሽ consists of independent and normally distributed residuals 
with mean of zero and finite variance. 

Linear stochastic differential equation shown in equation (3) 
above is also known as an autoregression process of first order. 
That is, equation (3) is an AR(1) equation [6, 7, and 8].  

It then follows that equation (3) is a special type of AR(1) 
process which requires errors to be independent and identically 
distributed (iid). If errors are not iid, they are modeled so as to 
fulfill the iid requirement. This is a mandatory requirement for 
linear regression models of which equation (3) also represents.  

At this juncture, it should be noted that errors and residuals 
have been used interchangeably in this context. They refer to 
difference between measured value and model-predicted value. 
Errors as used in this context do not refer to measurement error 
(i.e. difference between measured value and true value).   

III. SAMPLING DESIGN AND METHODOLOGY 

Field data used in this study were obtained through 
measurements taken within a residential area in the city of 
Edmonton, Alberta. Three sensors were deployed at three 
locations within the site for measurement of photosynthetically 
active radiation (PAR). The sensor nodes were installed in such 
a way that certain important environmental conditions were 
represented. One PAR sensor was installed near a fence so that 
partial shading of the fence cast over it.  

Another sensor was installed under a canopy formed by 
couple of trees. The third sensor was installed so that it 
receives solar radiation directly with no shadow or canopy over 
it. Another sensor node was used for air temperature 
measurements. Data were collected from May 3, 2015 to July 
2, 2015 with intervals between measurements changing from 5 
seconds to 30 seconds in several steps (5, 10, 15, and 30). The 
sensor nodes were powered by a solar harvester supplemented 
by a supercapacitor and backup primary batteries.  

In this longitudinal data study, all datasets between 
09:35:15 and 22:52:45 were considered daytime datasets while 
those between 22:53:15 and 09:34:45 were considered 
nighttime datasets. This reduces data inhomogeneity caused by 
commercial and industrial noise during diurnal cycle. As a 
result, more accurate results were obtained. 

IV. METHODOLOGY 

The methodology consists of following steps: 

1. Use field data to perform ordinary regression so that 
estimates of coefficients and their standard errors 
could be determined. Durbin Watson statistical 
estimate is also computed. 

2. Analyze Durbin Watson statistical estimate to 
determine if residuals are uncorrelated (independent).  

3. Validate results from Durbin Watson method with 
those obtained using residuals chi-square independent 
test, residuals autocorrelation function (ACF) and 
partial autocorrelation function (PACF) analyses. 

4. If residuals are autocorrelated (i.e. dependent), the 
assumption of linear regression modeling is violated. 
The variables are then modeled using Prais-Winsten 
method. It iterates until the estimates converge. This 
removes autocorrelated errors and presents adjusted 
estimates of the regression model together with their 
corresponding standard errors. Due to page 
limitations, the mathematics explaining re-estimation 
and adjustment of model could not be presented.  

5. Prais-Winsten method was considered over Exact 
Maximum-Likelihood and Cochrane-Orcutt due to its 
simplicity and lower computational time.  In addition, 
Prais-Winsten method can eliminate the usual effects 
due to absence of data for first lag residual. 

6. Obtained model is validated by comparing predicted 
values with measured values. Additionally, model-fit 
performance parameters such as coefficient of 
determination (R2), mean-square-error (MSE) were 
analyzed. 

Above steps were repeated using longitudinal datasets from 
different sampling interval. This was done so as to determine 
the impacts of varying sampling interval on standard error of 
estimates. 

V. RESULTS AND DISCUSSIONS 

Table I shows statistical estimates of daytime and nighttime 
air temperature models with sampling interval of 30 seconds. 

From Table I, it would be seen that Durbin Watson estimate 
for both daytime and nighttime air temperature is zero. This 
indicates that daytime air temperature values are positively 
autocorrelated. The same situation applies to nighttime air 
temperature values. This is further supported by residuals 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) plots shown in figures 1-4. 



 
 

TABLE I.    STATISTICAL ESTIMATES OF DAYTIME AND NIGHTTIME AIR 
TEMPERATURE MODELS WITH SAMPLING INTERVAL OF 30S 

 

  

 

 

 

 

 

 

Fig. 1. Residuals ACF of daytime air temperature   

 

Fig. 2. Residuals PACF of daytime air temperature   

 
 

Fig. 3. Residuals ACF of nighttime air temperature   

 
      Fig. 4. Residuals PACF of nighttime air temperature   

Residuals ACF and PACF plots show that one partial 
autocorrelation is statistically significant. This implies the 
residuals are autocorrelated. It also shows that the residuals 
have an AR(1) structure.  Therefore, it violates the assumption 
that residuals should be independent. 

Table II shows adjusted statistical estimates of daytime and 
nighttime air temperature regression models when sampling 
time-interval is 30 seconds. It should be noted that all estimates 
used in this study (context) are unstandardized. 

TABLE II    ADJUSTED STATISTICAL ESTIMATES OF DAYTIME AND NIGHTTIME 
AIR TEMPERATURE MODELS WITH SAMPLING INTERVAL OF 30S 

 

From Table II, it would be seen that Durbin-Watson values 
are 1.797 and 2.785 respectively. When looked up at Durbin-
Watson significance table, they were found to be within the 
corresponding lower and upper bounds.  This indicates that the 
positive autocorrelated errors have been removed. This is 
further supported by ACF and PACF plots of the residuals. 
Those for nighttime air temperature are shown in figures 5 and 
6 respectively.  

 
Fig. 5. Residuals ACF plots for adjusted nighttime air temperatures 
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Variable Coefficients 
Standard 
error of 

coefficients 

Durbin 
Watson 

Daytime air 
temperature 

(oC) 

Intercept 
 

26.813 0.451 
0.000 

Slope/ 
Predictor 

0.004 0.000 

Nighttime air 
temperature 

(oC) 

Intercept 
 

11.392 0.166 
0.001 

Slope/ 
Predictor 

-0.001 0.000 

Variable Estimates 
Standard 
error of 
estimates 

Durbin 
Watson 

Daytime air 
temperature 

(oC) 

Intercept 17.154 16.804 

1.797 
Slope/ 

Predictor 
-0.002 0.002 

Rho 
(AR(1)) 

1.000 0.001 

Nighttime air 
temperature 

(oC) 

Intercept 16.250 6.468 

2.785 
Slope/ 

Predictor 
0.001 0.001 

Rho 
(AR(1)) 

1.000 0.001 
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Fig. 6. Residuals PACF plots for adjusted nighttime air temperatures  

It would be seen from figures 5 and 6 that no significant 
autocorrelation or partial autocorrelation exists at any of the 
lags. Considering the generalized equation shown in equation 
(3), model equations were deduced based on estimated 
coefficients shown in Table II. The model equations are shown 
in equations (4) and (5) respectively. 

௧ܦ  = 17.154 − ௧ିଵܦ0.002 + 1.000Z௧                (4) ௧ܰ = 16.250 − 0.001 ௧ܰିଵ + 1.000ܼ௧                (5) D୲ represents air temperature measured at daytime instant, t.  ܦ௧ିଵ represents air temperature measured at daytime instant, t-
1. Such as air temperature value observed 30 seconds earlier 
during the daytime (if sampling interval is 30 seconds). N୲ represents air temperature measured at nighttime instant, t. ௧ܰିଵ represents air temperature measured at nighttime instant, 
t-1.  ܼ௧ represents independent and normally distributed residuals 
with mean of zero and finite variance. 

VI. DETERMINATION OF OPTIMUM SAMPLING INTERVAL 

In order to determine optimum sampling interval, concept 
of tolerance- uncertainty relationship was adopted. Tolerance is 
well known as the total acceptable uncertainty. It is also known 
as the maximum permissible error (MPE) of measured value. It 
is noted by international standards that tolerance should not be 
more than three times the uncertainty of instrument measuring 
the variable [9, 10, 11]. Uncertainty of the instrument 
measuring the variable is available in the calibration certificate 
of the instrument. Consequently, the maximum permissible 
error or tolerance for measured value can be estimated. 

It then follows that all values of a variable that are within 
tolerance range are acceptable based on international standard.  
Therefore, optimum sampling interval is that maximum 
sampling time-length within which values are still within the 
acceptable tolerance range of previously measured value. For 
example, considering data on technical datasheet for Hobo 
sensor S-THB-M002, its maximum permissible error should be 
(± 0.2)*(3) = ± 0.6 oC. Hence, measured temperature value of 
say, 20oC has temperature values within 20 ± 0.6oC acceptable 
as accurate and close enough to nominal value of 20oC.  

The question becomes: “why should sampling interval of 
temperature involving this instrument be set so that several 
sampling within this range (20 ± 0.6oC) are performed. Air 
temperature values that lie within the range (20 ± 0.6oC) are 
considered good enough. They can represent the nominal value 
(20oC). By so doing, contributes in securing energy-efficiency. 

However, in systems where sensitivity to small temperature 
changes is mandatory input for microprocessor decisions, 
several temperature measurements within the tolerance range 
are usually required. For such systems, instrument with lower 
uncertainties and energy consumption should be considered. 
Alternatively, temperature values could be predicted from 
measured values. This obviously requires a model. Model 
development method and steps discussed in this study can be 
used. Interpolation technique for non-integer time indexes is 
also required. This has been discussed in [12]. 

Optimum sampling interval is therefore estimated by 
finding a local maximum time index that can allow new 
measured values to fall within the acceptable tolerance of 
previously measured value. Table III shows time series excerpt 
in comparison with its model-predicted values. Model 
methodology described in this study has been used in 
predicting the values. Table III is also used to demonstrate how 
proposed optimum sampling interval would be determined for 
an example involving Hobo sensor S-THB-M002.  

TABLE III.    OPTIMUM SAMPLING INTERVAL – DAYTIME AIR TEMPERATURE 

Date/Time Measured 
value (oC) 

Predicted 
value (oC) 

Residuals 
(oC) Remark 

2015-06-01

09:35:45 
17.0A 17.0601 -0.0601 

Tolerance:

17.0 ± 0.6 oC 

2015-06-01

09:36:15 
17.0 17.0600 -0.0600 Still within 

tolerance of A 

2015-06-01

09:36:45 
17.0 17.0600 -0.0600 Still within 

tolerance of A 

2015-06-01

09:37:15 
17.1 17.0600 0.0400 Still within 

tolerance of A 

Continues
till next row 

Continues
till next row 

Continues 
till next row 

Continues
till next row 

Still within 
tolerance of A 

2015-06-01

09:48:15 
17.6 17.5984 0.0016 Still within 

tolerance of A 

2015-06-01 

09:48:45 
17.7 17.5984 0.1016 

Measured 
value out of 
(17±0.6oC) 
range. New 
sampling 
required. 

 

From Table III, it would be seen that in most cases, air 
temperature values only changed by 0.1oC in 30 seconds or 
more. This applies to all daytime air temperature measurements 
taken during the entire measurement period. For daytime 
measured value of 17.0 oC shown in Table III, sampled values 
obtained after 12 minutes 30 seconds were still within the 
acceptable tolerance of 17.0 oC. This is validated by repeating 
above analysis using other measured values within the data 
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series. These repeated analyses also helped in ensuring that 
measured value used in determination of optimum sampling 
interval represents true value. For nighttime air temperature, 
optimum sampling interval was longer. For the system 
described above, 390 seconds is an energy-efficient (optimum) 
sampling interval. For systems where small temperature 
changes are required, variables may be sampled at intervals 
below the energy-efficient sampling interval.  

VII. HYPOTHETICAL OPTIMUM SAMPLING INTERVAL 

Table IV and fig. 7 show impacts of varying sampling 
interval on standard error of intercept and that of 
autocorrelation coefficient (rho). The same time span (length) 
was used in the analysis. 

TABLE IV.    EFFECTS OF VARYING SAMPLING INTERVAL ON MODEL 
ESTIMATES OF DAYTIME AIR TEMPERATURE 

Sampling 
interval 

(seconds) 

Standard 
error of slope 

(oC) 

Standard 
error of 

intercept (oC) 

Standard error 
of autocorrelation 

coefficient (rho), oC 

5 0.000 0.001 1.613 

10 0.001 0.000 22.128 

15 0.001 0.000 21.880 

30 0.002 0.001 16.000 

 

 
Fig. 7. Sampling interval effects on model estimates of daytime air temperature 

It would be seen that standard error of intercept increases as 
sampling interval increases until it reaches its maximum value. 
At this point of maximum standard error of intercept, standard 
error of autocorrelation coefficient is at its minimum. Sampling 
interval corresponding to point of minimum standard error of 
autocorrelation is the hypothetical optimum sampling interval. 
It is hypothetical because it is based on mathematical theories 
and conditions. It does not consider external factors such as 
energy consumption of the measuring device. It only 
considered the mathematical properties of datasets. The 
hypothetical optimum sampling interval is not energy-efficient. 
It is for this reason that the analysis presented in preceding 
section was performed. 

Similar study was performed by Åstrom [13]. In [13], it 
was shown that variance of the drift parameter (deterministic 
component) of a time series SDE model decreases with 
increasing sampling interval. It continues to decrease until a 

local minimum, known as hypothetical optimum sampling 
interval is reached. Further increase in sampling interval 
beyond the local minimum results in rapid increase in variance 
of the drift term. 

VIII. CONCLUSIONS 

In this study, simple and accurate method for modeling 
longitudinal data of a time series has been discussed. The 
method iterates for convergence with less run-time. New 
method of determining energy-efficient (optimum) sampling 
interval was also discussed. The method requires that few 
measurements be taken. This enables repeat of analysis using 
different measured values.  

The study also investigated impacts of varying sampling 
interval on standard error of estimates. It was found that 
increasing sampling interval decreases standard error of 
autocorrelation coefficient until minimum value is reached. 
Thereafter, standard error increases with increasing sampling 
interval. This minimum sampling interval is described as 
hypothetical optimum sampling interval because it considers 
only mathematical properties of datasets. The proposed new 
method is therefore recommended. 
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