
Vulnerabilities of Modern Web Applications

F. Holik, S. Neradova

University of Pardubice, Faculty of electrical engineering and informatics, Pardubice, Czech Republic

filip.holik@student.upce.cz

Abstract – The security of modern web applications is

becoming increasingly important with their growing usage.

As millions of people use these services, the availability,

integrity, and confidentiality are critical. This paper

describes the process of penetration testing of these

applications. The goal of such testing is to detect application

flaws and vulnerabilities and to propose a solution to

mitigate them. The paper analyses current penetration

testing tools and subsequently tests them on a use case web

application, build specifically with present security flaws.

The process of penetration testing is described in detail and

the performance of each tool is evaluated. In the last section,

recommended practices to mitigate found flaws are

summarized.

I. INTRODUCTION

The trend in modern application design is to move
these applications into a remote server instead of running
them locally. This will ensure consistent and quick
updates, application monitoring and lower requirements
on local hardware performance. A lot of companies are
using these advantages for office applications like Google
Docs, Sheets, and Slides; or Microsoft Office 365. On the
other hand, this infrastructure also has its specific
requirements - especially for good quality of Internet
connection. Another broadly discussed topic is security.

The first security consideration is data location. Some
constraints and legislative requirements specify, whether
data can be stored outside a state boundary. The second
issue is public availability of servers, which host these
well-known services. The risk of attacks on those servers
is much higher than on private computers [1]. It is
therefore much more important to test these applications
for vulnerabilities, for example like in [2] or [3].

The paper is further organized as follows: the second
section introduces related work in web application
security. The third section briefly summarizes the most
used penetration testing tools. These tools are categorized
by penetration testing phases. The fourth section presents
penetration testing of a use case application with the most
common examples of security flaws. The fifth section
recommends the correct setting of web application
technologies to protect them against the found security
flaws.

II. RELATED WORK

Current work in web application security focuses
especially on general security flaw analysis, or on
implementation of specific security solutions. The
approach to improve the evaluation of security

characteristics was described in [4]. A precise evaluation
is important during all phases of the application life-cycle
and can be especially useful in finding the flaws during
early stages of the application development. Early
detection of the flaws can bring significant financial and
time savings.

An analysis of key critical requirements for enhancing
web application security was researched in [5]. The
authors analysed the following areas: application and
infrastructure security, communication and traffic
inspection, zero-days attacks, dynamic application
policies, sensitive data leakage, and user protection.

The more specific area of web application security –
input validation – was researched in [3]. This area
includes one of the most dangerous attacks: SQL injection
and cross-site scripting. The authors proposed a
systematic approach to secure this area using the security
patterns approach.

Finally, one of the most important areas of web
application security is user authentication. This was
thoroughly analysed in [6], where authors compare
existing solutions and propose a new scheme for mutual
authentication using encryption primitives.

Although the mentioned research aims at specific areas
of web application security, there is no research on a
process of penetration testing, which would describe the
most common security flaws in modern web applications.

III. PENETRATION TESTING TOOLS

The higher security risk of remotely run applications
has to be verified, expressed and minimized. This process
is known as penetration testing, or ethical hacking. The
goal of the testing is to conduct a series of experimental
attacks on the application. Based on found vulnerabilities,
a level of risks is evaluated and a procedure to improve
security issues is created. The main goal of the testing is
therefore to improve the application security via pointing
out its security flaws.

There are a large number of tools for penetration
testing of web based applications. Moreover, most of
these tools work on different security layers. Typically,
there are two basic phases of the testing - reconnaissance
and application exploitation.

A. Reconnaisance phase – passive

The first reconnaissance phase is conducted before the
actual testing begins. The goal of this phase is to gather as
much information about the target network as possible.

Unlike in other phases, the network itself is not accessed.
Instead, only the publicly available databases and search
engines are used to gather the useful information like web
sub-domains, IP ranges, user emails etc.

Maltego [7] is a tool of OSINT (Open-source
intelligence) type, which represents a group of tools using
publicly available information sources. The tool uses lists
of indexes and databases to search for relevant
information.

Discover Scripts [8] is another tool of OSINT type. It
integrates search and scanning utilities present in Kali
Linux OS and therefore creates an automatized
framework. This framework targets the following four
areas: recon (used for passive scanning), scanning, web,
and misc.

B. Reconnaisance phase – active

In the second reconnaissance phase, the testing tools
interact directly with targeted devices. The goal is to
identify used operating systems, running services and
potential vulnerabilities. This type of scanning is normally
considered as an attack on the network, and has to be
authorised by the network owner.

Ettercap [9] is an open source multi-platform tool for
network traffic sniffing. It allows the capture of packets
and analysis of network protocols. In promiscuous mode,
it can capture communication between two users located
in the network. The Ettercap supports both passive and
active scanning and contains several modules for the
MitM type of attacks. If the unencrypted traffic is used,
the Ettercap can be used to gather sensitive information
like passwords.

Nmap [10] is a well-known open source tool used for
network scanning. It can find connected networks end
devices, their open ports, run services, and it can build a
network map. Versions of operating systems, services, and
running daemons can be found as well. This information
can be used in combination with well-known
vulnerabilities found in publicly accessible databases.

C. Reconnaisance phase – application scanning

The third reconnaissance phase focuses on an
automatized scanning of web applications. The results can
present a general idea of the application and give some
guidance in exploiting existing flaws. On the other hand,
common testing tools are often unable to find all the
vulnerabilities due to the usage of modern technologies in
common web applications. It is therefore often necessary
to manually explore the application source code for
discovering further flaws.

Arachni - Web Application Security Scanner
Framework [11] is an automatized multi-plaform open
sources scanning tool for security audit of modern web
applications. The framework has an integrated browser
engine, which allows scanning of modern complex web
applications using advanced technologies like JavaScript,
HTML5, DOM and Ajax. The framework is using
asynchronous HTTP requests, parallel processing of
JavaScript operations, and multi-thread scanning. The
framework therefore maintains a high performance.

Arachni is also able to generate a detailed analysis report
with found vulnerabilities. Its detection abilities are very
high with trustworthiness over 90%.

Testing of an application can take up to tens of
minutes (depending on the application scale) and during
this time, the application performance can be greatly
reduced. It is therefore highly recommended not to use
this type of scanning on an application used in a
commercial sphere deployment.

OWASP ZAP (Zed Attack Proxy) Project [12] by
OWASP (The Open Web Application Security Project) is
a tool for web application scanning and it contains several
modules for exploitation attacks. These modules include:
Proxy (for communication capturing), Scanner (passive
and active), Fuzzer (sequentially sends potentially
dangerous payload in order to identify a vulnerability),
Spider (traverses all the web pages from the initial URL in
order to discover new sequences of the application), and
Forced browsing (discovers direct access to files stored on
the server, using dictionary method).

D. Web Application Exploitation

After the reconnaissance phase is done, the application
exploitation phase can begin. This phase can include
various tools depending on targeted exploitations. The
most common categories and specific tools are described
below.

SQL Tools like SQLmap and NoSQLMap. SQLmap
[13] is a popular open source tool for testing the database
part of a web application. A typical exploitation which can
be found is the SQL injection. In the case of a successful
exploitation, the SQLmap can access the operating system
shell. The tool can save analysis results and data gathered
from the database into a file. The attack itself can take a
few minutes, depending on the scope of the database. The
supported databases are: MySQL, Oracle, PostgreSQL,
Microsoft SQL Server, Microsoft Access, IBM DB2,
SQLite, Firebird, Sybase, SAP MaxDB, and HSQLDB.

NoSQLMap [14] is an open source tool targeting
NoSQL databases. Currently it supports only MongoDB,
but extensions for other NoSQL databases like CouchDB,
Redis, or Cassandra are planned. The time needed for the
testing is similar to SQLmap and data can be also saved
into a file if the attack is successful.

Password attacks – the typical tool for password
attacks is the hashcat [15] and its derivatives like
oclHashcat and cudaHashcat. The hashcat is an open
source tool supporting many hash algorithms (including
MD, SHA, and bcrypt). The computation can run either on
CPU (hashcat) or GPU (cudaHashcat on Nvidia and
oclHashcat on AMD). The GPU performance can
typically be much higher due to the parallelized
architecture of modern graphic cards.

The hashcat contains the following attack modes:
straight (classical dictionary attack), combination (words
connected from multiple dictionaries), brute-force (mask
specification allows to omit unused password
combinations), permutation (changes positions of each
letter in a single word), and table-lookup (each dictionary

word is broken down into single letters and mapped into
another table).

Burp Suite - [16] is one of the most reputable
platforms for penetration testing of web applications. It
consists of the following modules: Web vulnerability
scanner (continuously updated and therefore able to detect
flaws in modern web technologies like REST API, JSON,
AJAX, and jQuery), Proxy (captures and modify the
communication), Spider (can create map of the web
application and automatically sends forms), Intruder
(realizes attacks based on performed analysis), Repeater
(repeatedly modifies HTTP requests and compares their
replies), and Sequencer (analyses the level of security
tokens randomness). The Burp Suite is a very complex
tool requiring a certain degree of user expertise. Unlike
the previous tools, the Burp Suite is provided in two
versions: free with limited functionality and professional
with full features (paid).

BeEF - The Browser Exploitation Framework [17] is a
very popular open source framework for penetration
testing, focused on XSS attacks. The BeEF is also written
modularly, so the new attack scenarios can be easily
added. The main functionality of the BeEF is a hooking
process, which allows the takeover of client web browser
control. This process can be integrated with the Metasploit
Framework [18] and found vulnerabilities can be used to
gain access to the operating system shell.

IV. THE USE CASE PENETRATION TESTING

A. Web Application for Tools Testing

In this section, the previously described penetration
testing tools will be tested on a custom-made web
application. The use case application simulates a typical
modern web for E-library, and purposefully contains the
most common vulnerabilities described in section 3. The
application supports three types of accounts:
administrator, librarian, and a customer. The application
has the following functions:

 Book reservation

 Credit system for limiting the number of
borrowed books

 Options to edit books, credits, and profiles

 Real-time chat based on the Socket.IO technology

The web application uses the following technologies:
Node.js (web application back-end), Express (extends
module for Node.js), Socket.IO (bidirectional
communication between a client and the server), MariaDB
(relation database for small to middle sized applications),
MongoDB (stores unstructured web content), HTML5
(presentation part), CSS3 (design part), jQuery (local
processing on a client side), and Ajax (asynchronous
request processing, cooperation with jQuery). These
technologies are common in modern web applications and
they therefore present a good sample for security testing.

B. Testing Plan

To perform a complete penetration test, a testing plan
has to be firstly created. There are many existing
approaches and guides; one of the most common is the
OWASP Testing Guide v4. This section will describe the
sections of this plan, and how to test the most common
security vulnerabilities. The complete process will be
demonstrated on the use case application. As a testing
platform, Kali Linux 2.0 was chosen for penetration
testing.

The testing plan of a private web application should
include the five following scenarios:

1. Server and application scanning

2. Input data validation

3. Authentication and authorization

4. Client side vulnerabilities

5. The level of application configuration
security

If the application is publicly available over the
Internet, the additional scenario (preceding the server and
application scanning) – the passive reconnaissance phase
– should be added. This scenario will not be described,
because the use case application is not publicly deployed
and therefore no information could be found about it.

Server and application scanning is the first phase
which conducts a search for vulnerabilities, which could
be exploited later.

Server scanning (nmap) - firstly, the web server should
be scanned for used operating system, open ports and
running services. In the use case application, the nmap
tool, suitable for this scanning, discovered the following
facts: used operating system (Linux 3.2 - 4.0), open ports
(22, 111, 3000, 3306, 27017, 28017, 50892) and running
services (OpenSSH, RPC, Node.js, MariaDB). These
results are shown in Figure 1.

Application scanning - an application should be
scanned for vulnerabilities by a complex tool like the
Arachni or OWASP ZAP. If an application contains
sections which require a login, it is recommended to use
authentication modules. Depending on the application,
additional modules should be used. These modules will
ensure, that all the application sections will be scanned for
vulnerabilities. In our case, the Arachni found 44
vulnerabilities in the following categories: 12 high, 7

Figure 1. Analysis report from server scanning by the nmap tool

medium, 5 low, and 20 informational. For comparison, the
use case application was further subjected to a scan by
OWASP ZAP with the Proxy and Spider modules. This
testing allowed scanning of data flow (including password
exchanges and forms submissions) between the server and
a client; and detection of potentially hidden parts of the
application. The tool found the following vulnerabilities: 2
high, 4 medium, and 6 low (no informational
vulnerabilities were found). The OWASP ZAP was able to
detect the more serious threats: XSS and SQL injection,
which were not detected by the Arachni. Therefore, in our
case, the OWASP ZAP results were more accurate and we
recommend using this tool.

Input data validation should verify all the application
data sources prone to access attacks like XSS (cross-site
scripting) or injection. The following four scenarios are
the most common areas to conduct an input data
validation:

REST API (SQL injection) - each REST API source
should be manually identified and their methods and
parameters tested by the OWASP ZAP with the Proxy
module. All the HTTP requests should have a valid
session ID in order to verify operations requiring
authentication. The testing of the use case application
revealed parameters prone to SQL injection in all the
REST API sources. These vulnerabilities could result in
data leaks, unauthorized modification, or application
instability.

 REST API (XSS) - the same API should be further
tested for stored XSS (api.js file) vulnerabilities. If some
vulnerable API is discovered, HTTP requests can be
captured using the Proxy module of the OWASP ZAP tool.
These requests should then be moved into the Fuzzer
module, where a XSS.txt file can be applied on them. This
file contains the list of harmful payloads. Each parameter
in our application was tested with the harmful payload and
compared to response payloads. The comparison was
automated with the custom script restAPI-fuzzer, but it can
be done manually as well. The script was able to detect
several unhandled data inputs.

 NoSQL injection - incorrect handling of input data
should be tested for appropriate databases such as the
MongoDB. This database can be used, for example, for
chat as in our application. In this case, the HTTP request
for chat API was firstly captured with the Proxy module.
The payload was then modified and sent back to the
server. This modification allowed listing of all the
messages (instead of listing only messages for a specific
user).

 Input data (Socket.IO) – the process of the Socket.IO
communication testing has to be manually customized for
every application. In the use case application, we created a
testing script (socketio-testclient) and we used the fuzzing
method for sending a harmful payload via Socket.IO. This
test revealed, that the input data is not secured for XSS,
resulting in displaying dialogue windows caused by the
harmful payload.

Authentication and authorization is the third phase
and should contain at least the following four scenarios:

Level of login component security - this scenario
verifies vulnerabilities of a login component. Attacks, like
SQL injection, could result in a bypass of the login
process. The conducted reports from the first phase should
already pointed out if the login form is prone to SQL
injection attacks. These found vulnerabilities can be
further tested by the Burp Suite and its Intruder module,
or by the Fuzzer module of the OWASP ZAP. If the
vulnerability is confirmed as in our case, the SQLmap can
be used for database scheme gathering.

Access to unauthorized sections of an application – is
the OWASP Top 10 A7 vulnerability and should be
thoroughly tested. One of the approaches is to use the
OWASP ZAP with the Proxy module for user login (with
client credentials). Afterwards, all sections available to
this user can be accessed. Consequently, the Forced
Browse attack can be conducted with the default OWASP
ZAP dictionary. In our case, 708 520 requests were sent
and the attack found 4 sections, which should be
accessible only to the administrator. This indicates, that
some sections of the application are not using
authorization verification. This was confirmed by the
following authorization verification conducted by the
Proxy and Intruder modules of the Burp Suite.

Session hijacking – the goal of this attack is to
discover the session ID of a connected client. The attacker
can then login to the application without the knowledge of
user credentials. In custom applications, the automated
scanning tools are typically unable to detect the session
ID. This happened in our application as well, due to the
different application session signature. In this case, the
manual approach via a packet capturing tool (for example
the Wireshark) has to be used to discover the session ID.

Socket.IO authentication – this manual test verifies if
the Socket.IO is accessible only after a successful
authentication. In the use case application, the customized
script socketio-testclient was connected to the URL:
http://192.168.0.3:3000. After the script was launched, the
console response showed: "Connecting to the socket was
successful", indicating, that no authentication was
necessary. This could result in subsequent attacks.

Client side vulnerabilities tests an important part of
the application security – the client side. Two basic
scenarios should be tested:

XSS vulnerability exploitation - this scenario uses an
unsecured input of unfiltered XSS. The BeEF tool with
the hook.js script can be used to exploit the vulnerability.
In order to run the script, a link to the hook.js file had to
be firstly put into the application database. This can be
done using many approaches. In our test, we simply sent
the link to the user chat. After the successful hooking
process, the information about the client's browser and its
stored cookies can be gathered. Additionally, the web
content can be spoofed as well.

CSRF (Cross-Site Request Forgery) exploitation – is a
malicious JavaScript code, which executes an attack when
it is accessed. Such a code was added into the form on the
Profile page. If a user is logged into the application and
accesses this page (the link can be sent by the chat), the
inserted JavaScript executes the attack. Our attack

contained a hidden form with request to change the user
password.

The level of application configuration security is the
last phase and should be tested in the following four
scenarios:

 Stolen hashed passwords - this test verifies a situation
where a text file with hashed password is stolen. Based on
the hash password length analysis, the length of the hash
function can be determined. In our application, the 40 hex
long password corresponds to 40 * 4 (hex) = 160 bits.
Then, the used hashed function can be guessed (in our
case SHA1). Finally, an appropriate tool can be used to
break the passwords. We used the hashcat tool with
dictionary rockyou.txt and we also tested various breaking
methods. The Straight method was able to break 13 of 25
passwords in 5 seconds. The same number of passwords
was broken by the Table-lookup method in 67 seconds.
The last method, Combination, was able to break only 6
passwords in 90 minutes (and the remaining time was
estimated to 12 hours).

Sensitive data exposure - the test verifies MitM attack,
which can capture usernames and passwords when a user
is logging into an application via the HTTP. The Ettercap
tool can be used for sniffing the connections via the ARP
poisoning. In the use case application, this attack was able
to capture the username and password for every client
logging into the application.

Sensitive data theft - this scenario verifies the
possibility of access to sensitive data. Because it depends
heavily on the application context, this analysis has to be
conducted manually. The Burp Suite can be used to map
all the HTTP requests of the application's REST API. In
the use case application, the captured JSON files showed
hash of the user passwords, which could then be misused.

MongoDB security – if a database is used in an
application, its security should be tested. Firstly, the
NoSQLMap can be used to scan an application's sub
network for discovering the database’s local IP address
and port. The database can then be exploited with the
NoSQL Web App attack. In the use case application, the
database was successfully found and data was cloned into
a local file. All the chat messages could therefore be
exploited.

C. Testing Summary

Tested vulnerabilities and used tools are summarized
in the table 1. The scenarios, where threats could be found
using automatized tools are marked as Automatic,
otherwise they are marked as Manual or Combination. In
these later cases, the tools had to be combined with
methods of manual code analysis, or custom made scripts,
requiring the more consistent knowledge about the
security issue.

Only the vulnerabilities from the server and
application scanning part can be found using automatized
tools. The reason why using automated tools in other
categories is not enough, is the complexity and novelty of
modern web technologies. The automated tools can be
able to detect these vulnerabilities only if they are updated
frequently, which is not always the case. For this reason,

there will always be a delay between the introduction of
new web technology and implementation of threat
detection into these automated tools.

V. SECURITY RECOMMENDATIONS FOR THE

APPLICATION

Based on the typical vulnerabilities from the section 4,
the following recommendations were created to
significantly increase the security of web applications.

Server and application scanning part - Opened
database ports should be disabled for remote access. This
can be accomplished by binding these ports on the
loopback interface (127.0.0.1). The password
autocompletion should be disabled in all the input
password fields (set autocomplete parameter to off). To
protect all the replies against clickjacking attack, X-
Frame-Options should be sent in a reply header. This can
be done with the following setting: app.use
(helmet.xframe('deny')); To protect the session against the
XSS attack, it has to be set to inaccessible for JavaScript.
This can be done by setting a HttpOnly flag for all the
HTTP responses: cookie: {httpOnly: true, secure: true}.

Input data validation part – for elimination of SQL
injection attacks, the database queries should use
parameter bindings instead of their ad-hoc creation. An
alternative is to use "escaping" of input parameters.
NoSQL injection should be prevented by using input data
validation for example with the mongo-sanitize module
and its sanitize function. In the case of numeric input data,
these variables should be explicitly cast into numeric data
types. Additional data validation can be conducted by
using regular expressions, or by the XSS module.

TABLE I. PENETRATION TEST SUMMARY

Tested vulnerability Used tools Method

Open ports Nmap Automatic

Vulnerability
scanning

Arachni, OWASP
ZAP

Automatic

SQL Injection
OWASP ZAP (Proxy),

SQLmap
Automatic

Data validation (XSS)
OWASP ZAP (Proxy),
Fuzzer

Combination

NoSQL Injection OWASP ZAP (Proxy) Automatic

Data validation

(Socket.IO)

Code analysis, testing

scripts
Manual

SQL Injection - login
Burp Suite (Intruder),

SQLmap
Automatic

Authorization
OWASP ZAP (Proxy),

Forced Browse
Combination

Session hijacking Wireshark, Burp Suite Manual

Socket.IO

vulnerability
Testing scripts Manual

XSS exploitation BeEF Combination

CSRF exploitation
Burp Suite / Ajax,

JavaScript
Manual

Password encryption

strength
Hashcat Automatic

User credential theft Ettercap Automatic

Sensitive data theft Burp Suite Combination

MongoDB security NoSQLmap Automatic

Authentication and authorization part - The input
parameters of all functions should be "escaped" (for
example: conn.escape(req.body.name)) or used via a
parametrized query. Unauthorized access can be mitigated
by using an ACL module, or by implementing a custom
authorization middleware. Session ID can be effectively
protected by using HTTPS and an already mentioned
secured cookie. To protect the Socket.IO access via
authentication, the module socketio-auth should be
implemented.

Client side vulnerabilities part - validation of input
parameters (manually, or with the XSS module) has to be
implemented to protect the application. Prevention against
the CSRF attack can be done by implementing a hidden
authorization token. This randomly generated number will
ensure the uniqueness of every request. The
implementation example is the csurf module.

The level of application configuration security part
- better protection of stored passwords can be ensured by
the password salting. This will increase the password
length and add randomness into the stored passwords. An
additional recommended measure is to enforce the
password policies like minimal password length, and a
need to include lower-case, upper-case, and special
characters. To protect against sensitive data exposure, the
HTTPS protocol should be used. Exposure of sensitive
data is a logical flaw of an application design. This error
should be detected and corrected in the application
development phase. The Burp Suite, or the OWASP ZAP,
can be used to test HTTP requests and responses to detect
such flaws. The used databases (MongoDB) should be
secured by their binding on the local loopback. If a remote
access to the database is required, the database should
work in the secure mode. This mode will ensure secure
authentication of clients accessing the database.

VI. CONCLUSION

The performed penetration testing verified the
usability of current automated scanning tools. While these
tools were able to find most of the vulnerabilities, the
testing also confirmed, that some vulnerabilities were not
detected. This is in most cases, caused by usage of modern
web technologies, which are not yet implemented in these
scanning tools. Therefore, the usage of modern
technologies does not typically ensure the maximal
security, if only the automated tools are used for security
testing.

Performing high quality penetration testing is a time-
consuming task requiring knowledge of various
technologies. Automatized scanning tools can be used to
quickly gain a general idea about the application security
status, but cannot present a complex analysis. To verify all
the aspects of the application, more specialized tools have
to be used together with manual code analysis, and writing
of custom scripts. It is also important to mention the
influence of the penetration testing on an application

performance. In more intrusive testing, the application
should not be deployed in the production.

ACKNOWLEDGMENT

We would like to thank Radek Knytl for his
contribution to this paper. This work and contribution is
supported by the project of the student grant competition
of the University of Pardubice, Faculty of Electrical
Engineering and Informatics.

REFERENCES

[1] S. Rafique, Humayun, M., Hamid, B., Abbas, A., Akhtar, M.,
Iqbal, K., “Web application security vulnerabilities detection
approaches: A systematic mapping study,” in: 2015 IEEE/ACIS
16th International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing
(SNPD). pp. 1–6 (June 2015)

[2] M. Alenezi, Javed, Y., “Open source web application security: A
static analysis approach,” in: 2016 International Conference on
Engineering MIS (ICEMIS). pp. 1–5 (Sept 2016)

[3] J. Sohn, Ryoo, J., “Securing web applications with better
”patches”: An architectural approach for systematic input
validation with security patterns,” in: 2015 10th International
Conference on Availability, Reliability and Security. pp. 486–492
(Aug 2015)

[4] H. Hakim, Sellami, A., Abdallah, H.B., “Evaluating security in
web application design using functional and structural size
measurements,” in: 2016 Joint Conference of the International
Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement
(IWSM-MENSURA). pp. 182–190 (Oct 2016)

[5] Kumar, R., “Analysis of key critical requirements for enhancing
security of web applications,” in: 2015 International Conference
on Computers, Communications, and Systems (ICCCS). pp. 241–
245 (Nov 2015)

[6] A. Al-Bajjari, Yuan, L., “Optimized authentication scheme for
web application,” in: 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA). pp. 52–58
(Nov 2016)

[7] Paterva: Maltego (2016), [online]. Available:
https://www.paterva.com/web7/index.php

[8] L. Baird, Discover - github (dec 2016), [online]. Available:
https://github.com/leebaird/discover

[9] A. Ornaghi, “Ettercap home page” (dec 2016) [online]. Available:
https://ettercap.github.io/ettercap/

[10] G. Lyon, “Nmap: the network mapper” (dec 2016) [online].
Available: https://nmap.org/

[11] A. Laskos, “Nmap: the network mapper” (dec 2016) [online].
Available: http://www.arachni-scanner.com/

[12] OWASP: Owasp zed attack proxy project (dec 2016) [online].
Available: https://www.owasp.org/index.php/ZAP

[13] B. Damele, Stampar., M., “sqlmap: automatic sql injection and
database takeover tool,” (dec 2016) [online]. Available:
http://sqlmap.org/

[14] Nosqlmap (dec 2016) [online]. Available:
https://github.com/tcstool/nosqlmap

[15] J. Steube, “hashcat - advanced password recovery,” (dec 2016)
[online]. Available: https://hashcat.net/hashcat/

[16] PortSwigger Ltd, “Burp suite” (dec 2016) [online]. Available:
https://portswigger.net/burp/

[17] W. Alcorn, “Beef - the browser exploitation framework project,”
(dec 2016) [online]. Available: http://beefproject.com/

[18] Rapid7, “metasploit,” (2016) [online]. Available:
https://www.metasploit.com

