
Extraction of Outliers from Imbalanced Sets
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Abstract. In this paper, we presented an outlier detection method, de-
signed for small datasets, such as datasets in animal group behaviour
research. The method was aimed at detection of global outliers in un-
labelled datasets where inliers form one predominant cluster and the
outliers are at distances from the centre of the cluster. Simultaneously,
the number of inliers was much higher than the number of outliers. The
extraction of exceptional observations (EEO) method was based on the
Mahalanobis distance with one tuning parameter. We proposed a visual-
ization method, which allows expert estimation of the tuning parameter
value. The method was tested and evaluated on 44 datasets. Excellent
results, fully comparable with other methods, were obtained on datasets
satisfying the method requirements. For large datasets, the higher com-
putational requirement of this method might be prohibitive. This draw-
back can be partially suppressed with an alternative distance measure.
We proposed to use Euclidean distance in combination with standard
deviation normalization as a reliable alternative.

Keywords: outlier analysis, distance based method, global outlier, sin-
gle cluster, Mahalanobis distance, biology

1 Introduction

Data mining reveals new, valuable and non-trivial information in large datasets
[14]. It is a process of discovering interesting patterns and knowledge in the
data that is not immediately apparent. Various data mining approaches help to
specify the patterns in the data mining tasks. Examples include characterization
and discrimination, mining of frequent patterns, associations and correlations,
classification and regression, clustering analysis, and outlier analysis [10].

The outlier analysis has an important position among data mining approaches.
Hawkins specified an intuitive definition of the term outlier as: ’Within a given
dataset, the outlier is an observation which deviates so much from other observa-
tions as to arouse suspicions that it was generated by a different mechanism’ [11].



The other observations are usually called inliers, normal data or normal obser-
vations. Throughout the text, a predetermined battery of features characterizes
an observation.

The outlier analysis is used in a wide variety of domains such as the financial
industry, quality control, fault diagnosis, intrusion detection, web analytics, and
medical diagnosis [2]. The most typical application of the outlier analysis is
data cleaning. However, in many applications, outliers are more interesting than
inliers. Fraud detection is a classic example, where attention focuses on the
outliers, because these more likely represent cases of fraudulent behaviour [12].

The outlier analysis distinguishes three categories of outliers that require
specific analytical approaches: global outliers, contextual outliers (known also as
conditional outliers), and collective outliers [10]. A global outlier is an observa-
tion that deviates significantly from the rest of the dataset, whereas a contextual
outlier deviates from inliers only with respect to a specific context. The term
collective outlier is used for a subset of observations. A subset of observations
forms a collective outlier if the subset as a whole deviates significantly from the
entire dataset.

To identify outliers, the outlier detection methods create models of normal
patterns in the data (so called data model or simply model), and then compute
an outlier score of a given observation on the basis of the deviations from the
normal patterns [2]. The outlier detection methods utilize clustering models,
distance-based models, density-based models, probabilistic and statistical models,
classification models, and information-theoretic models [10, 2].

The selection of the model and outlier score calculation is data-specific and
relies on assumptions of information contained in the data. For example, classifi-
cation models require datasets of labelled observations. Methods based on other
models, e.g. statistical models or distance-based models, can be applied to both
labelled as well as unlabelled datasets.

The correct choice of the method from the perspective of the data model de-
termines results of the outlier analysis [2]. For example, application of a method
based on a statistical model, which expects a uniform distribution of inliers,
would be inappropriate for a dataset with the zipf distribution.

In biology, animal group behaviour studies generate specific datasets of ob-
servable variables pre-selected in the experimental design [5, 18]. Typically, such
datasets are unlabelled and may contain numerical as well as categorical data.
Given the complexity of animal behaviour, feature space of the observed vari-
ables will not be exhaustive on an individual level and determinants of group
behaviour will exhibit subtle trends. From amongst the data mining approaches,
the outlier analysis provides functionality to identify observations putatively
generated by an alternative mechanism, which makes the analysis suitable for
application in animal group behaviour research. In order to ensure a simple and
reliable recognition of the outliers in such a dataset, we developed an outlier
detection method. Our method detects global outliers using a distance-based
model. Here, we introduce the method for numerical data.



2 Methods

2.1 Analysis of the Problem

A dataset considered for application with the proposed method contains inliers
that form one multidimensional cluster, while the outliers span at a distance
from the cluster centre. The outliers may or may not form small clusters. The
total number of observations in the dataset range from tens to hundreds of ob-
servations. Further, distribution of inliers may significantly vary among various
datasets. The data contains no prior knowledge about the outliers, and the in-
formation embodied in the outliers is the object of interest. These datasets may
include both numerical and categorical data; however, the proposed method is
intended for datasets composed of numerical data.

The first step in developing a new outlier detection method is identification
of the outlier category. Following the above stated setup, the proposed method
detects global outliers. The second step, selection of the model for inliers, delin-
eates the direction of the development process. Herein, we use backward selec-
tion to select the proper model. Information-theoretic models are impropriate
for the defined datasets, because of the expected type of features. Without prior
knowledge about the outliers, the new detection method cannot be based on a
classification model. As different datasets may have different distributions of in-
liers, usage of a probabilistic, density-based or a statistical model is inadvisable.
Consequently, the method has to be based on one of the remaining model types;
clustering or distance-based models.

Both clustering models and distance-based models represent appropriate
choices for the new outlier detection method given the data. Between them,
distance-based methods enable a higher granularity of analysis as compared to
clustering methods. This property of distance-based methods provides a more
refined ability to distinguish between weak and strong outliers in noisy data sets
[2]. Hence, the presented method has been developed on a distance-based model.

2.2 Description of the Method

Let X = {x1, . . . ,xn} be a set of n observations x. The i-th observation xi,
where i ∈ I and I = {1, . . . , n}, is a d-dimensional real vector xi = (xi1, . . . , xid)
of features x ∈ F , where xik is the k-th feature of the i-th observation, and F
is a feature space. Let us expect that the majority of the observations, say m,
belongs to inliers. The remaining p observations correspond to outliers. A subset
of all outliers in the set X will be denoted as O.

The presented method belongs to the group of outlier detection methods
based on a distance model. It assumes two attributes in the observations x ∈ X:

(I) inliers form one predominant cluster and the outliers are at distances from
the centre of the cluster,

(II) the number of inliers is much higher than the number of outliers (m >> p).



In order to design the separation method, the outlier score had to be properly
formulized. For this purpose, an appropriate similarity measure had to be chosen.
Similarity of two observations, say xi, xj ∈ X, was assessed using a distance
measure. In order to ensure a comparable level of impact for all the features
x ∈ F , the observations should be compared with normalized data or the measure
should be unitless and scale-invariant. In our solution, we used Mahalanobis
distance [7, 4]. This measure is unitless and scale-invariant. For the observations
xi,xj , the Mahalanobis distance is defined as

d (xi,xj) =

√
(xi − xj)S

−1(xi − xj)>, (1)

where S is a covariance matrix, and > symbolizes transposition.
Considering the properties of the datasets expressed via the assumptions (I)

and (II), we proposed to formulate the outlier score J for the i-th observation
as the sum of distances between the i-th observation and the others, i.e.

Ji =
∑
∀j∈I

d (xi,xj). (2)

The distance-based methods usually take into account distances between an
evaluated observation and its k nearest neighbours. Nevertheless, the outlier
score (2) considers all n distances. An example demonstrates rationalization
for the formulation of the score. In Fig. 1, the number of distances is identical
regardless of whether an inlier (Fig. 1 a) or an outlier (Fig. 1 b) is evaluated;
however, distributions of their values differ. For the outliers, longer distances
appear more frequently than for inliers. This holds for an arbitrarily chosen
inlier and outlier, since inliers form a single cluster and m >> p.

The specific properties of the dataset lead to the conclusion that the greater
the number of nearest neighbours which are included in the analysis, the larger
the difference between scores of inliers and outliers. Consequently, inclusion of
all observations in the comparison results in higher sensitivity of the method.
The associated increase in computational complexity of the method is irrelevant
for the expected dataset sizes. For larger datasets, a GPU optimized variant of
the method may be developed [3].

Observations evaluated using the outlier score (2) can be easily classified as
outliers or inliers using a threshold value t. In our case, the unusual structure of
the dataset X inspired the analytical expression of t. Indeed, values of the score
for inliers are markedly smaller than for outliers. Considering this fact and the
fact that m >> p, median of the score’s values Ĵ adequately describes inliers.
On the basis of the median and the smallest score values, the range of score
values of inliers can be estimated. Thus, the threshold value can be expressed as

t = ε.[Ĵ −min
∀i∈I

Ji] + Ĵ , (3)

where the parameter ε is used as a tuning parameter. Each observation with a
score equal to or greater than the threshold value t is expected to be an outlier.
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Fig. 1. Demonstration of the idea behind the outlier score by evaluation of: a) an
inlier, and b) an outlier. In both figure panels, three outliers (diamonds) and seven
inliers (circles) are plotted on a two-dimensional centred, rotated and standardized
feature space x̃1, x̃2 ∈ F̃ . The distance between two observations is symbolized using
a red line.

The presented method has one tuning parameter ε, and its setting signif-
icantly predetermines the output of the method. We proposed a visualization
method in order to estimate the accurate value for ε. The visualization displays
a continuous line connecting scores J for ∀x ∈ X, where the scores are sorted
in ascending order. The line is approximately exponential. The initial lag phase
with gradual increase in J , includes inliers, and the subsequent exponential phase
includes outliers. Using the graph, an expert can estimate the boundary between
inliers and outliers and accordingly the threshold value determining ε (Fig. 2).

j

J

Legend
outlier score
minimum score
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threshold value

Fig. 2. Visualization of the score J as a function j where j are indexes of the observa-
tions sorted according to J in the ascending order. Threshold for outlier classification
t is placed at a point with rapid change in score trend.

For datasets satisfying the assumptions, the right placement of the auxiliary
line is straightforward. However, the more the dataset X deviates from the ideal,
the deeper understanding of the data is necessary for the appropriate placement.



2.3 Algorithmic Expression of the Method

The proposed method can be realized as a function, here presented as a pseu-
docode (Algorithm 1). The function has two inputs and two outputs. The inputs
are the set of observations X and the tuning parameter ε. The outputs are a set
of all outliers O and a set of outliers indexes Io in the original set X.

Algorithm 1 Extraction of Exceptional Observations

1: function EEO(X, ε)
Input: Set of n observations X = {x1, . . . ,xn}, constant ε specifying the limit for

outliers
Output: Set O of all outliers and set of their indexes Io in X
2: Ji ←

∑
∀j∈I d (xi,xj), ∀i ∈ I . Evaluation of observations using the criterion

3: t← ε.[Ĵ −min∀i∈I Ji] + Ĵ . Threshold value for exceptional observations
4: Io ← {i : i ∈ I where Ji ≥ t} . Indexes of exceptional observations
5: O ← {xi : i ∈ Io} . Set of exceptional observations
6: return O, Io
7: end function

2.4 Experimental Evaluation of the Method

We used 44 previously published datasets for evaluation of the proposed method
[8]. The datasets originated from areas such as biology, medicine, criminology
or astronautics. They contained three types of features: R - real numbers, I -
integers, and N - nominal values. The datasets consisted of labelled samples
with two classes. All datasets were imbalanced with an imbalance ratio IR =
m/p, where IR ∈ [1.82, 129.44]. We expected that the minority class represented
outliers, while the majority class consisted of inliers.

We adapted three performance measures used in binary classification to eval-
uate results obtained from our method. Namely, we considered sensitivity (Se),
specificity (Sp), and their geometric mean (G) [8, 15]. For the outlier analysis,
they can be expressed as

Se =
|TO|

|TO|+ |FI|
, Sp =

|TI|
|TI|+ |FO|

, G =
√

Se · Sp, (4)

where |TO| is the number of correctly recognized outliers (true outliers), |FO| is
the number of inliers labelled as outliers (false outliers), |TI| is the number of
correctly recognized inliers (true inliers), |FI| is the number of outliers labelled
as inliers (false inliers).

We evaluated our method (extraction of exceptional observations, EEO) for
two values of ε. Within the first experiment, we estimated the value of ε from the
graph (as per Fig. 2). This value was denoted as ε̂. In the second experiment, we
searched for an optimal setting (ε∗) using genetic algorithms [16]. The genetic
algorithms used the objective function as maxG(ε). We applied the MATLAB
function ga, with no constraints and default settings [1].



3 Results

Due to the presence of nominal variables, EEO could not be applied on datasets
’abalone19’ and ’abalone9-18’. Further, it was unsuccessful on datasets ’ecoli-
0 vs 1’ and ’segment0’, in which some features had constant values for all obser-
vations. The obtained results are summarized in Table 1. In general, sensitivity
of EEO with manual estimation of ε̂ was lower than for ε∗, established from
labelled data with genetic algorithms in lieu of higher specificity. This was ac-
companied by higher, and thus more conservative, values of ε̂.

To estimate the performance of EEO amongst existing outlier detection meth-
ods, we compared our method with Chi et al.’s method with 3 and 5 labels (Chi-3
and Chi-5) [6], Ishibuchi et al.’s method (Ish05) [13], E-Algorithm (E-Alg) [19],
Fernández et al.’s method (HFRBCS) [8], and C4.5 decision tree (C4.5) [17]. We
adopted the evaluation results published in [8]. The evaluation results using G
are summarized for all expected methods, including the EEO with optimal and
manual setting of ε, in Table 2.

4 Discussion

The proposed EEO method was tested on 44 datasets previously used for algo-
rithm testing [8]. The datasets differed in the imbalance ratio, in the number
of features and their type (Table 1). However, from the viewpoint of EEO test-
ing, many of these datasets did not meet the assumptions that the inliers form
one multidimensional cluster (I) and the number of inliers is much higher than
the number of inliers (II). This is apparent when displaying the first two prin-
cipal components of observation scores with their class labels [9]. The dataset
’shuttle-c0-vs-c4’ fully met the assumptions (Fig. 3 b), and EEO was successful
in outlier detection (G ≈ 98). The datasets ’ecoli-0-1-3-7 vs 2-6’, ’shuttle-c2-vs-
c4’, and ’Wisconsin’ similarly showed nearly ideal class assignment with respect
to inliers (data not shown). On these datasets, EEO exhibited excellent results
according to all three measures (4) both for ε̂ and ε∗. The performance of EEO
is fully comparable to all evaluated methods. In fact, EEO provides consider-
ably better separation on ’ecoli-0-1-3-7 vs 2-6’ dataset than any other considered
method (Table 2).

Good results were obtained also on other datasets, e.g. on ’glass6’ (Fig. 3 a),
’new-thyroid1’, or ’yeast-2 vs 8’. Here, a majority of the inliers were concen-
trated near the cluster center; however, many inliers (their number was similar
to the total number of outliers) were interspersed with the outliers. In such cases,
estimation of ε became vague and perfect separation was not possible. Thus, the
good EEO results on these datasets were coincidental and the presented method
was not suited for them.

While the threshold values t for outlier detection can be directly set from the
sorted distance visualization, estimating ε will represent a good practice in data
reporting. The ε value defines the position of the outliers relative to the median,
providing a data-independent approximation on outlier distribution comparable
between studies.
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Fig. 3. Example of a) inappropriate and b) ideal datasets. The outliers (red diamonds)
and inliers (black circles) are plotted in a two-dimensional centred, rotated and stan-
dardized feature space using the first two principal components.

The presented method was based on the Mahalanobis distance (1). While
the distance was efficient for the proposed problem, we found the method to be
computationally extravagant. Thus, we suggest an alternative approach based
on the Euclidean distance for application where computational intensity would
be of concern. The Euclidean distance in combination with standard deviation
normalization [14] might provide equally good results while its time-complexity
would be considerably lower.

5 Conclusion

The outlier analysis has the potential to mine valuable information from a com-
plex dataset, but its sensitivity and specificity is dependent on both suitability
of the method and the model, to the data. We designed EEO for the specifics of
animal group behaviour observations, where the outliers could reveal alternative
mechanisms determining group behaviour. Our testing on varied imbalanced sets
demonstrated that the utility of the method is wider. The EEO was able to cor-
rectly classify outliers in datasets from engineering, microbiology or medicine.
We therefore conclude that global outliers may be detected with EEO based on
the threshold estimated from sums of pairwise Mahalanobis distances in datasets
across fields that form one predominant multidimensional cluster with outliers
distanced from it.
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Table 1. Evaluation of EEO on test datasets using sensitivity Se, specificity Sp, and
their geometric mean G. In first four columns, basic information about datasets is
listed. It includes name, feature type (R - real numbers, I - integers, and N - nominal
values), number of observations n, and imbalance ratio IR. The remaining columns
consist of evaluation results for estimated and suboptimal setting of ε, respectively.

Information about datasets EEO with ε̂ EEO with ε∗

Name R/I/N n IR ε Se Sp G ε Se Sp G

abalone19 7/0/1 4174 129.44 - - - - - - - -
abalone9-18 7/0/1 472 16.4 - - - - - - - -
ecoli-0 vs 1 7/0/0 220 1.86 - - - - - - - -

ecoli-0-1-3-7 vs 2-6 7/0/0 281 39.14 0.60 71.43% 86.13% 78.44% 2.47 71.43% 98.91% 84.05%
ecoli1 7/0/0 336 3.36 0.70 20.78% 83.78% 41.72% 0.04 59.74% 55.98% 57.83%
ecoli2 7/0/0 336 5.46 0.90 9.62% 86.97% 28.92% 0.26 57.69% 64.79% 61.14%
ecoli3 7/0/0 336 8.6 0.90 8.57% 87.04% 27.31% 0.06 65.71% 55.15% 60.20%
ecoli4 7/0/0 336 15.8 0.90 65.00% 90.82% 76.83% 0.75 70.00% 87.34% 78.19%
glass0 9/0/0 214 2.06 1.30 10.00% 68.75% 26.22% -0.30 51.43% 25.69% 36.35%

glass-0-1-2-3 vs 4-5-6 9/0/0 214 3.2 1.30 52.94% 84.66% 66.95% 0.88 86.27% 83.44% 84.84%
glass-0-1-6 vs 2 9/0/0 192 10.29 1.60 17.65% 77.71% 37.03% -0.21 88.24% 37.71% 57.69%
glass-0-1-6 vs 5 9/0/0 184 19.44 1.40 22.22% 78.86% 41.86% 0.85 55.56% 69.71% 62.23%

glass1 9/0/0 214 1.82 1.30 19.74% 73.19% 38.01% -0.22 56.58% 34.78% 44.36%
glass2 9/0/0 214 11.59 1.00 11.76% 85.28% 31.67% 0.12 41.18% 55.84% 47.95%
glass4 9/0/0 214 15.47 1.30 46.15% 77.11% 59.66% 0.59 92.31% 66.67% 78.45%
glass5 9/0/0 214 22.78 1.30 22.22% 75.61% 40.99% 0.88 55.56% 67.80% 61.38%
glass6 9/0/0 214 6.38 1.30 65.52% 82.16% 73.37% 0.87 96.55% 76.76% 86.09%

haberman 0/3/0 306 2.78 0.60 14.81% 95.11% 37.54% 0.13 46.91% 66.22% 55.74%
iris0 4/0/0 150 2 0.80 10.00% 81.00% 28.46% -0.22 86.00% 30.00% 50.79%

new-thyroid1 4/1/0 215 5.14 0.70 65.71% 83.89% 74.25% 0.31 80.00% 74.44% 77.17%
new-thyroid2 4/1/0 215 5.14 0.70 65.71% 83.89% 74.25% 0.23 82.86% 71.11% 76.76%
page-blocks0 4/6/0 5472 8.79 0.70 85.87% 83.88% 84.87% 0.69 86.05% 83.68% 84.85%

page-blocks-1-3 vs 4 4/6/0 472 15.86 0.70 53.57% 78.60% 64.89% 0.46 71.43% 71.40% 71.41%
pima 8/0/0 768 1.87 0.90 20.15% 88.40% 42.20% 0.10 61.57% 67.20% 64.32%

segment0 19/0/0 2308 6.02 - - - - - - - -
shuttle-c0-vs-c4 0/9/0 1829 13.87 0.70 100.00% 95.96% 97.96% 0.77 100.00% 97.01% 98.49%
shuttle-c2-vs-c4 0/9/0 129 20.5 0.50 100.00% 88.62% 94.14% 0.97 100.00% 96.75% 98.36%

vehicle0 0/18/0 846 3.25 0.50 16.08% 90.42% 38.13% 0.05 53.27% 60.59% 56.81%
vehicle1 0/18/0 846 2.9 0.40 9.68% 82.83% 28.31% -0.02 48.85% 46.10% 47.46%
vehicle2 0/18/0 846 2.88 0.40 18.35% 85.83% 39.68% 0.14 31.65% 65.61% 45.57%
vehicle3 0/18/0 846 2.99 0.40 10.85% 83.28% 30.06% -0.12 70.75% 37.54% 51.54%
vowel0 10/3/0 988 9.98 0.40 48.89% 86.64% 65.08% 0.20 68.89% 72.72% 70.78%

wisconsin 0/9/0 683 1.86 0.50 97.07% 88.51% 92.69% 1.15 93.72% 94.37% 94.05%
yeast-0-5-6-7-9 vs 4 8/0/0 528 9.35 0.50 37.25% 81.34% 55.05% 0.30 54.90% 72.54% 63.11%

yeast1 8/0/0 1484 2.46 0.50 18.41% 78.58% 38.04% -0.03 48.48% 45.31% 46.87%
yeast-1 vs 7 7/0/0 459 14.3 0.70 40.00% 85.31% 58.42% 0.24 53.33% 66.67% 59.63%

yeast-1-2-8-9 vs 7 8/0/0 947 30.57 0.70 40.00% 83.32% 57.73% 0.39 53.33% 72.30% 62.10%
yeast-1-4-5-8 vs 7 8/0/0 693 22.1 0.70 10.00% 82.50% 28.72% -0.13 73.33% 40.57% 54.55%

yeast-2 vs 4 8/0/0 514 9.08 0.60 50.98% 84.45% 65.61% 0.18 84.31% 69.76% 76.69%
yeast-2 vs 8 8/0/0 482 23.1 0.60 70.00% 81.82% 75.68% 1.20 65.00% 93.94% 78.14%

yeast3 8/0/0 1484 8.1 0.50 25.15% 80.02% 44.86% -0.01 69.33% 51.40% 59.69%
yeast4 8/0/0 1484 28.1 0.50 45.10% 80.32% 60.19% 0.16 78.43% 62.11% 69.79%
yeast5 8/0/0 1484 32.73 0.70 34.09% 86.74% 54.38% 0.06 100.00% 55.69% 74.63%
yeast6 8/0/0 1484 41.4 0.70 22.86% 86.34% 44.42% -0.04 91.43% 47.83% 66.13%



Table 2. Comparison of EEO with other approaches for outlier detection. The geo-
metric mean G of sensitivity and specificity was used as an overall comparison value.
Results obtained by EEO are in bold on relevant datasets that meet designed criteria
(inliers form a predominant cluster with outliers spanned from it and the number of
inliers is greater than the number of outliers).

Dataset Chi-3 Chi-5 Ish05 E-Alg HFRBCS C4.5 EEO
ε̂ ε∗

abalone19 62.69% 66.71% 66.09% 0.00% 70.19% 15.58% - -
abalone9-18 63.93% 66.47% 65.78% 32.29% 67.56% 53.19% - -
ecoli-0 vs 1 92.27% 95.56% 96.70% 95.25% 93.63% 67.95% - -

ecoli-0-1-3-7 vs 2-6 71.04% 49.57% 71.31% 73.65% 71.48% 71.21% 78.44% 84.05%
ecoli1 85.28% 86.05% 85.71% 77.81% 84.18% 76.10% 41.72% 57.83%
ecoli2 88.01% 87.64% 87.00% 70.35% 87.62% 91.60% 28.92% 61.14%
ecoli3 87.58% 91.61% 85.39% 78.54% 90.81% 88.77% 27.31% 60.20%
ecoli4 91.27% 92.11% 86.92% 92.43% 93.02% 81.28% 76.83% 78.19%
glass0 64.06% 63.69% 69.39% 0.00% 76.57% 78.14% 26.22% 36.35%

glass-0-1-2-3 vs 4-5-6 85.83% 85.94% 88.56% 82.09% 88.37% 90.13% 66.95% 84.84%
glass-0-1-6 vs 2 40.84% 56.17% 41.18% 0.00% 58.37% 48.91% 37.03% 57.69%
glass-0-1-6 vs 5 71.48% 75.59% 88.77% 65.14% 77.96% 72.08% 41.86% 62.23%

glass1 64.90% 64.91% 59.29% 0.00% 73.66% 75.11% 38.01% 44.36%
glass2 47.67% 49.24% 43.55% 9.87% 54.84% 33.86% 31.67% 47.95%
glass4 84.96% 81.75% 78.27% 83.38% 70.39% 83.71% 59.66% 78.45%
glass5 81.56% 64.33% 89.96% 50.61% 68.73% 86.70% 40.99% 61.38%
glass6 83.87% 78.13% 86.27% 90.23% 86.95% 83.00% 73.37% 86.09%

haberman 58.91% 60.40% 62.65% 4.94% 57.08% 61.32% 37.54% 55.74%
iris0 100.00% 98.97% 100.00% 100.00% 100.00% 98.97% 28.46% 50.79%

new-thyroid1 87.44% 95.38% 89.02% 88.52% 95.58% 97.98% 74.25% 77.17%
new-thyroid2 89.81% 96.34% 94.21% 88.57% 99.72% 96.51% 74.25% 76.76%
page-blocks0 79.91% 87.25% 32.16% 64.51% 91.40% 94.84% 84.87% 84.85%

page-blocks-1-3 vs 4 91.92% 92.93% 94.53% 94.12% 98.64% 99.55% 64.89% 71.41%
pima 66.80% 66.78% 71.10% 55.01% 68.72% 71.26% 42.20% 64.32%

segment0 94.99% 95.88% 42.47% 95.33% 97.51% 99.26% - -
shuttle-c0-vs-c4 99.12% 98.71% 99.16% 98.40% 99.12% 99.97% 97.96% 98.49%
shuttle-c2-vs-c4 89.99% 78.34% 99.17% 100.00% 97.49% 99.15% 94.14% 98.36%

vehicle0 86.41% 84.93% 75.94% 39.07% 88.92% 91.10% 38.13% 56.81%
vehicle1 70.92% 71.88% 64.89% 3.09% 71.76% 69.28% 28.31% 47.46%
vehicle2 85.54% 87.19% 67.82% 43.83% 90.61% 94.85% 39.68% 45.57%
vehicle3 69.22% 63.13% 63.12% 0.00% 66.80% 74.34% 30.06% 51.54%
vowel0 98.37% 97.87% 89.03% 89.63% 98.82% 94.74% 65.08% 70.78%

wisconsin 88.91% 43.58% 95.78% 96.01% 88.24% 95.44% 92.69% 94.05%
yeast-0-5-6-7-9 vs 4 78.91% 75.99% 79.49% 59.99% 73.18% 74.88% 55.05% 63.11%

yeast1 67.69% 69.66% 51.41% 0.00% 71.71% 70.86% 38.04% 46.87%
yeast-1 vs 7 80.05% 63.02% 53.15% 27.55% 70.74% 67.73% 58.42% 59.63%

yeast-1-2-8-9 vs 7 76.12% 69.26% 48.55% 50.00% 69.37% 64.13% 57.73% 62.10%
yeast-1-4-5-8 vs 7 62.40% 58.76% 40.80% 0.00% 62.49% 41.19% 28.72% 54.55%

yeast-2 vs 4 86.80% 86.39% 70.85% 80.92% 89.32% 85.09% 65.61% 76.69%
yeast-2 vs 8 72.75% 78.76% 72.83% 72.83% 72.47% 78.23% 75.68% 78.14%

yeast3 90.13% 89.33% 77.06% 81.99% 90.41% 88.50% 44.86% 59.69%
yeast4 82.99% 83.07% 71.36% 32.16% 82.64% 65.00% 60.19% 69.79%
yeast5 93.41% 93.64% 94.94% 88.17% 94.20% 92.04% 54.38% 74.63%
yeast6 87.50% 87.73% 88.42% 51.72% 84.92% 80.38% 44.42% 66.13%


