SYNTÉZA A STUDIUM PEROVSKITOVÝCH PIGMENTŮ DOPOVANÝCH PŘÍMĚSEMI

Lucie KAROLOVÁ, Kateřina TĚŠITELOVÁ, Žaneta DOHNALOVÁ, Petra ŠULCOVÁ

Katedra anorganické technologie, Fakulta chemicko - technologická, Univerzita Pardubice, Studentská 573, 532 10 Pardubice, ČR, E-mail: <u>lucie.karolova@student.upce.cz</u>

ÚVOD

Perovskitové sloučeniny s obsahem ceru patří mezi keramické anorganické pigmenty typu A²⁺B⁴⁺O₃. Obecně perovskitové sloučeniny vynikají řadou významných vlastností jako např. vysokou magnetoresistencí, supravodivostí a iontovou vodivostí, a proto nacházejí uplatnění v aplikacích, jako jsou palivové a solární články [1, 2]. Bohatá rozmanitost chemických a fyzikálních vlastností v perovskitové struktuře je odvozena od její schopnosti přizpůsobit se různým kovovým prvkům v místech A a B s širokým rozsahem iontového poloměru a valence. U studovaného typu perovskitových sloučenin jsou dvojmocné A kationty, obvykle se jedná o kovy alkalických zemin, umístěny v rozích krystalové mřížky. Čtyřmocné B kationty, které se nacházejí uprostřed krystalové mřížky, mohou být prvky vzácných zemin a přechodných kovů (Obr. 1) [3, 4].

V tomto příspěvku byla pozornost věnována studii perovskitových sloučenin obecného vzorce $ACe_{1-x}B_xO_3$, kde jako A kationty jsou kovy alkalických zemin (A = Ca, Sr, Mg) a kde B tvoří trojmocné kovy vzácných zemin (B = Pr, Tb), které v krystalové mřížce pigmentu nahrazují čtyřmocné ionty ceru. Cílem autorů byla studie fázového složení, barevných vlastností a velikosti částic syntetizovaných pigmentů v závislosti na zvolené kalcinační teplotě.

Obr. 1: Krystalová struktura perovskitových sloučenin typu ABO3

EXPERIMENTÁLNÍ ČÁST

Perovskitové sloučeniny typu ACe_{0,9}B_{0,1}O₃, kde A = Ca, Sr, Mg a B = Pr, Tb byly syntetizovány reakcí v pevné fázi. Jako výchozí sloučeniny byly použity: CeO₂, CaCO₃, MgO, SrCO₃, Pr₆O₁₁ a Tb₄O₇. Suroviny byly smíchány ve stechiometrickém poměru a homogenizovány pomocí hmoždířového mlýnku (Pulverisette 2) po dobu 15 min. Připravené práškové reakční směsi byly podrobeny kalcinaci v elektrické peci s rychlostí ohřevu 5 °C/min. Kalcinační teploty pro pigmenty CaCe_{0,9}B_{0,1}O₃ a SrCe_{0,9}B_{0,1}O₃ byly zvoleny 300, 400, 900, 1000 a 1200 °C a pro pigmenty MgCe_{0,9}B_{0,1}O₃ byly vybrány teploty 300, 600, 800,

1200 a 1300 °C. Připravené vzorky pigmentů byly po vychladnutí homogenizovány v porcelánové třecí misce.

Fázové složení studovaných pigmentů bylo měřeno pomocí rentgenové difrakční analýzy. K vlastnímu měření byl použit difraktometr MiniFlex 600 (Rigaku, Japonsko) s poloměrem vertikálního goniometru 15 cm. Bylo využito rentgenového záření mědi a sekundárního grafitového monochromátoru. Rozsah měření činil od 10° do 80° pro úhel 2 θ . Vlnová délka použitého rentgenového záření byla K_{a1} = 0,15418 nm pro úhly 2 θ < 35° a K_{a2} = 0,15405 nm pro úhly 2 θ > 35°.

Pigmenty při vybraných teplotách výpalu byly aplikovány do organického pojivového systému v plném tónu (disperzní akrylátový lak, Parketol, Balakom, a. s.). Měření barevnosti vzorků nátěrů bylo realizováno pomocí spektrofotometru ColorQuest XE (HunterLab, USA), který poskytuje hodnoty spektrálních dat i trichromatických hodnot. Pro naše účely měření byl využíván kolorimetrický prostor CIE $L^*a^*b^*$, hodnoty 10° pozorovatele, geometrie měření d/8° a normalizované denní světlo D65. Prostor stejných barevných diferencí CIE $L^*a^*b^*$ (diference mezi zelenou a červenou) a b^* (diference mezi modrou a žlutou). Hodnota L^* (jasová složka) vystihuje světlost či tmavost barvy a nabývá hodnot od 0 (černá) do 100 (bílá). Ke kompletnímu popisu barvy je vedle již uvedených barevných souřadnic používána tzv. sytost *S*, která je dána dle vzorce: $S = (a^{*2} + b^{*2})^{1/2}$ a také barevný odstín H° , jenž je definován podle následujícího vztahu: H° = arc tg b^*/a^* . Barevný odstín H° má pro červenou barvu hodnotu 350–35°, pro oranžovou 35–70° a pro žlutou 70–105°.

Velikost částic studovaných pigmentů byla z hlediska velikosti a distribuce velikosti měřena přístrojem MasterSizer 2000/MU (Malvern Instruments Ltd., VB) [5].

VÝSLEDKY A DISKUZE

Nejprve byla provedena fázová analýza pigmentů CaCe_{0.9}Pr_{0.1}O₃ a CaCe_{0.9}Tb_{0.1}O₃ (Tab. 1). Jako hlavní fáze při všech zvolených teplotách výpalu byla identifikována kubická struktura CeO₂ (JPDF č. 01-083-9465) s prostorovou grupou Fm-3m. V případě pigmentu CaCe_{0.9}Pr_{0.1}O₃ při teplotách 300 a 400 °C byly detekovány vedlejší fáze odpovídající monoklinické struktuře CaCO₃ (JPDF č. 01-070-0095), kubické struktuře CaO (JPDF č. 01-077-9574) a trigonální struktuře Ca(OH)₂ (JPDF č. 01-070-5492). U nejnižší teploty kalcinace byla přítomna nezreagovaná fáze monoklinického Pr₆O₁₁ (JPDF č. 01-089-0573). Při následující teplotě došlo již k rozkladu této sloučeniny na trigonální Pr₂O₃ (JPDF č. 01-076-7400). Rostoucí teplota kalcinace dále způsobila redukci fází. Při teplotách 900-1200 °C byl jako sekundární fáze získán CaO a jako terciární fáze v rozmezí teplot 900-1000 °C kubický Ce_{0,9}Pr_{0,1}O₂ (JPDF č. 01-080-4834). U nejvyšší teploty výpalu se ve velmi malém množství objevuje nestechiometrický PrO1.83 s ortorombickou strukturou (JPDF č. 00-035-0109). V případě pigmentu dopovaného ionty terbia byla v celém teplotním intervalu charakterizována sekundární fáze kubického CaO (JPDF č. 01-082-1691). Jako další fáze při teplotách 300 a 400 °C byly získány CaCO₃, Ca(OH)₂ a Tb₁₁O₂₀ (JPDF č. 01-081-2363) s triklinickou strukturou. U Ca(OH)2 dochází při teplotě nad 500 °C k rozkladu na CaO a vodu, u CaCO₃ probíhá rozklad uhličitanu na CaO a CO₂ při teplotě nad 850 °C, a proto již nebyly tyto sloučeniny detekovány při vyšších teplotách. S rostoucí teplotou pravděpodobně nedochází k zabudování iontů terbia do krystalové mřížky CeO₂ a nepodílí se tedy na formování perovskitové struktury. Lze tedy konstatovat, že ani u jednoho typu pigmentu nedošlo k vytvoření požadované perovskitové struktury. Tobulko 1.

Fázová analýza studovaných pigmentů typu CaCe _{0,9} Pr _{0,1} O ₃ a CaCe _{0,9} Tb _{0,1} O ₃								
Pigment	300 °C	400 °C	900 °C	1000 °C	1200 °C			
	CeO ₂	CeO ₂	CeO ₂	CeO ₂	CeO ₂			
	CaCO ₃	CaCO₃	CaO	CaO	CaO			
CaCe _{0,9} Pr _{0,1} O ₃	CaO	CaO	Ce _{0,9} Pr _{0,1} O ₂	Ce _{0,9} Pr _{0,1} O ₂	PrO _{1,83}			
	Ca(OH) ₂	Ca(OH) ₂	-	-	-			
	Pr ₆ O ₁₁	Pr_2O_3	-	-	-			
	CeO ₂	CeO ₂	CeO ₂	CeO ₂	CeO ₂			
	CaO	CaO	CaO	CaO	CaO			
CaCe _{0,9} Tb _{0,1} O ₃	CaCO ₃	CaCO₃	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀			
	Ca(OH) ₂	Ca(OH) ₂	-	-	-			
	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀	-	-	-			

Fázová analýza	studovaných pigmentů tvpu CaCeooProd	D ₂ a CaCe ₂ Th

Studii fázového složení byly podrobeny také vzorky SrCe_{0,9}Pr_{0,1}O₃ a SrCe_{0.9}Tb_{0.1}O₃ (Tab. 2). U obou typů pigmentů byl jako hlavní fáze identifikován kubický CeO₂ a jako sekundární fáze ortorombický SrCO₃ (JPDF č. 01-078-4340) do teploty 1000 °C. Při teplotě 300 °C pigment s ionty praseodymu obsahuje jako další fáze kubický SrO (JPDF č. 01-071-3778) a monoklinický Pr₆O₁₁ (JPDF č. 01-089-0573). S rostoucí teplotou dochází k rozkladu Pr₆O₁₁ za vzniku Pr₂O₃ (JPDF č. 01-076-7400). V rozmezí teplot 400 až 1000 °C vystupuje jako terciární fáze kubický Ce_{0.9}Pr_{0.1}O₂ (JPDF č. 01-080-4834). K formování žádané perovskitové struktury ortorombického SrCeO₃ (JPDF č. 01-074-8253) dochází při teplotě 900 °C a jeho intenzita se s rostoucí kalcinační teplotou zvyšuje. Z difraktogramu studovaného pigmentu byla také ve velmi malém množství při teplotě 1000 °C detekována fáze Sr₂PrO₄ s ortorombickou strukturou (JPDF č. 01-083-8376). Při nejvyšší teplotě výpalu byla prokázána jako hlavní fáze perovskitová struktura SrCeO₃ (JPDF č. 01-074-8253) a jako minoritní fáze CeO₂, ortorombický SrPrO₃ (JPDF č. 01-089-0959) a nestechiometrický PrO_{1.83} s ortorombickou strukturou (JPDF č. 00-035-0109). Druhý studovaný pigment s ionty terbia obsahuje v rozmezí teplot 300 až 1200 °C triklinický Tb₁₁O₂₀ (JPDF č. 01-081-2363). I v tomto případě je perovskitová struktura formována již při teplotě 900 °C v zastoupení SrCeO₃ (JPDF č. 01-074-8253) s ortorombickou strukturou. Jeho intenzita rovněž narůstá se zvyšující se teplotou a při nejvyšší teplotě 1200 °C ho lze označit za majoritní fázi. Při této teplotě se objevují také v malém množství fáze CeO₂, Tb₁₁O₂₀ a SrTbO₃ (JPDF č. 01-089-5512) s ortorombickou strukturou. Lze tedy konstatovat, že oba dva typy studovaných pigmentů z hlediska fázového složení obsahují perovskitovou strukturu, která je formována nad 900 °C.

Fázová analýza studovaných pigmentů typu SrCe _{0.9} Pr _{0.1} O ₃ a SrCe _{0.9} Tb _{0.1} O ₃									
Pigment	300 °C	0 °C 400 °C 900 °C 1000 °C			1200 °C				
	CeO ₂	CeO ₂	CeO ₂	CeO ₂	SrCeO ₃				
	SrCO ₃	SrCO ₃	SrCO ₃	SrCO ₃	CeO ₂				
$SrCe_{0,9}Pr_{0,1}O_3$	SrO	$Ce_{0,9}Pr_{0,1}O_2$	Ce _{0,9} Pr _{0,1} O ₂	Ce _{0,9} Pr _{0,1} O ₂	SrPrO ₃				
	Pr ₆ O ₁₁	Pr_2O_3	SrCeO ₃	SrCeO ₃	PrO _{1,83}				
	-	-	-	Sr ₂ PrO ₄	-				
	CeO ₂	CeO ₂	CeO ₂	CeO ₂	SrCeO ₃				
$SrCe_{0,9}Tb_{0,1}O_3$	SrCO ₃	SrCO ₃	SrCO ₃	SrCO ₃	CeO ₂				
	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀				
	-	-	SrCeO ₃	SrCeO ₃	SrTbO₃				

Tabulka 2:

-	-	-	-	-

U posledních studovaných pigmentů MgCe_{0,9}Pr_{0,1}O₃ a MgCe_{0,9}Tb_{0,1}O₃ byla opět prokázána jako hlavní fáze CeO₂ s kubickou strukturou (JPDF č. 01-083-9465) (Tab. 3). Jako sekundární fáze se v celém teplotním intervalu objevuje kubický MgO (JPDF č. 01-076-2583). Identifikovaná terciární fáze Pr₆O₁₁ při 300 °C přechází při vyšších teplotách na Pr₂O₃ a následně se zabudovává do struktury CeO₂ za vzniku kubické sloučeniny Ce_{0,9}Pr_{0,1}O₂. V případě nejvyšší teploty výpalu už není tato fáze přítomna. Pravděpodobně dochází k úplnému zabudování iontů Pr do krystalové struktury CeO₂. Identifikovaná terciární fáze Tb₁₁O₂₀ u pigmentu MgCe_{0,9}Tb_{0,1}O₃ se objevuje v celém teplotním rozsahu. V intervalu teplot 800 a 1200 °C je navíc přítomna další fáze odpovídající kubickému Ce_{0,9}Tb_{0,1}O₂ (JPDF č. 01-071-7083). Ani v tomto případě nebyla získána perovskitová struktura pigmentů.

Pigment	300 °C	600 °С	3° 008	1200 °C	1300 °C
	CeO ₂	CeO ₂	CeO ₂	CeO ₂	CeO ₂
	MgO	MgO	MgO	MgO	MgO
$MgCe_{0,9}Pr_{0,1}O_3$	Pr ₆ O ₁₁	Pr_2O_3	Ce _{0,9} Pr _{0,1} O ₂	Ce _{0.9} Pr _{0.1} O ₂	-
	-	-	-	-	-
	-	-	-	-	-
MgCe _{0,9} Tb _{0,1} O ₃	CeO ₂	CeO ₂	CeO ₂	CeO ₂	CeO ₂
	MgO	MgO	MgO	MgO	MgO
	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀	Tb ₁₁ O ₂₀
	-	-	Ce _{0,9} Tb _{0,1} O ₂	Ce _{0,9} Tb _{0,1} O ₂	-
	-	-	-	-	-

Tabulka 3: Fázová analýza studovaných pigmentů tvpu MgCes Pra Os a MgCes The Os

Z hlediska barevných vlastností byly nejprve charakterizovány pigmenty typu CaCe_{0,9}Pr_{0,1}O₃ a CaCe_{0,9}Tb_{0,1}O₃ (Tab. 4). V případě vzorků s obsahem praseodymu dochází s rostoucí teplotou ke změně barevného odstínu z tmavě hnědé na hnědočervenou. Tato skutečnost koresponduje s rostoucí hodnotou barevné souřadnice *a** a na druhé straně s poklesem jasové složky *L**. Vzorky s obsahem terbia poskytují světlejší a méně syté šedohnědé až hnědé odstíny, neboť hodnoty jasové složky *L** jsou výrazně vyšší a nacházejí se v intervalu od cca 64 do 55. Střední velikost částic u pigmentů s příměsí praseodymu leží v intervalu od 0,9 do 1,8 µm (Tab. 4). Šíře distribuce velikosti částic u pigmentů s obsahem terbia stoupá. Hodnoty *d*₅₀ se u vzorků s ionty terbia pohybují v intervalu od 1,1 do 4,4 µm.

Baleville								
Pigment	Teplota	L *	а*	b *	S	H°	<i>d</i> ₅₀ [μm]	span
CaCe _{0,9} Pr _{0,1} O ₃	900 °C	46,86	5,99	4,19	7,31	34,97	1,8	5,2
	1000 °C	45,79	9,78	9,47	13,61	44,08	0,9	4,4
	1200 °C	40,21	12,98	10,02	16,40	37,67	1,3	4,1
	900 °C	64,28	6,56	4,39	7,89	33,79	1,1	4,9
CaCe _{0,9} Tb _{0,1} O ₃	1000 °C	62,82	7,63	8,41	11,36	47,78	4,4	5,0
	1200 °C	54,67	10,41	11,88	15,80	48,77	1,7	5,1

Tabulka 4: Barevné vlastnosti a velikost částic pigmentů tvpu CaCeo Pro 103 a CaCeo Tbo 103

Barevné vlastnosti pigmentů s obsahem iontů stroncia poskytují v teplotním intervalu 900-1000 °C, stejně jako v předešlém případě, tmavě hnědé odstíny u pigmentu typu SrCe_{0,9}Pr_{0,1}O₃ a šedohnědé u pigmentu typu SrCe_{0,9}Tb_{0,1}O₃ (Tab. 5). K výrazné změně barevných vlastností došlo při nejvyšší teplotě kalcinace, kdy byly prokázány perovskitové struktury SrCeO₃ a SrPrO₃ popřípadě SrTbO₃. Vzorek s obsahem iontů praseodymu je charakterizován hnědým odstínem s nejnižším podílem červené složky a^* (7,45) a zároveň s nejvyšší teplotě 1200 °C lze popsat pískově žlutým odstínem, a to v důsledku markantního nárůstu barevné souřadnice b^* (22,97) a také díky hodnotě barevného odstínu H° (79,81), který se blíží k hranici žluté oblasti. U obou typů pigmentů byly získány hodnoty střední velikosti částic ve velmi úzkém rozmezí, a to od cca 2 do 3 µm (Tab. 5).

Tabulka 5: Barevné vlastnosti a velikost částic pigmentů typu SrCe _{0,9} Pr _{0,1} O ₃ a SrCe _{0,9} Tb _{0,1} O ₃								
Pigment	Teplota	L*	а*	b*	S	H°	<i>d</i> ₅₀ [µm]	span
SrCe _{0,9} Pr _{0,1} O ₃	900 °C	48,01	7,79	7,66	10,93	44,52	2,4	3,7
	1000 °C	46,10	9,80	10,26	14,19	46,31	3,3	3,6
	1200 °C	49,38	7,45	13,07	15,04	60,32	2,2	4,5
SrCe _{0,9} Tb _{0,1} O ₃	900 °C	65,13	7,17	5,82	9,23	39,07	2,2	3,4
	1000 °C	66,66	5,57	11,88	13,12	64,88	2,1	3,7
. ,	1200 °C	70,04	4,13	22,97	23,34	79,81	2,4	8,1

U syntetizovaných pigmentů typu MgCe_{0,9}Pr_{0,1}O₃ docházelo s rostoucí teplotou kalcinace ke změně odstínu z šedohnědé na hnědočervenou, a to v důsledku nárůstu barevných souřadnic *a** i *b**, které při teplotě 1300 °C dosahují svého maxima (*a** = 12,89 a *b** = 9,70) (Tab. 6). Vzorky typu MgCe_{0,9}Tb_{0,1}O₃ poskytovaly na základě hodnot jasové složky *L**, které se nacházely v intervalu od cca 57 do 69, světlejší šedohnědé až hnědé odstíny. Pigmenty s příměsí hořčíku se pro aplikace do organického pojivového systému jeví jako nejméně vhodné, a to i v důsledku získané široké distribuce velikosti pigmentových částic (Tab. 6). Pro tuto aplikaci je proto třeba snížit velikost částic mletím.

Barevné vlastnosti a velikost částic pigmentů typu MgCe _{0,9} Pr _{0,1} O ₃ a MgCe _{0,9} Tb _{0,1} O ₃								
Pigment	Teplota	L*	а*	b*	S	H°	<i>d</i> ₅₀ [µm]	span
MgCe _{0.9} Pr _{0.1} O ₃	800 °C	47,95	4,99	3,88	6,32	37,87	9,2	6,8
	1200 °C	45,33	9,46	9,33	13,29	44,60	9,7	7,2
	1300 °C	42,69	12,89	9,70	16,13	36,96	7,7	8,7
	800 °C	69,02	6,60	8,08	10,43	50,76	8,7	11,8
MgCe _{0,9} Tb _{0,1} O ₃	1200 °C	75,84	6,31	8,28	10,41	52,69	6,1	19,9
	1300 °C	56,87	8,25	8,75	12,03	46,68	3,5	3,5

Tabulka 6: Barevné vlastnosti a velikost částic pigmentů typu MgCe_{0,9}Pr_{0,1}O₃ a MgCe_{0,9}Tb_{0,1}O₃

ZÁVĚR

Hlavním záměrem tohoto výzkumu bylo pokusit se připravit sloučeniny typu $ACe_{0,9}B_{0,1}O_3$, kde A = Ca, Sr, Mg a B = Pr, Tb, které následně byly podrobeny studii rentgenové difrakční analýzy. Z výsledku analýzy vyplývá, že k formování požadované perovskitové struktury dochází v případě pigmentů dopovaných ionty stroncia při teplotách nad 900 °C. Jako ideální teplota k tvorbě perovskitových pigmentů byla vyhodnocena teplota 1200 °C, neboť zde vznikala jako hlavní fáze perovskitová struktura odpovídající ortorombickému SrCeO₃. V tomto případě však

nedocházelo k tvorbě tuhého roztoku ale k formování dvou perovskitových struktur - SrCeO₃ a SrPrO₃ u pigmentu SrCe_{0,9}Pr_{0,1}O₃ a SrCeO₃ a SrTbO₃ u pigmentu SrCe_{0,9}Tb_{0,1}O₃. Formováním perovskitové struktury došlo ke změně barevnosti pigmentů. U SrCe_{0,9}Pr_{0,1}O₃ z tmavě hnědé na hnědou s vyšším podílem žluté složky *b** a u SrCe_{0,9}Tb_{0,1}O₃ z šedohnědé na pískově žlutou. Střední velikost pigmentových částic u vzorků s obsahem stroncia se pohybovala v rozmezí od cca 2 do 3 µm.

Ú zbylých studovaných pigmentů dopovaných ionty vápníku a hořčíku nedocházelo ke vzniku perovskitové struktury a jako hlavní fáze byla identifikována kubická struktura CeO₂. Z hlediska barevných vlastností poskytují šedohnědé, hnědé až hnědočervené odstíny. Pigmenty s příměsí vápníku jsou charakterizovány hodnotami $d_{50} = 0.9$ -4.4 µm a s příměsí hořčíku hodnotami $d_{50} = 3.5$ -9.7 µm. V důsledku široké distribuce pigmentových částic u vzorků s ionty hořčíku byla obtížná jejich aplikace do organického pojivového systému a pro další využití je proto nezbytná redukce velikosti mletím.

PODĚKOVÁNÍ

Výzkum anorganických pigmentů je na pracovišti autorů podporován IGA Univerzity Pardubice (SGS_2017_007) a Grantovou agenturou České republiky (č. 16-06697S).

LITERATURA

[1] Yamamoto T., Kobayashi Y., Hayashi N., Tassel C., Saito T., Yamanaka S., Takano M., Ohoyama K., Shimakawa Y., Yoshimura K., Kageyama H.: Journal of the American Chemical Society. 134, 2012, 11444-11454.

[2] Kreuer K. D.: Solid State Ionics. 97, 1997, 1-15.

[3] Navrotsky A.: Science. 284, 1999, 1788-1789.

[4] Alvarez G., Conde-Gallardo A., Montiel H., Zamorano R.: Journal of Magnetism and Magnetic Materials. 401, 2016, 196-199.

[5] Šulcová P., Dohnalová Ž.: Anorganické pigmenty, vlastnosti a metody hodnocení. Pardubice: Univerzita Pardubice, 2015.