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ABSTRACT 

In the age of self-driving cars, a great deal of attention is being paid to research on the 

motion control problems of the mobile robot / autonomous vehicle. The trajectory tracking of 

the mobile robot is one of the motion control problems, which refers to tracking the robot 

through a time parameterized reference trajectory. This is generally achieved by a kinematic 

controller and a dynamics controller. Kinematic MPC, assuming a “perfect velocity tracking” 

dynamics controller on low level, has been successfully applied in academia as well as industry. 

A dynamics controller (commonly PID) at dynamics level produces the required forces for 

motion control. However, advanced controllers are still not applied to the dynamics of the 

mobile robot. This is mainly because of the difficulties in modelling the dynamics of the mobile 

robot.  

The thesis proposes modelling of dynamics of a differential drive robot, and application 

of MPC in both the kinematics and dynamics parts. The thesis is divided in to three parts: 

kinematic modelling and predictive control, dynamics modelling and control, and Kino-

Dynamics control. Firstly, the non-linear kinematic equations were linearized into two different 

models and nonlinear MPCs were applied with these models. The responses were compared 

with state-of-the-art controllers. Secondly, the mathematical model of dynamics of mobile robot 

was derived from first principles. The tangential and angular velocities were controlled by 

generating motor voltages by Linear MPC and the response was compared to PID controllers. 

Thirdly, the kinematic controllers and dynamics controllers were cascaded and a comparative 

study has been conducted with respect to different control structures. It has been noticed that, 

MPC of the dynamics part, can not only generate an optimal control action, but also can 

influence the kinematic part and decrease the overall tracking errors. 

The NMPC-LMPC control structure has several advantages for a trajectory-tracking 

problem: it can generate optimal control actions by considering system constraints, increase the 

overall stability, decrease the overall tracking errors etc. The thesis concludes with the 

comparative analysis of control structures for trajectory tracking problem. Suggestions for 

future research work are also presented. 
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NÁZEV 

Řízení pohybu mobilního robota pomocí prediktivního regulátoru 

 

ANOTACE 

V práci je navrženo dvouúrovňové řízení pohybu mobilního dvoukolového robotu 

zajišťující sledování známé trajektorie. V obou úrovních je použit prediktivní regulátor s 

uvažováním omezení. Pro návrh řízení ve vyšší úrovni vycházející z kinematického modelu 

(závislost polohy a orientace robotu na jeho aktuální tangenciální a úhlové rychlosti) byly 

vytvořeny dva nelineární modely chyby sledování známé trajektorie. Pro návrh řízení v nižší 

úrovni a pro možnost simulačního ověření celého řízení robotu byl vytvořen metodou 

matematicko-fyzikální analýzy lineární dynamický model robotu popisující závislost jeho 

tangenciální a úhlové rychlosti na napětích elektromotorů pohánějích obě kola. 

Simulačně byly porovnány průběhy řízení pro různé struktury řízení i regulátory. Pozornost 

byla věnována zejména vlivu zanedbání dynamiky robotu a přínosu prediktivních regulátorů 

oproti standardně používaným řešením jak v kinematické tak i dynamické úrovni. Výsledky 

simulací ukazují, že prediktivní regulátor dynamické části, kromě respektování zadaných 

omezení, také ovlivňuje kinematickou část a zvyšuje celkovou kvalitu regulace. 
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Prediktivní řízení, řízení pohybu mobilního robota, modelování, optimalizace   
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1. INTRODUCTION 

1.1 Introduction and state of the art 

The past few decades have witnessed an increased research effort in the area of motion 

control of autonomous vehicles. In the age of self-driving cars, the importance of the study of 

motion control of the autonomous systems is ever increasing. Robust motion control algorithms 

are fundamental to the autonomous operation of mobile robot. Motion control refers to “how to 

control the robot to make some particular motion- either time bound or not”. There are basically 

three types of motion control problems: trajectory tracking, path following and point 

stabilization. Point stabilization (parking) refers to stabilization of the robot into a predefined 

position and orientation. Path following refers to move a robot along a path in a time 

independent manner. The trajectory tracking problem is similar to path following problem, but 

in a predefined time. A typical motion control problem is trajectory tracking, which is 

concerned with the design of control laws, that force a vehicle to reach and follow a time 

parameterized reference (i.e., a geometric path with an associated timing law). The degree of 

difficulty involved in solving this problem is highly dependent on the configuration of the 

vehicle and quality of position information. 

  Wheeled mobile robots (WMR) are widely used in many applications mainly because 

of the high loading capacity, less complexity, ease of control etc. Design of WMR depends on 

application with which they are applied (Cook 2011; Niku 2001). The number of wheels, 

configuration, type of steering, motors etc. depends on various design considerations. Mobile 

robots use several wheel configurations, such as differentially driven, car-type, omni-

directional, and synchro drive (Siegwart et al. 2011). The most common wheel configuration 

used in mobile robot designs is the differential drive. In a differential drive, the movement is 

based on two separately driven wheels on either side of the robot and one or more castor wheels 

which provide the stability of the robot. The steering is achieved by a relative rate of rotation 

of the wheels and hence no additional steering mechanism is needed. Differential drive vehicles 

have the added advantage that they can turn in place.  

Differential drive mobile robots have many potential applications, but motion planning 

is difficult as they are subject to rolling constraints that limit the possible directions of motion, 

i.e. they cannot move sideways directly, but must move forwards or backwards in order to turn. 

Hence, complicated manoeuvres may be required to move from one configuration to another 

nearby one; even in the absence of obstacles. Such constraints, that limit the possible directions 
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of motion are called non-holonomic (Triggs 1993). The difficulties of non-holonomic system 

are that, the non-holonomic system does not satisfy the Brockett theorem (Brockett 1983), so 

there does not exist smooth time-invariant state feedback control such that can makes the system 

asymptotically stable. However, it has been proven that, the asymptotic stabilization can be 

obtained using time-varying, discontinuous or hybrid control laws. 

The tracking control problem is classified as a kinematic control problem or dynamic 

control problem based on the system description – by kinematic model or dynamic model. The 

structure of the kinematic and dynamic models of WMR are analyzed and classified in 

(Campion et al. 1996). At the beginning, the research effort was focused only on the kinematic 

model, assuming that there is perfect velocity tracking (Kolmanovsky & McClamroch 1995). 

The main objective was to find suitable velocity control inputs, which stabilize the kinematic 

closed loop control.  

The dynamics of WMR are nonlinear and involve non-holonomic constraints, which 

cause difficulty in their modeling and analysis. There are two common formulations for mobile 

robot dynamics in the literature; one based on Lagrangian mechanics and the other on Newton-

Euler mechanics (refer (Hatab & Dhaouadi 2013) and the references with in). 

 The problem with control of dynamics part are precomputation of velocities by a pair 

of PID controllers. Furthermore, there are problems with constraints and noises too. At present, 

the PID controller is still widely used in motor control of mobile robot. However, its ability to 

cope with some complex process properties such as nonlinearities, and time-varying parameters 

are known to be very poor. The reference trajectory is not tracked directly, but by two 

controllers – high level controller for generating velocity control inputs (kinematics controller) 

and low level controller for generating motor torque (dynamics controller). The usage of more 

sophisticated controllers can solve these problems, which require dynamic model of the mobile 

robot. 

Controlling non-holonomic systems as they follow a reference path is a well-known 

problem that has been studied by many authors. The control problem is solved by considering 

its first-order kinematic model.  The obtained model can later be upgraded to include the 

dynamic properties. Usually, the reference trajectory is obtained by using a reference robot; 

therefore, all the kinematic constraints are implicitly considered in the reference trajectory. The 

control inputs are mostly obtained by a combination of feedforward inputs which are, calculated 

from the reference trajectory, and feedback control law, as in (Wenjie Dong et al. 2000; Sarkar 
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et al. 1994; De Luca & Oriolo 1995; Oriolo et al. 2002). Lyapunov stable time-varying state-

tracking control laws were pioneered by (Kanayama et al. 1990; Samson & Ait-Abderrahim 

1991; Fierro & Lewis 1995) , where the system’s equations are linearized with respect to the 

reference trajectory; and by defining the desired parameters of the characteristic polynomial, 

the controller parameters are calculated. A sliding mode control law is proposed for 

asymptotically stabilizing the mobile robot to a desired trajectory (Yang & Kim 1999). 

Dynamic feedback linearization is presented in (Oriolo et al. 2002), for both trajectory tracking 

and point stabilization problem. 

 All the above-discussed techniques consider only kinematic model and assumes a 

“perfect velocity tracking” controller (to generate actual velocity control inputs) is present at 

lower level. However, dynamics of mobile robot cannot be neglected, especially when high 

performance is required. A dynamical extension that makes possible the integration of a 

kinematic controller and a torque controller is presented in (Fierro & Lewis 1995). Various 

other non-linear techniques are also proposed in literature, e.g. sliding model controller (Yang 

& Kim 1999), adaptive controller (Kim et al. n.d.; Fukao et al. 2000), robust adaptive controller 

(Pourboghrat & Karlsson 2002) together with various artificial intelligence techniques (Fierro 

& Lewis 1998; Das & Kar 2006; Hu & Yang 2001) considering system disturbances and 

unknown parameters.    

The Model Predictive Control (MPC) (also known as Receding Horizon Control (RHC)) 

has been an important research area for decades. MPC is also seems to be very promising in the 

field of mobile robotic trajectory tracking, because the reference trajectory is known 

beforehand. It is designed to handle complex, constrained, multivariable control problems. It is 

an online optimization tool, which will generate optimal control actions required at every time 

instance by minimizing an objective function based on predictions (Camacho & Bordons 2004) 

and by respecting constraints. With the increase in computational power, the MPC is not only 

limited to slow dynamics processes, where dynamical optimization is easily possible, but also 

there are new applications for faster systems. Most of the MPC technologies are based on linear 

dynamic models and therefore referred to as a linear model predictive controller (LMPC). 

However, many processes are sufficiently nonlinear which hinder the successful application of 

LMPC. This has led to the development of nonlinear model predictive controllers (NMPC) in 

which nonlinear models are used for prediction and optimization. The main problem with 

NMPC is that, the nonlinear program has to be solved online at every sampling time to generate 
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control action, which is a computationally heavy task. There are various NMPC formulations 

in the literature (refer (Henson 1998) and the references with in).  

In case of trajectory tracking of mobile robots, MPC techniques produce promising 

results as shown by (Maurovic et al. 2011; Chen et al. 2009; Kunhe, F., J. Gomes 2005; Lages 

& Vasconcelos Alves 2006; Kuhne, Felipe, Walter Fetter Lages 2004). In (Klančar & Škrjanc 

2007), a tracking error based predictive control is presented.  A mobile robot trajectory tracking 

problem with linear and nonlinear state-space MPC can be seen in (Kunhe, F., J. Gomes 2005). 

A survey of motion control problems of Wheeled Mobile Robots (WMRs) using MPC can be 

found in (Kanjanawanishkul 2012). 

1.2 Problem formulation and objectives 

 Trajectory tracking of mobile robots requires usage of nonlinear kinematic differential 

equations. This requires, either linearizing the model and applying the LPMC or using nonlinear 

equations in prediction and/or in optimization and applying the NMPC. Various LMPC 

techniques applied to the trajectory-tracking problem (that can be seen in the literature) but 

usage of NMPC is quite rare, mainly because of the computation time requirement. One solution 

could be, linearize the nonlinear model into a LTV model and use it for prediction and 

optimization or use a combination of LTV model and non-linear model. 

In most of the trajectory tracking problems, the solutions in literature considers only the 

kinematics and the dynamics of the mobile robot is neglected. This is mainly because of the 

difficulty in modelling and identifying the nonlinearities associated with dynamics of the 

mobile robot. However, the kinematic trajectory tracking with cascade structure (high-level 

kinematic controller – low-level dynamics controller) has successfully been applied by many 

researchers. In a typical trajectory tracking problem, the trajectory is tracked by generating 

reference tangential and angular velocities (kinematic controller), assuming a perfect velocity 

tracker is available and this velocity is tracked by generating motor torques using a pair of PID 

controllers.  If the dynamics of the mobile robot can be modelled and identified with 

considerable precision, the mobile robot motion control problems can be solved with adequate 

accuracy - considering non- holonomic constraints and other soft constraints (e.g. energy, 

comfort (acceleration, jerk, slipping, skidding etc.)). A straight forward control of motor power 

(control actions) to track a robot into a trajectory (outputs) has obvious advantages when 

compared to controlling with a high level (kinematic) controller (usually implemented in PC) 

and low level (dynamics) controller (usually PID implemented in mobile robot controller). 
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Dynamic constraints (soft and hard) can also be easily integrated with kinematic (non-

holonomic) constraints, and control action can be computed. This integrated kinematic-

dynamics model can also leverage the possibility of different feedback configurations (e.g. 

mobile robot positioning systems (Borenstein et al. 1997)). 

MPC is a straightforward choice for the trajectory-tracking problem because of the 

following reasons, 

a. Flexibility in the formulation of MPC elements (prediction, cost function and constraints) 

b. In the trajectory tracking problem, the future set-point are known 

c. Ease of constraint handling (physical constraints of mobile robot and soft constraints) 

capability 

d. Capability of dealing with non-linear (kinematic model is non-linear) and multi variable 

control system 

To summarize the objectives, 

a. Design linear and non-linear state space model predictive controller with a criteria 

penalizing the control effort, control error and terminal state error. 

b. Derive the linear time varying model and reference variables from the basic kinematic 

equations. Conduct open-loop model verification experiments. 

c. Design the kinematic MPC and state-of-the-art controllers for trajectory tracking of 

mobile robot and to compare the performances. 

d. Derive mathematical model of dynamics of mobile robot considering motor dynamics 

and chassis dynamics. Verify the model by simulation and open loop experiments. 

e. Design Dynamics controllers for velocity tracking of mobile robot and compare the 

performances. 

f. Study the performance of different control structures for Kino-Dynamics controllers for 

trajectory tracking problem. Discuss the advantages of different control structures. 

1.3 Assumptions 

The following assumptions are considered in the thesis, 

a) An ideal mobile robot respecting non-holonomic constraints (rolling without slipping)   

b) A perfect localization system is present, i.e. robot’s position and orientation are known 

at every time instant  

c) An ideal differential drive robot powered independently by two motors and a castor 

wheel to support the robot 
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d) Non-linearities of gears (saturation, backlash and friction) are not considered in the 

dynamic model 

e) There is no time delay between measurement-control action calculation, actuation-

measurement etc.  

The other assumptions are mentioned in respective chapters.  

1.4 Thesis outline 

This chapter introduces the main idea of the thesis and outlines the motivation and 

objectives of the research. The rest of the thesis is organized in the following manner: 

Chapter 2 provides the control strategies for trajectory tracking of the mobile robot. 

This includes trajectory generation, kinematics and dynamics of the mobile robot  

Chapter 3 explains basics of predictive controller and design of state space linear and 

non-linear MPC. 

Chapter 4 examines the non-linear kinematic model of non-holonomic robot. Two 

models are derived based on reference co-ordinate frame – world coordinates and local 

coordinates system of the robot. Open-loop model verification experiments are also provided. 

Chapter 5 presents the kinematic control of non-holonomic mobile robot with two non-

linear MPCs and a comparison with respect to state of the art trajectory tracking controllers.  

Chapter 6 explores in detail the mathematical modelling of differential drive robot. A 

state space linear model is derived and open-loop model verification experiments are 

conducted.  

Chapter 7 describes the dynamics velocity tracking controller design. A linear MPC 

and PID controllers are proposed and a comparative study also provided. 

Chapter 8 illustrates Kino-Dynamics controller design for trajectory tracking problems. 

Design of various control structures are explained and a comparative analysis based on the 

performance of control structures is described. 

Chapter 9 consists of the overall conclusions of the research and proposes future 

remarks.  
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2. CONTROL STRATEGY FOR TRAJECTORY TRACKING 

OF MOBILE ROBOT 

Trajectory tracking of mobile robot refers to track the mobile robot in desired positional 

coordinates and orientation in a time parameterized way. The reference positional coordinates 

are usually the inputs which are way points (or goals) to be tracked at particular time instance. 

The trajectory planner interpolates the way points into smooth trajectory (robot pose – 

coordinates in x,y axis and orientation) with equidistant time samples. The ideal feasible 

tangential and angular velocities at particular time instant is also generated. The next stage is 

to generate the velocities control inputs depending on current and reference robot poses and 

velocities. Motor control voltages are generated with respect to the required velocity 

commands. Figure 1 shows a general block diagram of trajectory tracking which is subdivided 

into various levels. 

POSITI0N PLANNING
W=[xo(t),yo(t),t], t=0:Tend

MOTOR VOLTAGES
uD=[uL(k),uR(k)]

TRAJECTORY PLANNER
Wr=[xr(ti),yr(ti),θr(ti)]

ur=[vr(ti),ωr(ti)]

i=0:Tend/Ts

TANGENITAL & 
ANGULAR VELOCITIES

uK=[vB,r(k),ωB,r(k)]

ROBOT STATE 
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xe=[iLe(k),iRe(k),ωLe(k),ωRe(k)]
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Figure 1 General block diagram of trajectory tracking 
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Level 3 (planning level): The reference way points (𝑥𝑜, 𝑦𝑜, 𝑡) are interpolated into smooth 

trajectory 𝒘𝑟 = (𝑥𝑟, 𝑦𝑟, 𝜃𝑟) with a sampling time of 𝑇𝑠. The tangential and angular velocities 

𝒖𝑟 = (𝑣𝑟, 𝜔𝑟) of reference robot travelling through the smooth trajectory are generated from the 

first order kinematic equations.  

Level 2 (high level): The command velocities 𝒖𝐾 = (𝑣𝐵,𝑟, 𝜔𝐵,𝑟) for the real robot are 

calculated from the reference pose and current pose of the robot with respect to the reference 

robot. 

Level 1 (low level): The motor voltages 𝒖𝐷 = (𝑢𝑅 , 𝑢𝐿) are generated according to the 

command velocities. The motor speeds (𝜔𝑅 , 𝜔𝐿) are measured by encoder and the motor state 

variables (motor currents 𝑖𝑅 , 𝑖𝐿) are estimated. 

Level 0 (physical level): The robot motors are independently driven by the control 

voltages calculated by the previous level. The robot position and orientation 𝒙𝐵 = (𝑥𝐵, 𝑦𝐵, 𝜃𝐵) 

in Cartesian coordinates are measured by an overhead camera.  

2.1 Trajectory Planner (Planning level) 

The functions of the trajectory planner are smooth trajectory generation and reference 

velocities generation. The feasible smooth trajectory is generated by path planning algorithms 

or by interpolation methods. As path planning is out of scope of this contribution, a simple 

interpolation method is preferred. The way points (or data points) (𝒙𝑜, 𝒚𝑜, 𝒕) are interpolated 

into 𝑁𝑟 = 𝑖𝑛𝑡(
𝑇𝑒𝑛𝑑

𝑇𝑠
) data points as {𝑥𝑟(𝑡𝑘), 𝑦𝑟(𝑡𝑘), 𝑡𝑟(𝑡𝑘)} and 𝑡𝑘 = 𝑘𝑇𝑠, ∀  𝑘 = 0 ∶ 𝑁𝑟 

The reference velocities are velocities and orientation of a reference robot traveling 

through the smooth trajectory.  The first order (continuous time) kinematic equation is given 

by, 

 

𝑥̇𝑟 = 𝑣𝑟 cos 𝜃𝑟
𝑦̇𝑟 = 𝑣𝑟 sin 𝜃𝑟
𝜃̇𝑟 = 𝜔𝑟          

  (2.1) 

The tangential velocity at every time instant is approximated by, 

 𝑣𝑟(𝑡𝑘) = √
𝑥𝑟(𝑡𝑘)−𝑥𝑟(𝑡𝑘−1)

𝑇𝑠
+
𝑦𝑟(𝑡𝑘)−𝑦𝑟(𝑡𝑘−1)

𝑇𝑠
 (2.2) 

The orientation at every time instance is, 

 𝜃𝑟(𝑡𝑘) = 𝑎𝑟𝑐𝑡𝑎𝑛2 (
𝑦𝑟(𝑡𝑘)−𝑦𝑟(𝑡𝑘−1)

𝑇𝑠
,
𝑥𝑟(𝑡𝑘)−𝑥𝑟(𝑡𝑘−1)

𝑇𝑠
) (2.3) 
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Angular velocity is obtained as, 

 𝜔𝑟(𝑡𝑘) =
𝜃𝑟(𝑡𝑘)−𝜃𝑟(𝑡𝑘−1)

𝑇𝑠
 (2.4) 

In order to generate feasible reference trajectories, the constraints have to be taken into account 

during trajectory generation. Let the constraints on tangential and angular velocities are 𝑣𝑚𝑎𝑥 

and 𝜔𝑚𝑎𝑥 respectively. It is not possible to generate maximum tangential and angular velocities 

at the same time as curvature radius cannot be preserved. A velocity scaling will preserve the 

curvature radius corresponding to tangential velocity 𝑣 and angular velocity 𝜔.  The actual 

reference velocities are computed by defining (De Luca et al. 2001), 

𝜎(𝑘) = max {
|𝑣(𝑘)|

𝑣𝑚𝑎𝑥
,
|𝜔(𝑘)|

𝜔𝑚𝑎𝑥
, 1} 

and letting, 

𝑣𝑟(𝑘) = 𝑠𝑖𝑔𝑛(𝑣(𝑘))𝑣𝑚𝑎𝑥, 𝜔𝑟(𝑘) =
𝜔(𝑘)

𝜎(𝑘)
   𝑖𝑓 𝜎(𝑘) =

|𝑣(𝑘)|

𝑣𝑚𝑎𝑥
 

𝑣𝑟(𝑘) =
𝑣(𝑘)

𝜎(𝑘)
, 𝜔𝑟(𝑘) = 𝑠𝑖𝑔𝑛(𝜔(𝑘))𝜔𝑚𝑎𝑥 𝑖𝑓 𝜎(𝑘) =

|𝜔(𝑘)|

𝜔𝑚𝑎𝑥
𝑣𝑟(𝑘) = 𝑣(𝑘), 𝜔𝑟(𝑘) = 𝜔(𝑘)                        𝑖𝑓 𝜎(𝑘) = 1        

 

The parameters of the reference robot are, 

[𝒙𝑟, 𝒖𝑟] = [𝑥𝑟(𝑡𝑘) 𝑦𝑟(𝑡𝑘) 𝜃𝑟(𝑡𝑘) 𝑣𝑟(𝑡𝑘)𝜔𝑟(𝑡𝑘)] 

The calculated robots reference velocities will drive the robot through the desired trajectory 

only if there are no disturbances and no initial state errors. However, in real world scenario, this 

is not always the case, and this brings us to design a kinematic controller, which can cope with 

these uncertainties.  

2.2 Kinematics (High level) 

According to Wikipedia, Kinematics is “the branch of mechanics that deals with pure 

motion, without reference to the masses or forces involved in it”. Only the geometry of motion 

is considered at the kinematics level – robot pose and velocities. The kinematics of non-

holonomic mobile robot is described as in eq (2.1). The Kinematics level is responsible for 

generating the required tangential and angular velocities to track the robot through a desired 

trajectory. Usually a kinematic controller generates the required velocities by considering, the 

current and reference pose of the WMR and the reference velocities. Chapter 4 is dedicated to 

kinematic modelling and chapter 5 for kinematic controllers. Even though, the described 

kinematics is common to all non-holonomic mobile robots, only a differential drive mobile 

robot is considered at the dynamics and Kino-Dynamics level. 
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2.3 Dynamics (Low level) 

According to Wikipedia, dynamics is “the branch of mechanics concerned with the 

study of forces and torques and their effect on motion”. A differential drive robot with 

independently controlled motors is considered. The required forces and torques (for particular 

motion) are generated by controlling the motor voltages. A dynamics controller is often required 

to generate the motor voltages depending upon the current and reference velocities and the state 

variables. A state space model describes the dynamics of the motor with state variables having 

physical meaning, e.g. motor currents, motor speeds etc. These state variables have to be 

estimated from the measured variable. The dynamics modelling is described in chapter 5 and 

dynamics controllers in chapter 6.  

2.4 Mobile robot and localization system (Physical level) 

At physical level, it is assumed that an ideal differential drive robot and a localization is 

present. A differential drive mobile robot with two wheels independently controlled by motors 

and a caster wheel is considered. The motor speeds are measured by wheel encoders attached 

to the wheel. An onboard microcontroller with wireless communication module has the 

functions: get the command motor voltages or velocities, measure the motor speeds, and send 

the measured motor speeds.  

The localization system consists of an overhead camera and necessary image processing 

algorithms. Markers are attached to the robot to localize the robot, and with the help of suitable 

image processing techniques, the robot is localized. A coordinate frame is fixed and the robot’s 

position and orientation are measured with respect to the coordinate axis. Tangential and 

angular velocities are also calculated from this information. 
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3.  MODEL PREDICTIVE CONTROL 

Model predictive control is based on a philosophy which reflects human behavior 

whereby the control actions which are brought about by our thought processes, lead to the best 

predicted outcome, over some limited horizon optimizing certain criteria (Rossiter 2003). E.g. 

while driving a car through a rough terrain, the required acceleration and steering (control 

actions) will be decided by taking into account several factors: the way (set-points); braking, 

acceleration and steering (control actions); obstacles, fuel efficiency, comfort, jerking 

(constraints) and various others. The key advantage of MPC when compared to classical control 

theory is the flexibility in the formulation – prediction model, criteria, optimization, constraints 

etc.   

In general, for practical implementation, the MPC methods for linear or nonlinear 

systems are developed by assuming that the plant under control is described by a discrete-time 

representation. At each sampling time, the model predictive controller generates an optimal 

control sequence by optimizing a cost function. The first control action of this sequence is 

applied to the system. The optimization problem is solved again at the next sampling time, using 

the updated process measurements and a shifted horizon. The cost function formulation depends 

on the control requirements. 

Let a continuous time system, linear or nonlinear be in the form of, 

  
𝒙̇ = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡)           𝒙(𝑡 = 𝑡0) = 𝒙0

𝒚(𝒕) = 𝒈(𝒙(𝑡), 𝒖(𝑡), 𝑡)           𝑡 ≥ 𝑡0                      
  (3.1) 

A prediction model, which predicts the system output 𝒚(𝑡) for a finite horizon 𝑡𝑁, is the key to 

MPC approach. If the system is linear, the output can be decomposed into the sum of two wave-

forms - free response and the forced response (see figure 2). 

- Free response, 𝒚𝑓𝑟, represents the outputs of the system when all system inputs 𝒖0(𝑡) 

will vary according to the known waveform (e.g. will be constant from the time 𝑡0) with 

the initial conditions as current state. 

- Forced response, 𝒚𝑓𝑜 represents the portion of actual output of the system which varies 

from the actual free response output when changing the input variables (∆𝒖(𝑡), the differ-

ence from the known course 𝒖0(𝑡)), under zero initial conditions.  

  

𝒚(𝒙(𝑡), 𝒖(𝑡), 𝑡 ≥ 𝑡0)⏟            
𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑢𝑡𝑝𝑢𝑡

= 𝒚𝑓𝑟(𝒙𝑓𝑟(𝑡), 𝒖0(𝑡), 𝑡 ≥ 𝑡0)⏟                
𝑓𝑟𝑒𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

+ 𝒚𝑓𝑜(𝒙𝑓𝑜(𝑡), ∆𝒖(𝑡), 𝑡 ≥ 𝑡0)⏟                
𝑓𝑜𝑟𝑐𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝒙𝑓𝑟(𝑡0) = 𝑥(𝑡0)             𝒙𝑓𝑜(𝑡0) = 0           ∆𝒖(𝑡) = 𝒖(𝑡) − 𝒖0(𝑡)
 (3.2) 
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Figure 2 Prediction – decomposition into free and force response 

If we know the system eq (3.1) and the initial state vector, the free response 𝒚𝑓𝑟 in eq 

(3.2) can be determined from the process (LTI/LTV) model – with the information of the past 

state variables and inputs. The forced response 𝒚𝑓𝑜 depends on the process model and unknown 

input variable ∆𝒖. Hence, the objective is to calculate the course of the variable ∆𝒖, in such a 

way that the sum of free and forced responses will have the desired course.  

For control design purposes, we consider the discrete time representation. The 

prediction horizon 𝑁 (number of samples), is the time interval for which the control inputs are 

calculated, solving a constraint optimal control problem for the current state of control. There 

are two main approaches when considering the horizon – input horizon 𝑁𝑢 (the horizon at which 

control input is considered) and output horizon 𝑁𝑦 (the horizon at which the predicted output is 

considered). For the sake of simplicity, the input horizon is chosen to be the same as the output 

horizon i.e. 𝑁𝑢 = 𝑁𝑦 = 𝑁 in the following formulation.  

3.1 Linear MPC – output prediction with linear model 

Let the plant model, eq (3.1), be linearized into a discrete time LTI state space model 

with a sampling rate of 𝑇𝑠 s,  

 
𝒙𝑘+1 = 𝑨𝒙𝑘 +𝑩𝒖𝑘

        𝒚𝑘 = 𝑪𝒙𝑘 +𝑫𝒖𝑘     
 (3.3) 

where,     
𝒙 ∈ ℝ𝑛𝑥     𝒖 ∈ ℝ𝑛𝑢        𝒚 ∈ ℝ𝑛𝑦        

𝑨 ∈ ℝ𝑛𝑥×𝑛𝑥 𝑩 ∈ ℝ𝑛𝑥×𝑛𝑢 𝑪 ∈ ℝ𝑛𝑦×𝑛𝑥 𝑫 ∈ ℝ𝑛𝑦×𝑛𝑢
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For 𝑛𝑥 state variables, 𝑛𝑢 control variables and 𝑛𝑦 output variables. The matrix 𝑫 allows direct 

coupling between inputs and outputs and is absent in most of the applications (𝑫 = 𝟎). 

Prediction model 

The future state variables and outputs are recursively calculated from the linear model. 

For e.g. at sampling time, 𝑡 = (𝑘 + 1)𝑇𝑠 ,  

𝒙𝑘+2 = 𝑨(𝑨𝒙𝑘 +𝑩𝒖𝑘) +  𝑩𝒖𝑘+1    

        = 𝑨𝟐𝒙𝑘 + 𝑨𝑩𝒖𝑘 +𝑩𝒖𝑘+1     
 

𝒚𝑘+1 = 𝑪(𝑨𝒙𝑘+1 +𝑩𝒖𝑘) + 𝑫𝒖𝑘+1  

At sampling time, 𝑡 = (𝑘 + 2)𝑇𝑠 ,  

𝒙𝑘+3 = 𝑨(𝑨
𝟐𝒙𝑘 + 𝑨𝑩𝒖𝑘 +𝑩𝒖𝑘+1) +  𝑩𝒖𝑘+2

        = 𝑨𝟑𝒙𝑘 + 𝑨
𝟐𝑩𝒖𝑘 +𝑨𝑩𝒖𝑘+1 +𝑩𝒖𝑘+2 

 

𝒚𝑘+2 = 𝑪(𝑨
𝟐𝒙𝑘 + 𝑨𝑩𝒖𝑘 +𝑩𝒖𝑘+1) + 𝑫𝒖𝑘+1  

Representing in general form of the predicted state vector and output vectors for a horizon 

length 𝑁, at sampling time, 𝑡𝑘   as, 

  
𝒙𝑘+𝑁+1 = 𝑺𝑥𝑥𝒙𝑘 + 𝑺𝑥𝑢𝒖𝑁
            𝒚𝑁 = 𝑺𝑦𝑥𝒙𝑘 + 𝑺𝒚𝒖𝒖𝑁

 (3.4) 

where,  𝒖𝑁 = [

𝑢𝑘
⋮

𝑢𝑘+𝑁
] ;  𝒚𝑁 = [

𝑦𝑘
⋮

𝑦𝑘+𝑁
] 

      𝑺𝑥𝑥 = 𝑨
𝑁+1                                                            ∈ ℝ𝑛𝑥×𝑛𝑥                           

        𝑺𝑥𝑢 = [𝑨𝑁𝑩 𝑨𝑁−1𝑩 ⋯ 𝑩]                              ∈ ℝ𝑛𝑥×(𝑁+1)∗𝑛𝑢                     

                  𝑺𝑦𝑥 =

[
 
 
 
 
𝑪
𝑪𝑨
𝑪𝑨𝟐

⋮
𝑪𝑨𝑁]

 
 
 
 

                                                               ∈ ℝ(𝑁+1)∗𝑛𝑦×𝑛𝑥                                

𝑺𝑦𝑢 =

[
 
 
 
 
 
 
 

𝑫 𝟎 𝟎 𝟎 𝟎

𝑪𝑩 𝑫 𝟎 ⋯ 𝟎

𝑪𝑨𝑩 𝑪𝑩 𝑫 ⋯ 𝟎

𝑪𝑨𝟐𝑩 𝑪𝑨𝑩 𝑪𝑩 ⋯ 𝟎

⋮ ⋮ ⋮ ⋱ ⋮

𝑪𝑨𝑁−1𝑩 𝑪𝑨𝑁−2𝑩 𝑪𝑨𝑁−3𝑩 ⋯ 𝑫]
 
 
 
 
 
 
 

   ∈ ℝ(𝑁+1)∗𝑛𝑥×(𝑁+1)∗𝑛𝑢       
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The output, 𝒚𝑁, is decomposed into the sum of free and forced responses. The free response 

depends on the current state and constant current input and forced response depends on zero 

initial condition and deviation control input as, 

𝒚𝑁 = 𝒚𝑓𝑟,𝑁(𝒙0, 𝒖𝑁,0) +𝒚𝑓𝑜,𝑁(𝟎, ∆𝒖𝑁) 

where,     𝒙0  is a vector of state variables at 𝑡𝑘 

 𝒖𝑁,0 is a column vector of control input at time (𝑡𝑘 + 𝑖𝑇𝑠) ∀ 𝑖 = [0,1…𝑁]  

                 ∆𝒖𝑁 = 𝒖𝑁 − 𝒖𝑁,0 

The free response is given by, 

 
𝒙𝑓𝑟(𝑘 + 𝑁 + 1) = 𝑺𝑥𝑥𝒙0 + 𝑺𝑥𝑢𝒖𝑁,0
                    𝒚𝑓𝑟,𝑁 = 𝑺𝑦𝑥𝒙0 + 𝑺𝒚𝒖𝒖𝑁,0

 (3.5) 

and the force response is derived as, 

 
𝒙𝑓𝑜(𝑘 + 𝑁 + 1) = 𝑺𝑥𝑢∆𝒖𝑁
                    𝒚𝑓𝑜,𝑁 = 𝑺𝑦𝑢∆𝒖𝑁

 (3.6) 

3.2 Non-Linear MPC – output prediction with non-linear model 

Linear MPC is the most commonly used predictive controller because of the easiness of 

using the linear model in prediction and optimization. If a fairly accurate linear model of process 

is available, it’s better to apply LMPC because of low computational requirements. However, 

most of the systems are non-linear and a non-linear feedback control of the system is inevitable. 

LMPC can be easily extended to NMPC by using a non-linear model. The simplest way to 

employ a non-linear model is by linearizing the system at many time instances (LTV model). 

Another possibility is to use the non-linear model as it is, with an ordinary differential equation 

(ODE) solver. 

Let the discrete time state space LTV model of the continuous time model, eq (3.1) be 

written as, 

 
𝒙𝑘+1 = 𝑨𝑘𝒙𝑘 + 𝑪𝑘𝒖𝑘

        𝒚𝑘 = 𝑪𝑘𝒙𝑘 +𝑫𝑘𝒖𝑘     
 (3.7) 

where 𝑨𝑘 , 𝑩𝑘, 𝑪𝑘 , 𝑫𝑘 are the time varying matrices at time 𝑡 = 𝑡𝑘  .    

Prediction model 

The predicted state variables and outputs at horizon 𝑁 are derived as follows: 

 
𝒙𝑘+𝑁+1 = 𝑺𝑥𝑥,𝑘𝒙𝑘 + 𝑺𝑥𝑢,𝑘𝒖𝑁
           𝒚𝑁 = 𝑺𝑦𝑥,𝑘𝒙𝑘 + 𝑺𝑦𝑢,𝑘𝒖𝑁
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The free response, either is obtained by the solution of nonlinear equation, eq (3.1) or can be 

derived from the LTV model as given by, 

 
𝒙𝑓𝑟(𝑘 + 𝑁 + 1) = 𝑺𝑥𝑥,𝑘𝒙0 + 𝑺𝑥𝑢,𝑘𝒖𝑁,0
                    𝒚𝑓𝑟,𝑁 = 𝑺𝑦𝑥,𝑘𝒙0 + 𝑺𝑦𝑢,𝑘𝒖𝑁,0

 (3.8) 

and the forced response is given by, 

 
𝒙𝑓𝑜(𝑘 + 𝑁 + 1) = 𝑺𝑥𝑢,𝑘∆𝒖𝑁
                   𝒚𝑓𝑜,𝑁 = 𝑺𝑦𝑢,𝑘∆𝒖𝑁

 (3.9) 

where,   

 𝑺𝑥𝑥,𝑘 = 𝑨𝑘+𝑁 𝑨𝑘+𝑁−1…𝑨𝑘+1𝑨𝑘 

 𝑺𝑥𝑢,𝑘 = [𝑨𝑘+𝑁𝑨𝑘+𝑁−1…𝑨𝑘+1𝑩𝑘 𝑨𝑘+𝑁𝑨𝑘+𝑁−1…𝑨𝑘+2𝑩𝑘+1 ⋯ 𝑨𝑘+𝑁𝑩𝑘+𝑁−1 𝑩𝑘+𝑁]  

     𝑺𝑦𝑥,𝑘 =

[
 
 
 
 

𝑪𝑘
𝑪𝑘+1𝑨𝑘

𝑪𝑘+2𝑨𝑘+1𝑨𝑘
⋮

𝑪𝑘+𝑁𝑨𝑘+𝑁−1…𝑨𝑘+1𝑨𝑘]
 
 
 
 

   

𝑺𝑦𝑢,𝑘 =

[
 
 
 
 
 
 
 
 

𝑫𝑘 𝟎 𝟎 ⋯ 𝟎 𝟎

𝑪𝑘+1𝑩𝑘 𝑫𝑘+1 𝟎 ⋯ 𝟎 𝟎

𝑪𝑘+2𝑨𝑘+1𝑩𝑘 𝑪𝑘+2𝑩𝑘+1 𝑫𝑘+2 ⋯ 𝟎 𝟎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑪𝑘+𝑁 ∏ 𝑨𝑘+𝑖

𝑘+𝑁−1

𝑖=𝑘+1

𝑩𝑘𝑪𝑘+𝑁 ∏ 𝑨𝑘+𝑖

𝑘+𝑁−2

𝑖=𝑘+2

𝑩𝑘+1𝑪𝑘+𝑁 ∏ 𝑨𝑘+𝑖

𝑘+𝑁−3

𝑖=𝑘+3

𝑩𝑘+2⋯𝑪𝑘+𝑁𝑩𝑘+𝑁−1𝑫𝑘+𝑁
]
 
 
 
 
 
 
 
 

 

3.3 Optimization 

The main task of optimization is to achieve the best possible approximation of the small-

est deviation of the system output, from the desired output waveform; by the smallest possible 

change in the system input, during future time interval (i.e. horizon). The mathematical formu-

lation of this goal is an optimization task – choice of input to minimize a cost function, which 

expresses the “rate of fulfillment” of the goal.  

The MPC allows a lot of flexibility in the choice of cost function. A general cost func-

tion consists of three parts: costs to penalize the control error during the horizon, costs to pe-

nalize the control effort during horizon, and a terminal cost to ensure stability of the control at 

the terminal state. The cost function is defined as follows: 

 

𝐽(𝑁, 𝒙0, 𝒖𝑁,0) = ∆𝒙
𝑇(𝑁)𝑸𝑁∆𝒙(𝑁) + 𝒆𝑁

𝑇𝑸𝒆𝑁 + ∆𝒖𝑁
𝑇𝑹∆𝒖𝑁

𝒆𝑁 = 𝒘𝑁 − 𝒚𝑁                                             
∆𝒖𝑁 = 𝒖𝑁 − 𝒖𝑁,0                                             

𝒖𝑚𝑖𝑛,𝑁 < 𝒖𝑁 < 𝒖𝑚𝑎𝑥,𝑁                                            

 (3.10) 
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where 𝑸𝑁 is the weighting matrix for the terminal state error, 𝑸 is the weighting matrix for 

control error and 𝑹 is the weighting matrix for control effort.  

𝒘𝑁 =

[
 
 
 
 

𝒘(𝑡𝑘)
⋮

𝒘(𝑡𝑘 + 𝑖𝑇𝑠)
⋮

𝒘(𝑡𝑘 +𝑁𝑇𝑠)]
 
 
 
 

 ∈ ℝ(𝑁+1)𝑛𝑦×1                      𝒚𝑁 =

[
 
 
 
 

𝒚(𝑡𝑘)
⋮

𝒚(𝑡𝑘 + 𝑖𝑇𝑠)
⋮

𝒚(𝑡𝑘 +𝑁𝑇𝑠)]
 
 
 
 

 ∈ ℝ(𝑁+1)𝑛𝑦×1      

𝒖𝑁 =

[
 
 
 
 

𝒖(𝑡𝑘)
⋮

𝒖(𝑡𝑘 + 𝑖𝑇𝑠)
⋮

𝒖(𝑡𝑘 + 𝑁𝑇𝑠)]
 
 
 
 

 ∈ ℝ(𝑁+1)𝑛𝑢×1                      𝒖𝑁,0 =

[
 
 
 
 

𝑢𝑓𝑟(𝑡𝑘)

⋮
𝒖𝑓𝑟(𝑡𝑘 + 𝑖𝑇𝑠)

⋮
𝒖𝑓𝑟(𝑡𝑘 +𝑁𝑇𝑠)]

 
 
 
 

 ∈ ℝ(𝑁+1)𝑛𝑢×1    

 

and the deviation of the final state is given by, 

∆𝒙(𝑁) = 𝒙𝑤(𝑡𝑘 + (𝑁 + 1)𝑇𝑠) − 𝒙(𝑡𝑘 + (𝑁 + 1)𝑇𝑠)     ∈ ℝ
𝑛𝑥      

where, 𝒙𝑤   is the desired terminal state, i.e. the steady state corresponding to the desired value 

at the end of horizon (valid only for square system). 

Rewriting the criteria, eq (3.10) in terms of free and force response, we get, 

𝐽(𝑁, 𝒙0, 𝒖𝑁,0) = [𝒙𝑤(𝑁)−𝒙𝑓𝑟(𝑁) − 𝒙𝑓𝑜(𝑁)]
𝑇𝑸𝑁[𝒙𝑤(𝑁) − 𝒙𝑓𝑟(𝑁) − 𝒙𝑓𝑜(𝑁)] + 

                            +(𝒘𝑁 − 𝒚𝑓𝑟,𝑁−𝒚𝑓𝑜,𝑁)
𝑇𝑸(𝒘𝑁 − 𝒚𝑓𝑟,𝑁 − 𝒚𝑓𝑜,𝑁) + ∆𝒖𝑁

𝑇𝑹∆𝒖𝑁 

Substituting eq (3.6) and eq (3.9), then, 

𝐽(𝑁, 𝒙0, 𝒖𝑁,0) = [𝒙𝑤(𝑁)−𝒙𝑓𝑟(𝑁) − 𝑺𝑥𝑢∆𝒖𝑁]
𝑇𝑸𝑁[𝒙𝑤(𝑁) − 𝒙𝑓𝑟(𝑁) − 𝑺𝑥𝑢∆𝒖𝑁] +                   

         +(𝒘𝑁 − 𝒚𝑓𝑟,𝑁−𝑺𝑦𝑢∆𝒖𝑁)
𝑇𝑸(𝒘𝑁 − 𝒚𝑓𝑟,𝑁 − 𝑺𝑦𝑢∆𝒖𝑁) + ∆𝒖𝑁

𝑇𝑹∆𝒖𝑁 

                               = [𝒙𝑤(𝑁)−𝒙𝑓𝑟(𝑁)]
𝑇𝑸𝑁[𝒙𝑤(𝑁) − 𝒙𝑓𝑟(𝑁)] + (𝒘𝑁 − 𝒚𝑓𝑟,𝑁)

𝑇𝑸(𝒘𝑁 − 𝒚𝑓𝑟,𝑁)⏟                                                  
𝑐

−   

   +∆𝒖𝑁
𝑇 {𝑺𝑥𝑢

𝑇𝑸𝑁[𝒙𝑤(𝑁) − 𝒙𝑓𝑟(𝑁)] + 𝑺𝑦𝑢
𝑇𝑸(𝒘𝑁 − 𝒚𝑓𝑟,𝑁)}⏟                                  

−𝒎

−  (3.11) 

       − {[𝒙𝑤(𝑁) − 𝒙𝑓𝑟(𝑁)]
𝑇𝑸𝑁𝑺𝑥𝑢 + (𝒘𝑁 − 𝒚𝑓𝑟,𝑁)

𝑇𝑸𝑺𝑦𝑢}⏟                                  
−𝒎𝑇

∆𝒖𝑁 +      

            +∆𝒖𝑁
𝑇 [𝑺𝑥𝑢

𝑇𝑸𝑁𝑺𝑥𝑢 + 𝑺𝑦𝑢
𝑇𝑸𝑺𝑦𝑢 + 𝑹]⏟                    

𝑴

∆𝒖𝑁                                           

= ∆𝒖𝑁
𝑇𝑴∆𝒖𝑁 + ∆𝒖𝑁

𝑇𝒎+𝒎𝑇∆𝒖𝑁 + 𝒄                                               

where, 

𝒎 = −𝑺𝑥𝑢
𝑇𝑸𝑁[𝒙𝑤 − 𝑺𝑥𝑥𝒙0 − 𝑺𝑥𝑢𝒖𝑁,0] + 𝑺𝑦𝑢

𝑇𝑸(𝒘𝑁 − 𝑺𝑦𝑥𝒙0 − 𝑺𝑦𝑢𝒖𝑁,0)

𝑴 = 𝑺𝑥𝑢
𝑇𝑸𝑁𝑺𝑥𝑢 + 𝑺𝑦𝑢

𝑇𝑸𝑺𝑦𝑢 + 𝑹
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In case of unconstraint control, an analytical solution is derived by differentiating with respect 

to ∆𝒖. Assuming the weighting matrices (𝑸,𝑸𝑁 , 𝑹)  to be positive semi definite, the control law 

is then in the form of, 

 ∆𝒖 = −𝑴−𝟏𝒎  (3.12) 

In case of constraint control, the criteria, eq (3.11), is written in the form of a quadratic pro-

gramming problem. 

  
min
∆𝒖𝑁

𝐽(𝑁, 𝒙0, 𝒖𝑁,0) = ∆𝒖𝑁
𝑇𝑴∆𝒖𝑁 + ∆𝒖𝑁

𝑇𝒎+𝒎𝑇∆𝒖𝑁 + 𝒄

𝒖𝑚𝑖𝑛 − 𝒖𝑁,0 < ∆𝒖𝑁 < 𝒖𝑚𝑎𝑥 − 𝒖𝑁,0  
  (3.13) 

The optimal control action is the solution of the quadratic programing problem, obtained by 

minimizing the criteria. 

min
∆𝒖
𝐽 =

1

2
∆𝒖𝑇𝑀∆𝒖+𝒎𝑇∆𝒖 such that 𝑨𝒐∆𝒖 ≤ 𝒃𝟎 

where the matrix 𝑨𝒐 and the vector 𝒃𝟎 are constraint matrices of control input,  

𝒖𝑚𝑖𝑛 ≤ 𝒖𝑁 ≤ 𝒖𝑚𝑎𝑥 
𝒖𝑚𝑖𝑛 ≤ ∆𝒖𝑁 + 𝒖𝑁,0  ≤ 𝒖𝑚𝑎𝑥

𝒖𝑚𝑖𝑛 − 𝒖𝑁,0 ≤ ∆𝒖𝑁 ≤ 𝒖𝑚𝑎𝑥 − 𝒖𝑁,0

 

Representing the constraints for future control inputs for horizon N, is derived as, 

 

[
 
 
 
 
 
𝑰 ⋯ 𝟎
⋮ ⋱ ⋮
𝑰 ⋯ 𝑰
−𝑰 ⋯ 𝟎
⋮ ⋱ ⋮
−𝑰 ⋯ −𝑰]

 
 
 
 
 

⏟        
𝑨𝑜

∆𝒖 ≤

[
 
 
 
 
 
𝒖𝑚𝑎𝑥 − 𝒖0

⋮
𝒖𝑚𝑎𝑥 − 𝒖0
−𝒖𝑚𝑖𝑛 + 𝒖0

⋮
−𝒖𝑚𝑖𝑛 + 𝒖0]

 
 
 
 
 

⏟        
𝒃0

  (3.14) 

where 𝒖0 is the last control action, 𝒖0 = 𝒖(𝑘 − 1). 

In MATLAB, the solution to the quadratic programing problem by the function 

quadprog. 

Δu = quadprog(M,m,Ao,bo) 
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4. KINEMATICS OF WHEELED MOBILE ROBOT 

Let the pose of the WMR in Cartesian coordinate with an angle 𝜃𝐵, be measured clock 

wise from the x-axis, 

𝒙𝐵 = [

𝑥𝐵
𝑦𝐵
𝜃𝐵
] 

The basic kinematic equations of the differential drive mobile robot are given by,  

 

𝑥̇𝐵 = 𝑣𝐵  cos 𝜃𝐵
𝑦̇𝐵 = 𝑣𝐵  sin𝜃𝐵
𝜃̇𝐵 = 𝜔𝐵            

   

where 𝑣𝐵 and 𝜔𝐵, are the tangential velocity and angular velocity respectively. This can be 

represented in matrix format, 

 𝒙̇𝐵 = [

𝑥̇𝐵
𝑦̇𝐵
𝜃̇𝐵

] = [
cos 𝜃𝐵 0
sin 𝜃𝐵 0
0 1

] [
𝑣𝐵
𝜔𝐵
] (4.1) 

Trajectory of a mobile robot refers to the locus of all the points (𝑥𝐵, 𝑦𝐵) in the Cartesian 

coordinate. In a trajectory-tracking approach to a mobile robot motion control problem, the 

reference trajectory must be known beforehand. A feasible trajectory considering, the velocity 

and acceleration limits, non-holonomic and holonomic constraints, and an obstacle free 

trajectory should be generated (by trajectory planner module). The reference trajectory 

Cartesian coordinates (𝑥𝑟 𝑦𝑟), orientation 𝜃𝑟, and velocities (𝑣𝑟 𝜔𝑟) fulfil the same kinematic 

equations, eq (4.1), as, 

 𝒙̇𝑟 = [

𝑥̇𝑟
𝑦̇𝑟
𝜃̇𝑟

] = [
cos 𝜃𝑟 0
sin𝜃𝑟 0
0 1

] [
𝑣𝑟
𝜔𝑟
]  (4.2) 

In trajectory tracking control of the WMR, the aim is to minimize the difference between a 

reference trajectory state vector and a current state vector of the mobile robot (i.e. tracking 

deviation). 

𝒙𝑟 − 𝒙𝐵 = [

𝑥𝑟
𝑦𝑟
𝜃𝑟
] − [

𝑥𝐵
𝑦𝐵
𝜃𝐵
] 

There are two major approaches on how to express the tracking deviation, which are further 

linearized to get an approximate linear model. The starting point of both the models is the basic 

kinematic equations eq (4.1), but the main difference lies in the choice of the co-ordinate frame 

of the mobile robot and reference trajectory. 
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4.1 Successive linearized kinematic model (M1) 

x

y

Real
 Robot

Reference
 Robot

 

Figure 3 Coordinate System of Real Robot and Reference Robot 

A linear model can be derived from the non-linear model, eq (4.1), by successively 

linearizing around the trajectory of the reference robot (see figure 3). A reference robot can be 

considered as a robot with reference (desired) parameters of the robot, which follows a 

reference trajectory. The kinematic equations eq (4.1) can be represented as a simple model, 

 𝒙̇𝐵 = 𝑓(𝒙𝐵, 𝒖𝐵)  (4.3) 

where state variables 𝒙𝐵 = [𝑥𝐵, 𝑦𝐵 , 𝜃𝐵]
𝑇 and control inputs 𝒖𝐵 = [𝑣𝐵 , 𝜔𝐵]

𝑇 

Let the reference robot be following a reference trajectory (𝑥𝑟, 𝑦𝑟)  with an orientation 

of 𝜃𝑟. The kinematic equations are same as that of the real mobile robot. 

 𝒙̇𝑟 = 𝑓(𝒙𝑟, 𝒖𝑟) (4.4) 

The reference parameters are [𝑥𝑟 𝑦𝑟  𝜃𝑟 𝑣𝑟 𝜔𝑟]. The tangential velocity, orientation angle and 

angular velocity of the reference robot can be calculated from eq (2.1-2.3). Applying the Taylor 

series approximation to eq (4.2), around the time varying reference points (𝒙𝒓 𝒖𝒓) we can derive, 

𝒙̇𝐵 = 𝑓(𝒙𝑟, 𝒖𝑟) + 
𝜕𝑓(𝒙𝐵, 𝒖𝐵)

𝜕𝒙𝐵
|
𝒙𝐵 =𝒙𝑟
𝒖𝐵 =ur

(𝒙𝐵 − 𝒙𝑟) +
𝜕𝑓(𝒙𝐵, 𝒖𝐵)

𝜕𝒖𝐵
|
𝒙𝐵 =𝒙𝑟
𝒖𝐵 =ur

(𝒖𝐵 − 𝒖𝑟) 

 𝒙̇𝐵 = 𝑓(𝒙𝑟, 𝒖𝑟) + 𝑨̃𝑆(𝒙𝑟, 𝒖𝑟). (𝒙𝐵 − 𝒙𝑟)⏟      
∆𝒙

+ 𝑩̃𝑆(𝒙𝑟, 𝒖𝑟). (𝒖𝐵 − 𝒖𝑟)⏟      
∆𝒖

    (4.5) 

Subtracting eq (4.5) from eq (4.4) gives, 

 ∆𝒙̇ = 𝑨̃𝑆(𝒙𝑟, 𝒖𝑟). ∆𝒙 + 𝑩̃𝑆(𝒙𝑟, 𝒖𝑟). ∆𝒖  (4.6) 
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where ∆𝒙 is the error vector of state variables and ∆𝒖 is the error vector of control variables 

with respect to the reference robot. The approximation of ∆𝒙̇ in eq (4.6), by the forward 

differences, gives the following discrete-time linear time-variant state-space model: 

 ∆𝒙(𝑘 + 1) = 𝑨𝑆(𝑘)∆𝒙(𝑘) + 𝑩𝑆(𝑘)∆𝒖(𝑘) (4.7) 

𝑨𝑠 = [
1 0 −𝑣𝑟 sin 𝜃𝑟(𝑘)𝑇𝑠
0 1 𝑣𝑟 cos 𝜃𝑟(𝑘) 𝑇𝑠
0 0 1

] ;  𝑩𝑠 = [

cos 𝜃𝑟(𝑘) 𝑇𝑠 0

sin 𝜃𝑟(𝑘)𝑇𝑠 0
0 𝑇𝑠

]   

∆𝒙 = [

𝑥𝐵(𝑘) − 𝑥𝑟(𝑘)

𝑦𝐵(𝑘) − 𝑦𝑟(𝑘)

𝜃𝐵(𝑘) − 𝜃𝑟(𝑘)

] ;  ∆𝒖 = [
𝑣𝐵(𝑘) − 𝑣𝑟(𝑘)

𝜔𝐵(𝑘) − 𝜔𝑟(𝑘)
] 

where 𝑇𝑠 is the sampling period and ∆𝒙 is deviation state vector which represents the error with 

respect to the reference robot and ∆𝒖 is associated with the control input. The reference values, 

𝑣𝑟, 𝜃𝑟 , 𝜔𝑟  are the reference tangential velocity, orientation angle and angular velocity.  

4.2 Tracking error based linear model (M2) 

yB
θB 

θr 

e3 

e1 
e2 

xB xr 

yr 

 

Figure 4 Tracking error based linear model: Coordinate System of Real Robot and Reference Robot 

Another way of modeling is to consider the difference, in the local coordinate system 

of the mobile robot, see figure 4. This differences in local coordinate system is called as 

“tracking error” represented as,  

 𝒆 = [

𝑒1
𝑒2
𝑒3
] = [ 

cos 𝜃𝐵 sin𝜃𝐵 0
−sin𝜃𝐵 cos 𝜃𝐵 0
0 0 1

] [

𝑥𝑟 − 𝑥𝐵
𝑦𝑟 − 𝑦𝐵
𝜃𝑟 − 𝜃𝐵

] = 𝑻𝒙(𝒙𝑟 − 𝒙𝐵)  (4.8) 

where, 𝑻𝒙 is the coordinate transformation matrix. Now the aim of the trajectory tracking 

controller is to lim
𝑡→∞

𝒆(𝑡) = 𝟎. Differentiating eq (4.8) by considering eq (4.1) and eq (4.2), 
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𝑒̇1 = (𝑥̇𝑟 − 𝑥̇𝐵) cos 𝜃𝐵 + (𝑦̇𝑟 − 𝑦̇𝐵) sin 𝜃𝐵 − (𝑥𝑟 − 𝑥𝐵) sin 𝜃𝐵 𝜃̇𝐵 + (𝑦𝑟 − 𝑦𝐵) cos 𝜃𝐵 𝜃̇𝐵
     = 𝑒2𝜔𝐵 + 𝑥̇𝑟 cos 𝜃𝐵 + 𝑦̇𝑟 sin𝜃𝐵 − 𝑣 𝑐𝑜𝑠

2𝜃𝐵 − 𝑣 𝑠𝑖𝑛
2𝜃𝐵

     = 𝑒2𝜔𝐵 − 𝑣𝐵 + 𝑥̇𝑟 cos 𝜃𝐵 + 𝑦̇𝑟 sin𝜃𝐵
     = 𝑒2𝜔𝐵 − 𝑣𝐵 + 𝑥̇𝑟 cos(𝜃𝑟 − 𝜃𝑒) + 𝑦̇𝑟 sin(𝜃𝑟 − 𝜃𝑒)

     = 𝑒2𝜔𝐵 − 𝑣𝐵 + 𝑥̇𝑟(cos𝜃𝑟 cos 𝜃𝑒 +sin𝜃𝑟 sin𝜃𝑒) + 𝑦̇𝑟(sin 𝜃𝑟 cos 𝜃𝑒 −cos 𝜃𝑟 sin𝜃𝑒)

     = 𝑒2𝜔𝐵 − 𝑣𝐵 + (𝑥̇𝑟cos𝜃𝑟 + 𝑦̇𝑟 sin𝜃𝑟) cos 𝜃𝑒 +(𝑥̇𝑟sin𝜃𝑟 − 𝑦̇𝑟 cos𝜃𝑟) sin𝜃𝑒
     = 𝑒2𝜔𝐵 − 𝑣𝐵 + 𝑣𝑟 cos𝜃𝑒
     = 𝑒2𝜔𝐵 − 𝑣𝐵 + 𝑣𝑟 cos 𝑒3

 

𝑒̇2 = −(𝑥̇𝑟 − 𝑥̇𝐵) sin𝜃𝐵 + (𝑦̇𝑟 − 𝑦̇𝐵) cos 𝜃𝐵 − (𝑥𝑟 − 𝑥𝐵) cos𝜃𝐵 𝜃̇𝐵 − (𝑦𝑟 − 𝑦𝐵) sin 𝜃𝐵 𝜃̇𝐵
     = −𝑒1𝜔𝐵 − 𝑥̇𝐵 sin𝜃𝐵 + 𝑦̇𝐵 cos 𝜃𝐵 − 𝑥̇𝑟 sin 𝜃𝐵 + 𝑦̇𝑟 cos𝜃𝐵
     = −𝑒1𝜔𝐵 − 𝑥̇𝑟 sin(𝜃𝑟 − 𝜃𝑒) + 𝑦̇𝑟 cos(𝜃𝑟 − 𝜃𝑒)

     = −𝑒1𝜔𝐵 − 𝑥̇𝑟 sin(sin𝜃𝑟 cos 𝜃𝑒 −cos 𝜃𝑟 sin 𝜃𝑒) + 𝑦̇𝑟(cos𝜃𝑟 cos 𝜃𝑒 +sin 𝜃𝑟 sin𝜃𝑒)

     = −𝑒1𝜔𝐵 − (𝑥̇𝑟cos 𝜃𝑟 + 𝑦̇𝑟 sin𝜃𝑟) sin𝜃𝑒 +(𝑦̇𝑟 cos 𝜃𝑟 − 𝑥̇𝑟sin𝜃𝑟) cos𝜃𝑒
     = −𝑒1𝜔𝐵 + 𝑣𝑟 sin𝜃𝑒
     = −𝑒1𝜔𝐵 + 𝑣𝑟 sin 𝑒3

 

Rearranging in matrix format,  

 𝒆̇ = [

𝑒̇1
𝑒̇2
𝑒̇3

] = [

     𝑒2𝜔𝐵 − 𝑣𝐵 + 𝑣𝑟 cos 𝑒3
−𝑒1𝜔𝐵 + 𝑣𝑟 sin 𝑒3

𝜔𝑟 −𝜔𝐵

]  (4.9) 

In order to get a linear model, eq (4.9) is linearized around the equilibrium point (𝒆 = 𝟎 ), and 

the operating points as [𝑣𝐵 𝜔𝐵] = [𝑣𝑟 𝜔𝑟] and by the approximation sin 𝜃 ≈ 𝜃 (at small angles – 

𝜃 is error variable and the aim is to minimize the errors), we arrive at, 

[

𝑒̇1
𝑒̇2
𝑒̇3

] = [
0 𝜔𝑟 0
−𝜔𝑟 0 𝑣𝑟
0 0 0

] [

𝑒1
𝑒2
𝑒3
] + [

1 0
0 0
0 1

] [
𝑣𝑟 cos 𝑒3 − 𝑣𝐵
𝜔𝑟 − 𝜔𝐵

] 

 The continuous time state space model after linearization and approximation is given by,  

 [

𝑒̇1
𝑒̇2
𝑒̇3

] = [
0 𝜔𝑟 0
−𝜔𝑟 0 𝑣𝑟
0 0 0

]
⏟          

𝑨̃𝐸

[

𝑒1
𝑒2
𝑒3
] + [

1 0
0 0
0 1

]
⏟    
𝑩̃𝐸

[
𝑢1
𝑢2
]  (4.10) 

Separating control inputs as feedforward and feedback inputs, 

 𝒖𝑓𝑏 = [
𝑢1
𝑢2
] = [

𝑣𝑓𝑏
𝜔𝑓𝑏

] = [
𝑣𝑟 cos 𝑒3
𝜔𝑟

]
⏟      

𝒖𝑓𝑓

− [
𝑣𝐵
𝜔𝐵
]

⏟
𝒖𝐵

  (4.11) 

eq (4.11) can be seen as the transformation of 𝒖𝑟 into the local coordinate system of the robot: 

𝒖𝑓𝑏 = 𝑻𝒖(𝒖𝑟) − 𝒖𝐵 

where, 𝑻𝒖 is the transformation function. After discretizing with a sample time of 𝑇𝑠, then the 

discrete time LTV state space model is given by, 

  𝒆(𝑘 + 1) = 𝑨𝐸(𝑘)𝒆(𝑘) + 𝑩𝐸(𝑘)𝒖𝑓𝑏(𝑘)  (4.12)   
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where, 𝑨𝐸  and 𝑩𝐸 are discretized version of matrices 𝑨̃𝐸  and 𝑩̃𝐸 as given by,   

𝑨𝐸(𝑘) = [
1 𝜔𝑟(𝑘)𝑇𝑠 0

−𝑣𝑟(𝑘)𝑇𝑠 1 𝑣𝑟(𝑘)𝑇𝑠
0 0 1

] ;  𝑩𝐸(𝑘) = [

𝑇𝑠 0

0 0
0 𝑇𝑠

]  

4.3 Model verification – comparison of linear model vs non-linear model 

The linearized models, eq (4.7) and eq (4.12), are verified by considering the error 

between the discrete approximations (linear model) and the continuous time nonlinear 

kinematic equations, eq (4.1). The real robot and the virtual reference robot (reference trajectory 

tracked in ideal conditions) are simulated with different sets of control inputs and initial 

conditions. The linear model is simulated with deviations in control input and initial conditions. 

eq (4.1)
xr(0)=xr0

eq (4.1)
x1(0)=x10

eq (4.7)
Δx(0)=x10-xr0

  

ur=[vr(t) ѡr(t)]

u1=[v1(t) ѡ1(t)]

xr=[xr(t) yr(t) θr(t)]

vr(tk) θr(tk)]

TRAJECTORY GENERATOR

MODEL

MOBILE ROBOT

Δx(tk)

x1=[x1(t) y1(t) θ1(t)]

x*(tk)
_

+

+

+
Δu(tk)

 

Figure 5 Comparison scheme for successive linear model 

The smooth continuous time reference trajectory (𝑥𝑟, 𝑦𝑟, 𝜃𝑟) is generated with eq (4.1) 

based on the initial condition 𝒙𝑟0 and with input 𝒖𝑟. Let the real robot be driven with initial 

condition 𝒙10 and input 𝒖1.  

The same trajectory is calculated by the discrete time linear model (M1), eq (4.7), with 

zero initial condition. The approximated trajectory is then 𝒙∗(𝑡) = 𝒙𝑟(𝑡) + ∆𝒙(𝑡) and the input 

is the deviation variable, ∆𝒖(𝑡) = 𝒖𝑟(𝑡) − 𝒖1(𝑡). The block diagram in figure 5 explains the 

simulation scheme in detail.   

The open loop simulation of error tracking model (M2) consists of a feed forward 

control input part. The approximated trajectory is calculated with the discrete time LTV model, 

eq (4.12), with initial condition 𝒆𝟎 (which is coordinate transformed initial condition ∆𝒙(0)). 

The input to the model 𝒖𝑓𝑏 is the difference between feedforward input and original input as in 

eq (4.11). The error state is transformed back to global coordinates and combined with 



35 

 

feedforward outputs (reference variables) to get the approximated trajectory, 𝒙∗. See figure 6 

for more details. 

eq (4.1)
xr(0)=xr0

eq (4.1)
x1(0)=x10

eq (4.12)
e(0)=Tx(x10-xr0)

  

ur=[vr(t) ѡr(t)]

u1=[v1(t) ѡ1(t)]

xr=[xr(t) yr(t) θr(t)]

e3(tk-1)

θr(tk)

TRAJECTORY GENERATOR

MODEL

MOBILE ROBOT

e(tk)

x1=[x1(t) y1(t) θ1(t)]

x*(tk)

Tu

Tx

ur(tk)

+

_ Δx(tk)ufb(tk)

_
+

 

Figure 6 Comparison scheme for tracking error linear model 

The input (velocities to move the robot in the reference trajectory) to the reference 

generator is, 

 𝒖𝑟 = [
𝑣𝑟
𝜔𝑟
] = [

1 + sin (
𝜋

15
𝑡)

− sin (
𝜋

15
𝑡)
]   0 ≤ 𝑡 ≤ 15 𝑠  (4.13) 

The same initial condition for the trajectory generator is used for all the simulation schemes 

with a sampling time, 𝑇𝑠 = 0.1𝑠 for the discrete time linear models (M1 and M2). Three inputs 

to the mobile robot are used in the simulation – with same linear velocities but different angular 

velocities (zeros, time varying, constant) as,  

 

𝐈𝐍𝟏:= 𝒖𝑟 + [
sin (

2𝜋

7.5
𝑡𝑘)

0

]        

𝐈𝐍𝟐:= 𝒖𝑟 + [
sin (

2𝜋

7.5
𝑡𝑘)

0.2 sin (
2𝜋

3
𝑡𝑘)

]

𝐈𝐍𝟑:= 𝒖𝑟 + [
sin (

2𝜋

7.5
𝑡𝑘)

−0.1

]       

 

}
 
 
 
 

 
 
 
 

 𝑡𝑘 = 0 ≤ 𝑇𝑠 ≤ 15 

Figures 7 -10 show the simulation results. Table 1 lists the simulation parameters – Initial 

Conditions (IC), input and Sum Square Error (SSE). The SSE is calculated by, 

𝑆𝑆𝐸𝑥𝑦𝜃 = |𝒙1 − 𝒙
∗|2 

The simulation scheme S1-S3 shows the trajectories, approximation errors and inputs after 

applying the three inputs with same initial conditions for both real and reference robot. There 

is no significant difference in SSEs between both the models. The simulation scheme S4-S7 
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shows the trajectories when the initial condition (starting location of robot and first point to be 

tracked) is different. The linear model M2 more closely follows the real robot trajectory than 

the model M1 and the approximation error is comparatively smaller. The problem with 

successive linearization model, M1, is that it does not consider the initial tracking error, and as 

a result of this, a large approximation error will be accumulated over the time of tracking. 
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Table I Model verification – Input, Initial condition and SSE 

 S1 S2 S3 S4 S5 S6 S7 

 fig. 7 fig. 8 fig. 9 fig. 10 fig. 10 fig. 10 fig. 10 

IC 

xr0 [0 0 -pi/4] 

x10 [0 0 -pi/4] [0 0 -pi/4] [0 0 -pi/4] [0.5 0.5 -pi/4] [0 0 -pi/6] [0.5 0.5 -pi/6] [0.5 0.5 -pi/6] 

Input 

ur eq (4.13) 

u1 IN1 IN2 IN3 IN1 IN1 IN1 IN2 

SSE M1 0.0902 13.8958 408.7267 0.0919 106.8508 106.8502 166.6250 

M2 2.6181 8.9507 499.3891 2.0085 0.9642 1.4009 4.7890 

Remarks IC: Same IC: Same IC: Same 
IC: different 

location 

IC: different 

orientation 

IC: different 

orientation & 

location 

IC: different 

orientation & 

location 

 

 

Figure 7 Model verification simulation scheme S1 

 

Figure 7 Model verification simulation scheme S1 
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Figure 8 Model verification simulation scheme S2 

 

Figure 8 Model verification simulation scheme S2 

 

Figure 9 Model verification simulation scheme S3 

 

Figure 9 Model verification simulation scheme S3 
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Figure 10 Model verification simulation scheme S4-S7 
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5.  TRAJECTORY TRACKING OF WMR – KINEMATIC 

CONTROLLER 

The kinematic modelling of WMR was discussed in Chapter 4. Two LTV models were 

derived based on the choice of coordinate frame. This chapter presents the trajectory tracking 

of the mobile robot by considering the kinematics. A perfect velocity-tracking controller (which 

is able to track the desired velocities perfectly) is assumed at the lower (dynamics) level. Non-

linear MPCs based on the two models are designed with constraints on inputs and compared 

with state-of-the-art (Kanayama and Samson) controllers.   

The trajectory tracking of WMR in a reference trajectory is achieved by generating 

tangential and angular velocities by discontinuous discrete feedback. At every time instant, 

control inputs are generated based on the tracking error (difference between real and reference 

points). The basic non-linear model of WMR based on kinematics, as discussed in Section 4 is, 

 

𝑥̇𝐵 = 𝑣𝐵  cos 𝜃𝐵
𝑦̇𝐵 = 𝑣𝐵  sin𝜃𝐵
𝜃̇𝐵 = 𝜔𝐵            

    

The successive linear model is derived by successively linearizing around the reference trajec-

tory points with respect to world coordinates. The resultant LTV model has states, inputs and 

outputs as deviation variables from the reference trajectory. Figure 11 shows the control 

scheme. The discrete state space model by successive linearization, as given by eq (4.7) is, 

 Δ𝒙(𝑘 + 1) = 𝑨𝑠(𝑣𝑟(𝑘), 𝜃𝑟(𝑘))Δ𝒙(𝑘) + 𝑩𝑠(𝜃𝑟(𝑘))Δ𝒖(𝑘)  

where,  

𝑨𝑠 = [
1 0 −𝑣𝑟 sin 𝜃𝑟(𝑘)𝑇𝑠
0 1 𝑣𝑟 cos 𝜃𝑟(𝑘) 𝑇𝑠
0 0 1

] ;  𝑩𝑠 = [

cos 𝜃𝑟(𝑘) 𝑇𝑠 0

sin 𝜃𝑟(𝑘)𝑇𝑠 0
0 𝑇𝑠

]   

∆𝒙 = [

𝑥𝐵(𝑘) − 𝑥𝑟(𝑘)

𝑦𝐵(𝑘) − 𝑦𝑟(𝑘)

𝜃𝐵(𝑘) − 𝜃𝑟(𝑘)

] ;  ∆𝒖 = [
𝑣𝐵(𝑘) − 𝑣𝑟(𝑘)

𝜔𝐵(𝑘) − 𝜔𝑟(𝑘)
] 

TRAJECTORY 
PLANNER

CONTROLLER
MOBILE 
ROBOTΣ Σ

+-
[xr yr tr]

T

xr=[xr yr θr]
T

ur=[vr ωr]
T

[xB yB θB]T
+

+

vr 

∆u∆x uB

θr

 
Figure 11 General block diagram of trajectory tracking kinematic controller with successive linear model 
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The reference parameters [𝑣𝑟, 𝜔𝑟, 𝜃𝑟] are generated by the trajectory generating module 

as discussed in section 2.1.  

 

𝑣𝑟(𝑡𝑘) =   √
𝑥𝑟(𝑡𝑘)−𝑥𝑟(𝑡𝑘−1)

𝑇𝑠
+
𝑦𝑟(𝑡𝑘)−𝑦𝑟(𝑡𝑘−1)

𝑇𝑠
             

𝜃𝑟(𝑡𝑘) = 𝑎𝑟𝑐𝑡𝑎𝑛2 (
𝑦𝑟(𝑡𝑘)−𝑦𝑟(𝑡𝑘−1)

𝑇𝑠
,
𝑥𝑟(𝑡𝑘)−𝑥𝑟(𝑡𝑘−1)

𝑇𝑠
)

𝜔𝑟(𝑡𝑘) =
𝜃𝑟(𝑡𝑘)−𝜃𝑟(𝑡𝑘−1)

𝑇𝑠
                                                }

 
 

 
 

   

In error-based modeling, the error is considered in the local coordinate system of the mobile 

robot. The world co-ordinate pose error is transformed into the mobile robot coordinate frame, 

eq (4.8), as, 

 𝒆 = [

𝑒1
𝑒2
𝑒3
] = [ 

cos 𝜃𝐵 sin𝜃𝐵 0
−sin𝜃𝐵 cos 𝜃𝐵 0
0 0 1

]
⏟              

𝑻𝑥

[

𝑥𝑟 − 𝑥𝐵
𝑦𝑟 − 𝑦𝐵
𝜃𝑟 − 𝜃𝐵

]   

Discretizing with a sample time of  𝑇𝑠, then the discrete time LTV state space model, eq (4.12), 

is given by, 

 𝒆(𝑘 + 1) = 𝑨𝐸(𝜔𝑟(𝑘), 𝑣𝑟(𝑘))𝒆(𝑘) + 𝑩𝐸𝒖𝑓𝑏(𝑘)   

where, 

𝑨𝐸(𝑘) = [
1 𝑇𝑠𝜔𝑟(𝑘) 0

−𝑇𝑠𝜔𝑟(𝑘) 1 𝑇𝑠𝑣𝑟(𝑘)
0 0 1

] ;𝑩𝐸(𝑘) = [
𝑇𝑠 0
0 0
0 𝑇𝑠

] 

and the real control input is sum of the error-based model feedback control input and 

feedforward input as, 

 𝒖𝑓𝑏 = [
𝑣𝑟 cos 𝑒3
𝜔𝑟

]
⏟      

𝒖𝑓𝑓

− [
𝑣𝐵
𝜔𝐵
]

⏟
𝒖𝐵

   

Figure 12 shows the general control scheme of the kinematic controller, which uses error-based 

model. 

ur=[vr ωr]
T

uff=[vr(cos e3)  ωr]
T

FEED FORWARD 
CONTROL

TRAJECTORY 
PLANNER

CONTROLLER
MOBILE 
ROBOTΣ Σ+

-

[xr yr tr]
T

xr=[xr yr θr]
T

[xB yB θB]T
+

-
ufb uBCORDINATE 

TRANSFORMATION

e3 

e

 

Figure 12 General block diagram of trajectory tracking kinematic controller with error-based linear model 
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5.1 Trajectory tracking by NMPC 

The kinematics of non-holonomic robot is non-linear which requires a non-linear con-

troller to track the trajectory. NMPC has several advantages over other controllers, mainly be-

cause of the possibility to use the knowledge of future set-points (trajectory way points). 

 The formulation of NMPC of trajectory tracking follows the same formulation as dis-

cussed in Section 3, with slight changes. Since the state variables correspond to the output of 

system, the term output, 𝒚𝐾, in the formulation, is omitted.  The kinematic LTV model is a 

MIMO system with 2 inputs and 3 outputs. The linear discrete time state space model, consists 

of only the state equation represented as,  

 𝒙̅𝐾𝑘+1 = 𝑨𝐾𝑘𝒙̅𝐾𝑘 +𝑩𝐾𝑘𝒖̅𝐾𝑘  (5.1) 

where, 𝒙̅𝐾𝑘 is the state variable, and matrices 𝑨𝐾𝑘, 𝑩𝐾𝑘 are the same as that in eq (4.7) for the 

successive linear model and eq (4.12) for the error-based model. 

5.1.1 Prediction model from LTV model 

The prediction equations are same as that discussed in Section 3, but with time varying 

matrices. 

  𝑿̅𝐾𝑁 = 𝑺𝐾𝑥𝑥,𝑘𝒙̅𝐾𝑘 + 𝑺𝐾𝑥𝑢,𝑘𝒖̅𝐾𝑁  (5.2) 

where,  

𝒖̅𝐾𝑁 = [

𝒖̅𝐾𝑘
⋮

𝒖̅𝐾𝑘+𝑁−1

] ∈ ℝ𝑁;  𝑿̅𝐾𝑁 = [

𝒙̅𝐾𝑘+1
⋮

𝒙̅𝐾𝑘+𝑁

] ∈ ℝ𝑁𝑛𝑥 

Decomposing eq (5.2) into free 𝑿̅𝐾𝑓𝑟,𝑁  and forced responses 𝑿̅𝐾𝑓𝑜,𝑁, 

 𝑿̅𝐾𝑓𝑟,𝑁 = 𝑺𝐾𝑥𝑥,𝑘𝒙̅𝐾𝑘 + 𝑺𝐾𝑥𝑢,𝑘𝒖̅𝐾𝑁,0 (5.3) 

 𝑿̅𝐾𝑓𝑜,𝑁 = 𝑺𝐾𝑥𝑢,𝑘∆𝒖𝐾𝑁 (5.4) 

where, 

  ∆𝒖𝐾𝑁 = 𝒖̅𝐾𝑁 − 𝒖̅𝐾𝑁,0 ; 𝒖̅𝐾𝑁,0 = [

𝒖̅𝐾𝑓𝑟,𝑘
⋮

𝒖̅𝐾𝑓𝑟,𝑘+𝑁−1

] ∈ ℝ𝑁     

and the time varying prediction matrices are, 
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 𝑺𝐾𝑥𝑥,𝑘 =

[
 
 
 
 
 

𝑨𝐾𝑘
𝑨𝐾𝑘+1𝑨𝐾𝑘

𝑨𝐾𝑘+2𝑨𝐾𝑘+1𝑨𝐾𝑘
⋮

𝑨𝐾𝑘+𝑁 𝑨𝐾𝑘+𝑁−1…𝑨𝐾𝑘+1𝑨𝐾𝑘]
 
 
 
 
 

 

 𝑺𝐾𝑥𝑢,𝑘 =

[
 
 
 
 
 
 
 

𝑩𝐾𝑘 𝟎 𝟎 ⋯ 𝟎 𝟎

𝑨𝐾𝑘+1𝑩𝐾𝑘 𝑩𝐾𝑘+1 𝟎 ⋯ 𝟎 𝟎

𝑨𝐾𝑘+2𝑨𝐾𝑘+1𝑩𝐾𝑘 𝑨𝐾𝑘+1𝑩𝐾𝑘+1 𝑩𝐾𝑘+2 ⋯ 𝟎 𝟎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

∏ 𝑨𝐾𝑖

𝑘+𝑁−1

𝑖=𝑘+𝑁

𝑩𝐾𝑘 ∏ 𝑨𝐾𝑖

𝑘+𝑁−2

𝑖=𝑘+𝑁

𝑩𝐾𝑘+1 ∏ 𝑨𝐾𝑖

𝑘+𝑁−3

𝑖=𝑘+𝑁

𝑩𝐾𝑘+2⋯𝑨𝐾𝑘+𝑁𝑩𝐾𝑘+𝑁−1𝑩𝐾𝒌+𝑵
]
 
 
 
 
 
 
 

 

5.1.2 Cost function 

The aim of kinematic NMPCs is to bring the state variables closer to zero by optimizing 

a cost function. The state variables for both the error based and successive linear model are 

deviation variables but computed with respect to different coordinates. The MPC allows a lot 

of flexibility in the choice of cost function. A general cost function consists of three parts: costs 

to penalize the control error during the horizon, costs to penalize the control signal during hori-

zon and the terminal cost to ensure stability of the control at the terminal state. In the case of 

the trajectory-tracking problem, a separate terminal cost in the criteria formulation is omitted 

(included in the control error cost instead), as the output of system directly corresponds to the 

state variables. 

 

𝐽(𝑁𝐾 , 𝒙̅𝐾0, 𝒖̅𝐾𝑁,0) = ∆𝑿̅𝐾𝑁
𝑇
𝑸𝐾∆𝑿̅𝑁 + ∆𝒖𝐾𝑁

𝑇𝑹𝐾∆𝒖𝐾𝑁
∆𝒖𝐾𝑁 = 𝒖̅𝐾𝑁 − 𝒖̅𝐾𝑁,0                 

𝒖𝐾𝑚𝑖𝑛,𝑁 < 𝒖𝐾𝑁 < 𝒖𝐾𝑚𝑎𝑥,𝑁                       

 (5.5) 

where ∆𝑿̅𝐾𝑁 is the state deviation of future state variables 𝑿̅𝐾𝑁 from desired state variable 𝑿̅𝑁𝑁,𝑟, 

i.e.  ∆𝑿̅𝐾𝑁 = 𝑿̅𝐾𝑁 − 𝑿̅𝑁𝑁,𝑟. Since the aim is to bring the state variables to zero (origin), the de-

viation state variables become, ∆𝑿̅𝑁 = 𝑿̅𝑁. The weighting matrix 𝑸𝐾 is positive semi definite 

(𝑸𝐾 ≽ 𝟎) and matrix 𝑹𝐾 is positive definite (𝑹𝐾 ≻ 𝟎). 

𝑸𝐾 = 𝑑𝑖𝑎𝑔(𝑸𝐾𝑖) 

𝑹𝐾 = 𝑑𝑖𝑎𝑔(𝑹𝐾𝑖) 
 } ∀ 𝑖 = 1 𝑡𝑜 𝑁𝐾 

The criteria consist of a cost for control effort and a cost for state variable deviation. The aim 

of the trajectory tracking controller is to generate optimal control actions which brings the state 

variables to zero over a finite time horizon 𝑁𝐾. The output of the system directly corresponds 

to the state variables. The last diagonal element in the matrix 𝑸𝐾, i.e. 𝑸𝐾𝑵 can be seen as ter-

minal state cost and can be tuned to achieve terminal state stability.  
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Rewriting the criteria, eq (5.5) in terms of free and force responses by substituting eq 

(5.3) and eq (5.4), 

𝐽(𝑁𝐾 , 𝒙̅𝐾0, 𝒖̅𝐾𝑁,0) = [𝑿̅𝐾𝑓𝑟,𝑁 + 𝑿̅𝐾𝑓𝑜,𝑁]
𝑇
𝑸𝐾 [𝑿̅𝐾𝑓𝑟,𝑁 + 𝑿̅𝐾𝑓𝑜,𝑁] + ∆𝒖𝐾𝑁

𝑇𝑹𝐾∆𝒖𝐾𝑁                                 

                           = [𝑿̅𝐾𝑓𝑟,𝑁 + 𝑺𝐾𝑥𝑢,𝑘∆𝒖𝐾𝑁]
𝑇
𝑸𝐾 [𝑿̅𝐾𝑓𝑟,𝑁 + 𝑺𝐾𝑥𝑢,𝑘∆𝒖𝐾𝑁] + ∆𝒖𝐾𝑁

𝑇𝑹𝐾∆𝒖𝐾𝑁      

                               = 𝑿̅𝐾𝑓𝑟,𝑁
𝑇
𝑸𝐾𝑿̅𝐾𝑓𝑟,𝑁 + 𝑿̅𝐾𝑓𝑟,𝑁

𝑇
𝑸𝐾∆𝒖𝐾𝑁

𝑇𝑺𝐾𝑥𝑢,𝑘
𝑇 + ∆𝒖𝐾𝑁

𝑇𝑺𝐾𝑥𝑢,𝑘
𝑇𝑸𝐾𝑿̅𝑓𝑟,𝑁 +   

     +∆𝒖𝐾𝑁
𝑇𝑺𝐾𝑥𝑢,𝑘

𝑇
𝑸𝐾𝑺𝐾𝑥𝑢,𝑘∆𝒖𝐾𝑁 + ∆𝒖𝐾𝑁

𝑇𝑹𝐾∆𝒖𝐾𝑁            

                                 = 𝑿̅𝐾𝑓𝑟,𝑁
𝑇
𝑸𝐾𝑿̅𝐾𝑓𝑟,𝑁⏟            
𝒄

+ ∆𝒖𝐾𝑁
𝑇 𝑺𝐾𝑥𝑢,𝑘

𝑇𝑸𝐾𝑿̅𝐾𝑓𝑟,𝑁⏟          
𝒎

+ 𝑿̅𝑓𝑟,𝑁
𝑇
𝑸𝐾𝑺𝐾𝑥𝑢,𝑘⏟          ∆𝒖𝐾𝑁

𝒎𝑇

+    

 +∆𝒖𝐾𝑁
𝑇 (𝑺𝐾𝑥𝑢,𝑘

𝑇𝑸𝐾𝑺𝐾𝑥𝑢,𝑘 +𝑹𝐾)⏟                
𝑴

∆𝒖𝐾𝑁                           

           = ∆𝒖𝐾𝑁
𝑇𝑴∆𝒖𝐾𝑁 + ∆𝒖𝐾𝑁

𝑇𝒎+𝒎𝑇∆𝒖𝐾𝑁 + 𝒄                                           

 

where, 

𝒎 = 𝑺𝐾𝑥𝑢,𝑘
𝑇𝑸𝐾(𝑺𝐾𝑥𝑥,𝑘𝒙̅𝐾𝑘 + 𝑺𝐾𝑥𝑢,𝑘𝒖̅𝐾𝑁,0 )

𝑴 = 𝑺𝐾𝑥𝑢,𝑘
𝑇𝑸𝐾𝑺𝐾𝑥𝑢,𝑘 + 𝑹𝐾              

 

In case of the unconstraint control, the analytical solution is as follows, 

 ∆𝒖𝐾 = −𝑴
−𝟏𝒎 

In case of the constraint control, the optimal control action is the solution of the quadratic pro-

graming problem, obtained by minimizing the following criteria. 

 min
∆𝒖𝐾

𝐽 = ∆𝒖𝐾
𝑇𝑀∆𝒖𝐾 + 𝟐𝒎

𝑇∆𝒖𝐾 such that 𝑨𝒐∆𝒖𝐾 ≤ 𝒃𝟎  (5.6) 

5.1.3 Constrains on manipulated variable 

Considering the control input constraints of the successive linear model for a finite 

horizon 𝑁𝐾, 

 

𝒖𝐾𝑚𝑖𝑛 ≤ 𝒖𝐾𝑁 ≤ 𝒖𝐾𝑚𝑎𝑥 

𝒖𝐾𝑚𝑖𝑛 ≤ ∆𝒖𝐾𝑁 + 𝒖̅𝐾𝑁,0 + 𝒖𝐾𝑟  ≤ 𝒖𝐾𝑚𝑎𝑥
𝒖𝐾𝑚𝑖𝑛 − 𝒖̅𝐾𝑁,0 − 𝒖𝐾𝑁,𝑟 ≤ ∆𝒖𝐾𝑁 ≤ 𝒖𝐾𝑚𝑎𝑥 − 𝒖̅𝐾𝑁,0 − 𝒖𝐾𝑁,𝑟

 (5.7) 

where 𝒖̅0 is the last control action, 𝒖̅𝐾0 = 𝒖̅𝐾(𝑘 − 1) and 𝒖𝐾𝑁,𝑟 is a vector of reference inputs 

for the horizon. Deriving the inequality constraints for a horizon 𝑁𝐾,  

[
 
 
 
 
 
𝑰 ⋯ 𝟎
⋮ ⋱ ⋮
𝑰 ⋯ 𝑰
−𝑰 ⋯ 𝟎
⋮ ⋱ ⋮
−𝑰 ⋯ −𝑰]

 
 
 
 
 

⏟        
𝐴𝑜

∆𝒖𝐾 ≤

[
 
 
 
 
 
 
𝒖𝐾𝑚𝑎𝑥 − 𝒖̅𝐾0 − 𝒖𝐾𝑘,𝑟

⋮
𝒖𝐾𝑚𝑎𝑥 − 𝒖̅𝐾0 − 𝒖𝐾𝑘+𝑁,𝑟
−𝒖𝐾𝑚𝑖𝑛 + 𝒖̅𝐾0 + 𝒖𝐾𝑘,𝑟

⋮
−𝒖𝐾𝑚𝑖𝑛 + 𝒖̅𝐾0 + 𝒖𝐾𝑘+𝑁,𝑟]

 
 
 
 
 
 

⏟                  
𝑏0

 



45 

 

and for the error-based model, 

 

𝒖𝐾𝑚𝑖𝑛 ≤ 𝒖𝐾𝑁 ≤ 𝒖𝐾𝑚𝑎𝑥
𝒖𝐾𝑚𝑖𝑛 ≤ 𝒖𝐾𝑓𝑓,𝑁 − (∆𝒖𝐾𝑁 + 𝒖̅𝐾𝑁,0)  ≤ 𝒖𝐾𝑚𝑎𝑥

𝒖𝐾𝑚𝑖𝑛 + 𝒖̅𝐾𝑁,0 − 𝒖𝐾𝑓𝑓,𝑁 ≤ −∆𝒖𝐾𝑁 ≤ 𝒖𝐾𝑚𝑎𝑥 + 𝒖̅𝐾𝑁,0 − 𝒖𝐾𝑓𝑓,𝑁

 (5.8) 

[
 
 
 
 
 
−𝑰 ⋯ 𝟎
⋮ ⋱ ⋮
−𝑰 ⋯ −𝑰
𝑰 ⋯ 𝟎
⋮ ⋱ ⋮
𝑰 ⋯ 𝑰 ]

 
 
 
 
 

⏟        
𝐴𝑜

∆𝒖𝐾 ≤

[
 
 
 
 
 
 
𝒖𝐾𝑚𝑎𝑥 + 𝒖̅𝐾0 − 𝒖𝐾𝑓𝑓,𝑘

⋮
𝒖𝐾𝑚𝑎𝑥 + 𝒖̅𝐾0 − 𝒖𝐾𝑓𝑓,𝑘+𝑁
−𝒖𝐾𝑚𝑖𝑛 − 𝒖̅𝐾0 + 𝒖𝐾𝑓𝑓,𝑘

⋮
−𝒖𝐾𝑚𝑖𝑛 − 𝒖̅𝐾0 + 𝒖𝐾𝑓𝑓,𝑘+𝑁]

 
 
 
 
 
 

⏟                  
𝑏0

 

Figure 13 shows the control scheme of NMPC based on the successive linear (NMPC1) on LTV 

model. The control scheme of the error-based models (NMPC2) is illustrated in figure 14.  
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Figure 13 Control scheme of trajectory tracking NMPC1 with LTV model 
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Figure 14 Control scheme of trajectory tracking NMPC2 with LTV model 
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5.2 Trajectory tracking by state tracking control 

5.2.1 Linear state tracking control design (Kanayama controller) 

The proposed predictive controller is compared to the state-of-the-art state tracking 

controllers whose design can be found in (Samson & Ait-Abderrahim 1991; De Luca et al. 

2001; Kanayama et al. 1990). The state tracking controller can be designed with a linear feed-

back gain as, 

 𝒖̅𝐾𝑘 = −𝑲𝑠(𝑘)𝒆(𝑘)  (5.9) 

where 𝑲𝑠 is the time varying feedback gain matrix in the form of, 

 𝑲𝑠(𝑘) = [
−𝑘1(𝑘) 0 0

0 −𝑠𝑖𝑔𝑛(𝑣𝑟)𝑘2(𝑘) −𝑘3(𝑘)
] ∈ ℝ𝑛𝑢×𝑛𝑥  (5.10) 

The controller gains 𝑘1, 𝑘2 and 𝑘3 are determined by comparing (pole placement method) the 

closed loop characteristic polynomial with a desired closed loop characteristic polynomial in 

the form of, 

(𝜆 + 2𝜁𝑎)(𝜆2 + 2𝜁𝑎𝜆 + 𝑎2) 

which has constant eigenvalues (one negative real at  −2𝜁𝑎 and a complex pair with natural 

frequency 𝑎 > 0 and damping co-efficient 𝜁 > 0). The controller gains can be then be chosen 

as, 

𝑘1(𝑘) = 𝑘3(𝑘) = 2𝜁𝑎 

𝑘2(𝑘) =
𝑎2 −𝜔𝑟(𝑘)

2

𝑣𝑟(𝑘)
 

The gain 𝑘2 will go to infinity as 𝑣𝑟(𝑘) → ∞. In order to avoid this, gain scheduling can be 

designed by letting 𝑎 = 𝑎(𝑘) = √𝜔𝑟(𝑘)
2 + 𝑏𝑣𝑟(𝑘)

2, substituting, 

𝑘1(𝑘) = 𝑘3(𝑘) = 2𝜁√𝜔𝑟(𝑘)
2 + 𝑏𝑣𝑟(𝑘)

2 ; 𝑘2(𝑘) = 𝑏|𝑣𝑟(𝑘)| 

where the factor 𝑏 > 0 can be seen as an additional degree of freedom. 

Even the controller gains are chosen in such a way that the closed loop poles are at the 

left half of the s-plane, while the controller is still non-linear and time varying. Therefore, 

asymptotic stability of tracking error is not guaranteed. The control scheme is the same as that 

in figure 12. 
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5.2.2 Nonlinear state tracking control design (Samson controller) 

Considering the nonlinear feedback control law (Samson & Ait-Abderrahim 1991) as, 

 𝑲𝑠(𝑘) = [
−𝑘1(𝑘) 0 0

0 −𝑘̅2𝑣𝑟(𝑘)
sin (𝑒3)

𝑒3
−𝑘3(𝑘)

] ∈ ℝ𝑛𝑢×𝑛𝑥  (5.11) 

The controller gains 𝑘1, 𝑘̅2 and 𝑘3 are determined by the same method as in the linear control 

design. 

𝑘1(𝑘) = 𝑘3(𝑘) = 2𝜁√𝜔𝑟(𝑘)
2 + 𝑏𝑣𝑟(𝑘)

2  ;  𝑘̅2 = 𝑏 

The main difference between the linear and nonlinear state tracking controller is that, global 

asymptotic stability can be proved in the case of nonlinear controller by the Lyapunov analysis. 

See (Samson & Ait-Abderrahim 1991) for the proof. 

5.3 Simulation results  

The inputs are time parameterized reference points, which are interpolated to generate 

smooth trajectory points by linear interpolation or spline interpolation by Matlab function 

interp1. The linear interpolation generates sharp turns, which results in very high reference 

velocities (which may not be practically unrealizable). The trajectory planner generates the 

reference parameters – orientation, tangential and angular velocities. Simulation experiments, 

with a continuous time model eq (4.1) for a real robot, were performed. Total simulation time 

was 30s with a sampling time of 100ms. Four different controllers were tested – NMPC with 

successive linear model (NMPC1), NMPC with error tracking model (NMPC2), Kanayama 

feedback controller (KC) and Samson feedback controller (SC). 

Trajectory tracking NMPC1 of the mobile robot was simulated:  by using the model in 

the form of eq (4.7), predicting the future states with LTV model eq (5.3-5.4), optimizing the 

cost function in the form of eq (5.5), and defining the constraints in the form of eq (5.7).  The 

optimized control actions for horizon 𝑁𝐾 were calculated and the first control action was applied 

to the system. Only NMPC with LTV model was considered, as the results obtained with non-

linear model, eq (4.1), were the same. NMPC2 uses error based model, eq (4.12), prediction 

model, eq (5.3-5.4) and constraint definition, eq (5.8). The control actions for state feedback 

tracking controllers KC and SC were calculated by eq (5.10) and eq (5.11) respectively. The 

input constraints were considered as, 

 −1 𝑚/𝑠 ≤ 𝑣𝐵 ≤ 1 𝑚/𝑠        ;         −1 𝑟𝑎𝑑/𝑠 ≤ 𝜔𝐵 ≤ 1 𝑟𝑎𝑑/𝑠   (5.12) 
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Twelve different simulation experiments (S1-S12) have been performed with different 

controllers, initial conditions, interpolation methods, tuning parameters and constraint 

condition. A different initial condition refers to the pose of the robot, which is different from 

the reference pose. Table II shows the simulation results of trajectory tracking with different 

controllers. The simulation results with parameters listed in the table are shown in figure 15-

18. Not all the figures of the simulation experiments are shown, as some of the results with 

different controllers are not significantly different. The results are comparable with the sum of 

squared error (SSE):  

𝑆𝑆𝐸𝑥𝑦 = |𝑥𝐵 − 𝑥𝑟|
2 + |𝑦𝐵 − 𝑦𝑟|

2 ;               𝑆𝑆𝐸𝜃 = |𝜃𝐵 − 𝜃𝑟|
2 

Three sets of experiments were conducted – linearly interpolated trajectories, constraint 

control and different initial conditions. In all the cases, NMPC1 showed more SSEs when 

compared to other controllers. The SSE of control responses of linearly interpolated trajectories 

were almost same, even though NMPC1 is outperformed by all the other controllers. The 

controllers were able to generate target velocities with respect to the reference velocities. In 

case of constraint control, state tracking controllers were able to track the robot closer to the 

reference trajectory. Constraints in the form of eq (5.12) were considered. When the initial 

conditions were different, NMPC2 performed better than all the other controllers.  

The trajectory tracking abilities of NMCP1, KC and SC were comparable in all the 

experiments without much difference in SSE’s. It can be noted that, with the same tuning 

parameters, the NMPC2 trajectory-tracking controller was able to track the robot closer to the 

reference trajectory. This is the main advantage of NMCP2 over other controllers, wherein case 

of other controllers, the tuning parameters have to be tuned separately for different scenarios. 

This shows that NMPC with error-based model is more suitable for trajectory tracking 

irrespective of the reference trajectory scenario.
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Table II Simulation experiments – Interpolation method, controller, tuning parameters and SSE 

 

                                                 
1 NMPC1 – with successive linear model, NMPC2– with error based model, KC – Kanayama controller, SC – Samson controller 

Simulation 

Experiment 
Controller1 Tuning parameters 

Constraints 

𝒖𝐾𝑚𝑎𝑥 = −𝒖𝐾𝑚𝑖𝑛 

Interpolation 

Method 

Initial  

Condition 

Control 

Quality 

[SSExy ,SSEθ] 

 N R Q QN  

S1 

NMPC1 5 
10-1*I 

I 

0 -- Linear -- [0.0059  2.6030] 

S2 I [1  1] 
Spline 

[0.2668  2.8050] 

S3 10-2*I 103*I -- [0.1 -0.1 0] [0.5322  89.375] 

S4 

NMPC2 5 10-1*I I I 

-- Linear 
-- 

[0.0192  0.0004] 

S5 [1  1] 
Spline 

[0.0343  2.3770] 

S6 -- [0.1 -0.1 0] [0.1736  57.371] 

 b 𝜁  

S7 

KC 

100 

0.7 

-- Linear 
-- 

[0.0014  0.0067] 

S8 
50 

[1  1] 
Spline 

[0.0101  1.4151] 

S9 -- [0.1 -0.1 0] [0.2837  67.770] 

S10 

SC 

100 

0.7 

-- Linear 
-- 

[0.5470  0.0918] 

S11 
50 

[1  1] 
Spline 

[0.0108  1.4166] 

S12 -- [0.1 -0.1 0] [0.3187  74.651] 
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Figure 15 Simulation experiment S1: Linear interpolation, unconstraint NMPC with successive linear model– 

reference trajectory, reference inputs, tracked trajectory, control actions 

 

 

Figure 16 Simulation experiment S5: Spline interpolation, constraint NMPC with error tracking model – 

reference trajectory, reference inputs, tracked trajectory, control actions 
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Figure 17 Simulation experiment S8: Spline interpolation, constraint Kanayama controller – reference 

trajectory, reference inputs, tracked trajectory, control actions 

 

 

Figure 18 Simulation experiment S12: Spline interpolation, unconstraint Samson controller with different initial 

condition – reference trajectory, reference inputs, tracked trajectory, control actions 
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Figure 19 shows the initial tracking of the WMR in the case where the robot’s initial 

pose is different from the reference trajectory – since in this example, the robot is oriented in 

the opposite direction. NMPC2 converges faster to the reference trajectory compared to all other 

controllers, followed by state tracking controllers. It is also interesting to note that the NMPC1 

initially drives in the opposite direction to the reference orientation and eventually converges 

with high initial tracking errors. 

 

Figure 19 Comparison of kinematic trajectory tracking controllers with different initial conditions 

The significance of simulation experiments with linear interpolation is questionable. 

The linear interpolation generates very high velocities (which is practically unrealizable with 

most of the robots) especially in sharp corners. The tracking of linearly interpolated trajectory 

by controllers shows the ability of controllers to work in different operating regions. In other 

words, simulations with linear interpolation are employed to check whether, the robot is able to 

track the trajectory at very high and low step changes.   
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6.  DYNAMICS MODELLING OF DIFFERENTIAL DRIVE 

WMR 

Dynamics is the study of forces and torques and their effect on motion, as opposed to 

kinematics, which is the study of motion without considering the causes of motion. Dynamics 

modelling is essential in the case of WMR, if an accurate control of robot is required. There are 

mainly two modelling methods in literature - Lagrangian approach and Newton-Euler approach. 

In the Lagrangian approach, a multibody robot is treated as a single system and the forces are 

expressed in terms of energies – kinetic and potential energies. In the Newton-Euler approach, 

each body/link is considered separately, a free body diagram is drawn, and balance of forces 

and torques acting on each element is considered. The Lagrangian approach is best suited for 

study of dynamic properties and analysis of a control scheme, whereas Newton-Euler is suitable 

for implementation of the control scheme. The Newton-Euler based modelling approach is 

considered in the following text.  

6.1 Mathematical modelling of dynamics of WMR 

The differential drive mobile robot is assumed to have two wheels connected with 

permanent magnet DC motors, powered from a common voltage source and are independently 

controlled. The motors are connected to the driving wheels through a gearbox with the same 

gear ratio. An ideal gearbox (nonlinearities are neglected) is considered, which reduces the 

linear speed and boosts the torque. The chassis is firmly supported by a castor wheel with no 

influence on chassis motion (resistance force on motion is neglected).  

The mathematical model of the robot, consists of three relatively independent parts: the 

dynamics of the permanent magnet DC motor, chassis dynamics (dependency between 

translational and rotational velocities of the chassis reference point on moments acting to 

driving wheels), and kinematics (influence of motor speed to translational and rotational 

velocities). A chassis reference point is the point in the robot at which kinematics of the robot 

is considered; usually it is placed at the center of the axis joining the wheels. In the following 

formulation, this chassis reference point can be placed anywhere in the axis joining the wheels, 

depending on the center of gravity of the robot. 

6.1.1 DC motor dynamics 

An equivalent circuit of an ideal permanent magnet DC motor is shown in figure 20. It 

consists of resistance 𝑅, inductance 𝐿 and magnetic field 𝑀. The commutator is not considered. 

Each motor is independently controlled by its own supply voltages 𝑈𝐿 , 𝑈𝑅 taken from a common 
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voltage source 𝑈0 through control signals 𝑢𝐿 , 𝑢𝑅. The rotor generated back EMF, which is in 

reverse polarity and is proportional to rotor angular velocity. The torque of motor is 

proportional to the current 𝑖. 

R

ML

L

MR

R
L

RZ

iL

iR

UL=U0.uL

U0

UR=U0.uR  

 

Figure 20 DC Motor Wiring 

The Dynamics of the permanent magnet DC motor can be derived from balancing of 

voltages (Kirchhoff’s law) and balancing of moments. From Kirchhoff’s voltage law, we can 

derive,  

 𝑅𝑖𝐿 + 𝑅𝑧(𝑖𝐿 + 𝑖𝑅) + 𝐿
𝑑𝑖𝐿

𝑑𝑡
= 𝑢𝐿𝑈0 − 𝐾𝜔𝐿  (6.1) 

 𝑅𝑖𝑅 + 𝑅𝑧(𝑖𝐿 + 𝑖𝑅) + 𝐿
𝑑𝑖𝑅

𝑑𝑡
= 𝑢𝑅𝑈0 − 𝐾𝜔𝑅  (6.2) 

where, 

 𝑅 motor winding resistance [Ω] 

 𝑅𝑧 source resistance [Ω] 

 𝐿 motor winding inductance [𝐻] 

 𝐾 back EMF constant [𝑘𝑔.𝑚2. 𝑠−2. 𝐴−1]  

 𝑈𝑜 source voltage [𝑉] 

 𝑢𝑅 , 𝑢𝐿 control voltages of right and left wheels [−] 

 𝑖 current [𝐴] 

 𝜔𝑅 , 𝜔𝐿 right and left motor angular velocities [𝑟𝑎𝑑. 𝑠−1] 

By considering the balance of moments – moment of inertia 𝑀𝑠, rotational resistance 

proportional to rotational speed (mechanical losses) 𝑀𝑜 and load torque 𝑀𝑥 caused by magnetic 

field which is proportional to current. 

𝑀𝑠 +𝑀𝑜 +𝑀𝑥 = 𝑀𝑀 

Writing in terms of right and left wheel drives, 

 𝐽
𝑑𝜔𝐿

𝑑𝑡
+ 𝑘𝑟𝜔𝐿 +𝑀𝐿 = 𝐾𝑖𝐿 (6.3) 
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 𝐽
𝑑𝜔𝑅

𝑑𝑡
+ 𝑘𝑟𝜔𝑅 +𝑀𝑅 = 𝐾𝑖𝑅 (6.4) 

where,  

 𝐽 moment of inertia of the robot [𝑘𝑔.𝑚2] 

 𝑘𝑟  coefficient of rotational resistance [𝑘𝑔.𝑚2. 𝑠−1] 

 𝑀𝐿 ,𝑀𝑅  load torques on left and right wheels [𝑘𝑔.𝑚2. 𝑠−2] 

6.1.2 Chassis dynamics 

Chassis dynamics is defined with a vector of tangential velocity 𝑣𝐵 acting on a chassis 

reference point and angular velocity 𝜔𝐵 (constant at all chassis points). The chassis reference 

point B is the point of the intersection of the axis joining the wheels and center of gravity normal 

projection – see figure 21. Point T is the general center of gravity – usually it is placed at the 

center of the axis joining the wheels. 

 

Figure 21 Chassis Scheme and Forces 

The two forces acting on the wheels, 𝐹𝐿 and 𝐹𝑅, can be replaced with a single force 𝐹𝐵  

and torsion torque 𝑀𝐵 acing at reference point B. The chassis parameters are wheel radius 𝑟, 

total mass 𝑚 and moment of inertia  𝐽𝑇 with respect to the center of gravity, located at a distance 

𝑙𝑇 , 𝑙𝑅 , 𝑙𝐿  as shown in figure 21.  

By considering the balance of forces (forces on drive wheels) 𝐹𝐿, 𝐹𝑅, inertial force 𝐹𝑠 

and resistive force 𝐹𝑜 which is proportional to tangential velocity of robot. The balance of force 

influencing linear motion is, 

𝐹𝐿 + 𝐹𝑅 + 𝐹𝑠 + 𝐹𝑜 = 0 

 
𝑀𝐺𝐿

𝑟
+
𝑀𝐺𝑅

𝑟
− 𝑘𝑣𝑣𝐵 −𝑚

𝑑𝑣𝐵

𝑑𝑡
= 0  (6.5) 

FL = MGL/r

FR = MGR/r

MBL= FLlL 

MBR= FRlR  

FB = FL  + FR 

MB = MBR - MBL   
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where, 

 𝑚 mass of robot [𝑘𝑔] 

 𝑘𝑣 resistive coefficient against linear motion [𝑘𝑔. 𝑠−1] 

 𝑀𝐺𝐿 ,𝑀𝐺𝑅 torque on left and right drive [𝑘𝑔.𝑚2. 𝑠−2] 

 𝑣𝐵 tangential velocity [𝑚. 𝑠−1] 

 𝑟 radius of wheels [𝑚] 

By considering balance of torques, with torque generated by drives 𝑀𝐵𝐿, 𝑀𝐵𝑅, chassis 

momentum 𝑀𝑇, torque due to Euler force 𝑀𝐸 and torque due to resistive force 𝑀𝑜, 

𝑀𝐵𝐿 +𝑀𝐵𝑅 +𝑀𝑜 +𝑀𝑇 +𝑀𝐸 = 0 

 −
𝑀𝐺𝐿

𝑟
𝑖𝐿 +

𝑀𝐺𝑅

𝑟
𝑖𝑅 − 𝑘𝜔𝜔𝐵 − 𝐽𝑇

𝑑𝜔𝐵
𝑑𝑡
− 𝑙𝑇

2𝑚
𝑑𝜔𝐵

𝑑𝑡
= 0  (6.6) 

where, 

 𝑙𝑅 , 𝑙𝐿 distance to right and left wheel from point B [𝑚] 

 𝑙𝑇 distance to center of gravity from point B [𝑚] 

 𝑘𝜔 resistive coefficient against rotational motion [𝑘𝑔.𝑚2. 𝑠−1] 

 𝐽𝑇  moment of inertia with respect to rotational axis at center of gravity    

[𝑘𝑔.𝑚2] 

 𝜔𝐵 angular velocity [𝑠−1] 

By applying the parallel axis (Huygens–Steiner) theorem, the moment of inertia 𝐽𝐵 with respect 

to the rotational axis at reference point B can be derived as, 

𝐽𝐵 = 𝐽𝑇 +𝑚𝑙𝑇
2
 

6.1.3 Relationship between rotational speed of the motor and chassis movement  

The equations governing behavior of motors (currents and motor speeds) and the 

behavior of chassis (translational and rotational movement) are only connected through torques 

of motors. Let the motors be connected to the chassis through an ideal gear box with gear ratio 

𝑝𝐺. The nonlinearities (saturation, backlash, friction, dead zone) of the gear box are neglected.  

The gear box reduces the angular velocities of motors (𝜔𝐿 , 𝜔𝑅) to output angular 

velocities (𝜔𝐺𝐿, 𝜔𝐺𝑅) with respect to the gear ratio. Similarly, the torques of motors (𝑀𝐿 ,𝑀𝑅) are 

increased to output torques (𝑀𝐺𝐿,𝑀𝐺𝑅).   

𝜔𝐺𝐿 =
𝜔𝐿
𝑝𝐺
            𝜔𝐺𝑅 =

𝜔𝑅
𝑝𝐺
      

𝑀𝐺𝐿 = 𝑀𝐿𝑝𝐺         𝑀𝐺𝑅 = 𝑀𝑅𝑝𝐺 
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Let both the wheels have same radius 𝑟, and their peripheral speeds 𝑣𝐿 , 𝑣𝑅 depend on output 

angular velocities of the gear box according to the following relation, 

𝑣𝐿 = 𝑟𝜔𝐺𝐿 = 𝑟
𝜔𝐿
𝑝𝐺

 

𝑣𝑅 = 𝑟𝜔𝐺𝑅 = 𝑟
𝜔𝑅
𝑝𝐺

 

 

Figure 22 Linear and Angular Velocity Recalculation 

The tangential velocity 𝑣𝐵 and angular velocity 𝜔𝐵 at chassis reference point B can be 

recalculated from the peripheral velocities 𝑣𝐿 , 𝑣𝑅. Assuming both the motors have same axis of 

rotation and the peripheral velocities will hence always be parallel. From the theorems of 

similar triangles, depicted in figure 22, the tangential velocity and angular velocity at point B 

are given by, 

 𝑣𝐵 =
𝑣𝐿𝑙𝑅+𝑣𝑅𝑙𝐿

𝑙𝐿+𝑙𝑅
=

𝑟

𝑝𝐺(𝑙𝐿+𝑙𝑅)
(𝑙𝐿𝜔𝑅 + 𝑙𝑅𝜔𝐿)  (6.7) 

 𝜔𝐵 =
𝑣𝐵

𝑥+𝑙𝐿
=
𝑣𝑅−𝑣𝐿

𝑙𝐿+𝑙𝑅
=

𝑟

𝑝𝐺(𝑙𝐿+𝑙𝑅)
(−𝜔𝐿 +𝜔𝑅)  (6.8) 

From the tangential and angular velocities, the position in Cartesian coordinates (𝑥𝐵, 𝑦𝐵) and 

orientation of the robot 𝜃𝐵 with respect to x-axis can be calculated from the basic kinematic 

nonlinear equation. 

 

𝑥̇𝐵 = 𝑣𝐵  cos 𝜃𝐵
𝑦̇𝐵 = 𝑣𝐵  sin𝜃𝐵
𝜃̇𝐵 = 𝜔𝐵          

 (6.9) 

6.2 Combined state space model  

The dynamic parts consist of four differential equations, eq (6.1-6.4) describing the be-

havior of motors, two differential equations, eq (6.5-6.6) describing the chassis dynamics and 

two algebraic equations, eq (6.7-6.8) which relates tangential and angular velocities of chassis 

to the peripheral speed of motors. From this, eight state variables describing the current state of 

lL lR
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left and right motors (currents, motor speeds and load torques) and chassis parameters (tangen-

tial and angular velocities) can be derived. 

The differential equations eq (6.5-6.6) and algebraic equations eq (6.7-6.8) are rewritten 

by introducing the “reduced” wheel radius 𝑟𝐺  and total moment of inertia 𝐽𝐵 as, 

𝑟𝐺 =
𝑟

𝑝𝐺
                𝐽𝐵 = 𝐽𝑇 +𝑚𝑙𝑇

2
 

𝑝𝐺
𝑟
𝑀𝐿 +

𝑝𝐺
𝑟
𝑀𝑅 − 𝑘𝑣𝑣𝐵 −𝑚

𝑑𝑣𝐵
𝑑𝑡

= 0 

 𝑀𝐿 +𝑀𝑅 − 𝑟𝐺𝑘𝑣𝑣𝐵 − 𝑟𝐺𝑚
𝑑𝑣𝐵

𝑑𝑡
= 0  (6.10) 

−𝑖𝐿
𝑝𝐺
𝑟
𝑀𝐿 + 𝑖𝑅

𝑝𝐺
𝑟
𝑀𝑅 − 𝑘𝜔𝜔𝐵 − (𝐽𝑇 +𝑚𝑙𝑇

2)
𝑑𝜔𝐵
𝑑𝑡

= 0 

 −𝑖𝐿𝑀𝐿 + 𝑖𝑅𝑀𝑅 − 𝑟𝐺𝑘𝜔𝜔𝐵 − 𝑟𝐺𝐽𝐵
𝑑𝜔𝐵
𝑑𝑡
= 0  (6.11) 

Rewriting the algebraic equations, 

 𝑣𝐵 =
𝑟𝐺

(𝑙𝐿+𝑙𝑅)
(𝑙𝑅𝜔𝐿 + 𝑙𝐿𝜔𝑅)  (6.12) 

 𝜔𝐵 =
𝑟𝐺

(𝑙𝐿+𝑙𝑅)
(−𝜔𝐿 +𝜔𝑅)  (6.13) 

These six differential equations, eq (6.1-6.4,6.10-6.11), and two algebraic eq (6.12-6.13) con-

taining eight state variables represent a mathematical description of the dynamic behavior of 

ideally differentially steered mobile robots, with losses linearly dependent on the revolutions 

or speed. The control signals, 𝑢𝐿 and 𝑢𝑅, that control the supply voltages of the motors are the 

input variables. 

The calculation of steady-state values for constant engine power voltages is given 

below. A calculation of steady state is useful both for the checking of derived equations and for 

the experimental determination of the values of the unknown parameters. The steady state in 

matrix representation is, 

 

[
 
 
 
 
 
 
 
 
 
𝑅 + 𝑅𝑧 𝑅𝑧 𝐾 0 0 0 0 0
𝑅𝑧 𝑅 + 𝑅𝑧 0 𝐾 0 0 0 0
𝐾 0 −𝑘𝑟 0 −1 0 0 0
0 𝐾 0 −𝑘𝑟 0 −1 0 0
0 0 0 0 1 1 −𝑟𝐺𝑘𝑣 0
0 0 0 0 −𝑙𝐿 𝑙𝑅 0 −𝑟𝐺𝑘𝜔

0 0 𝑙𝑅 𝑙𝐿 0 0 −
𝑙𝑅+𝑙𝐿

𝑟𝐺
0

0 0 −1 1 0 0 0 −
𝑙𝑅+𝑙𝐿

𝑟𝐺 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑖𝐿
𝑖𝑅
𝜔𝐿
𝜔𝑅
𝑀𝐿
𝑀𝑅
𝑣𝐵
𝜔𝐵]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑈0𝑢𝐿
𝑈0𝑢𝑅
0
0
0
0
0
0 ]
 
 
 
 
 
 
 

  (6.14) 
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The eq (6.1-6.4,6.10-6.11) can be reduced to a state-space model with four state variables by 

exclusion of the dependent state variables (𝑀𝐿 ,𝑀𝑅 , 𝜔𝐿 , 𝜔𝑅). The six differential equations can 

be reduced to four by substituting eq (6.12-6.13) into eq (6.10-6.11), by eliminating the load 

torques 𝑀𝐿 and 𝑀𝑅, and by substituting eq (6.1-6.4) to eq (6.10-6.11) to arrive at four differential 

equations eq (6.15-6.18). Introducing the following parameters, for simplification, 

𝑎𝐿 = 𝑘𝑟 +
𝑘𝑣𝑙𝑅𝑟𝐺

2

𝑙𝐿 + 𝑙𝑅
𝑎𝑅 = 𝑘𝑟 +

𝑘𝑣𝑙𝐿𝑟𝐺
2

𝑙𝐿 + 𝑙𝑅

𝑏𝐿 = 𝐽 +
𝑚𝑙𝑅𝑟𝐺

2

𝑙𝐿 + 𝑙𝑅
     𝑏𝑅 = 𝐽 +

𝑚𝑙𝐿𝑟𝐺
2

𝑙𝐿 + 𝑙𝑅
   

𝑐𝐿 = 𝑘𝑟𝑙𝐿 +
𝑘𝜔𝑟𝐺

2

𝑙𝐿 + 𝑙𝑅
𝑐𝑅 = 𝑘𝑟𝑙𝑅 +

𝑘𝜔𝑟𝐺
2

𝑙𝐿 + 𝑙𝑅

𝑑𝐿 = 𝐽𝑙𝐿 +
𝐽𝐵𝑟𝐺

2

𝑙𝐿 + 𝑙𝑅
𝑑𝑅 = 𝐽𝑙𝑅 +

𝐽𝐵𝑟𝐺
2

𝑙𝐿 + 𝑙𝑅

     

}
 
 
 
 

 
 
 
 

 

The reduced linear equations of the model consist of the following equations, 

 
𝑑𝑖𝐿

𝑑𝑡
=
𝑢𝐿𝑈0−𝐾𝜔𝐿−(𝑅+𝑅𝑧)𝑖𝐿−𝑅𝑧𝑖𝑅

𝐿
  (6.15) 

 
𝑑𝑖𝑅

𝑑𝑡
=
𝑢𝑅𝑈0−𝐾𝜔𝑅−(𝑅+𝑅𝑧)𝑖𝑅−𝑅𝑧𝑖𝐿

𝐿
  (6.16) 

𝑑𝜔𝐿

𝑑𝑡
=

1

𝑏𝐿𝑑𝑅+𝑏𝑅𝑑𝐿
(𝑑𝑅[𝐾(𝑖𝐿 + 𝑖𝑅) − 𝑎𝐿𝜔𝐿 − 𝑎𝑅𝜔𝑅] − 𝑏𝑅[𝐾(−𝑙𝐿𝑖𝐿 + 𝑙𝑅𝑖𝑅) + 𝑐𝐿𝜔𝐿 − 𝑐𝑅𝜔𝑅])  (6.17) 

𝑑𝜔𝑅

𝑑𝑡
=

1

𝑏𝐿𝑑𝑅+𝑏𝑅𝑑𝐿
(𝑑𝐿[𝐾(𝑖𝐿 + 𝑖𝑅) − 𝑎𝐿𝜔𝐿 − 𝑎𝑅𝜔𝑅] + 𝑏𝐿[𝐾(−𝑙𝐿𝑖𝐿 + 𝑙𝑅𝑖𝑅) + 𝑐𝐿𝜔𝐿 − 𝑐𝑅𝜔𝑅])  (6.18) 

and the output equations are given by the algebraic equations eq (6.12-6.13). The dynamics of 

differential drive WMR can be represented in the general state space model as, 

𝒙̇𝐷 = 𝑨̃𝐷𝒙𝐷 + 𝑩̃𝐷𝒖𝐷
𝒚𝐷 = 𝑪̃𝐷𝒙𝐷             

  (6.19) 

𝒙𝐷 = [

𝑖𝐿
𝑖𝑅
𝜔𝐿
𝜔𝑅

] 𝒖𝐷 = [
𝑢𝐿
𝑢𝑅
] 𝒚𝐷 = [

𝑣𝐵
𝜔𝐵
] 

with system matrices as, 

𝑨̃𝐷 =

[
 
 
 
 
 
 
 
 −

𝑅 + 𝑅𝑧
𝐿

−
𝑅𝑧
𝐿

−
𝐾

𝐿
0

−
𝑅𝑧
𝐿

−
𝑅 + 𝑅𝑧
𝐿

0 −
𝐾

𝐿
𝐾(𝑑𝑅 + 𝑏𝑅𝑙𝐿)

𝑏𝐿𝑑𝑅 + 𝑏𝑅𝑑𝐿

𝐾(𝑑𝑅 − 𝑏𝑅𝑙𝑅)

𝑏𝐿𝑑𝑅 + 𝑏𝑅𝑑𝐿
−
𝑑𝑅𝑎𝐿 + 𝑏𝑅𝑐𝐿
𝑏𝐿𝑑𝑅 + 𝑏𝑅𝑑𝐿

−
𝑑𝑅𝑎𝑅 − 𝑏𝑅𝑐𝑅
𝑏𝐿𝑑𝑅 + 𝑏𝑅𝑑𝐿

𝐾(𝑑𝐿 − 𝑏𝐿𝑙𝐿)

𝑏𝐿𝑑𝑅 + 𝑏𝑅𝑑𝐿

𝐾(𝑑𝑅 + 𝑏𝐿𝑙𝑅)

𝑏𝐿𝑑𝑅 + 𝑏𝑅𝑑𝐿
−
𝑑𝐿𝑎𝐿 − 𝑏𝐿𝑐𝐿
𝑏𝐿𝑑𝑅 + 𝑏𝑅𝑑𝐿

−
𝑑𝐿𝑎𝑅 + 𝑏𝐿𝑐𝑅
𝑏𝐿𝑑𝑅 + 𝑏𝑅𝑑𝐿]
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𝑩̃𝐷 =

[
 
 
 
 
 
𝑈0
𝐿

0

0
𝑈0
𝐿

0 0
0 0 ]

 
 
 
 
 

                             𝑪̃𝐷 =

[
 
 
 0 0

𝑙𝑅𝑟𝐺
𝑙𝐿 + 𝑙𝑅

𝑙𝐿𝑟𝐺
𝑙𝐿 + 𝑙𝑅

0 0 −
𝑟𝐺

𝑙𝐿 + 𝑙𝑅

𝑟𝐺
𝑙𝐿 + 𝑙𝑅]

 
 
 
                

 

6.3 Parameter identification and estimation 

Typical chassis parameters are given in Table III and typical motor parameters in Table 

IV. The motor parameters can be found in the data sheet or can be identified by experiments, 

see (Cong et al. 2010; Saab & Kaed-Bey n.d.; Völlmecke 2013). The chassis geometric 

parameters can be directly measured from the robot. The other chassis parameters (moment of 

inertias and coefficient of resistances) have to be identified either experimentally or 

approximated with typical values. These values are chosen so that they roughly correspond to 

the values of a real robot. Assuming the robot is symmetrically shaped, the center of gravity is 

located at the line of symmetry and hence the chassis reference point B, is at the center of axis 

joining the wheels.   
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Table III Chassis Parameters 

Notation Value Unit Description 

lL 0.080 m distance of the left wheel from point B 

lP 0.080 m distance of the right wheel from point B 

lT 0.050 m distance of center of gravity to the axis joining the wheels 

lK 0.100 m distance of caster wheel to the axis joining the wheels 

r 0.035 m radius of driving wheel 

M 1.250 kg total weight of the robot 

kv 0.100 kg.s-1 coefficient of the resistance against robot linear motion 

JT 0.550 kg.m2 
moment of inertia of robot with respect to center of grav-

ity 

k 1.350 kg.m2.s-1 coefficient of the resistance against robot’s rotation 

 

 

 

 

Table IV DC Motors Parameters 

Notation Value Unit Description 

R 2.000  motor winding resistance 

L 0.015 H motor inductance 

K 0.150 kg.m2.s-2.A-1 back EMF constant 

RZ 0.012  source resistance 

U0 8.000 V source voltage 

J 0.015 kg.m2 
total moment of inertia of rotor and 

gearbox 

kr 0.002 kg.m2.s-1 
coefficient of the resistance against 

rotation of rotor and gearbox 

pG 25 -- gearbox transmission ratio 
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6.4 Dynamics model verification by open loop simulation 

The linear state-space model, eq (6.19), is discretized with a sampling time of, 𝑇𝑆 =

0.01𝑠. The dynamics model output (tangential and angular velocities) are inputs into the 

nonlinear kinematic part eq (6.9) to derive the position and orientation of the robot – see figure 

23. The initial location of mobile robot is assumed at the origin with an orientation in the 

direction of the x axis. 

Linear Dynamic 
model
eq(6.19)

Non linear 
kinematic 

model
eq(6.9)

uL(t)

uR(t)

v
B
(t

)


B
(t

)

U0, RZ, R, L
K, kr, J

m, JT, k, kv

iL(t), iR(t)

L(t), R(t)
ML(t), MR(t)

lL, lR, lT, r xB(t)

yB(t)

θB(t)

 

Figure 23 Scheme of dynamics model for open loop verification 

Figures 24-26 show the response of the three simulation experiments.  

i. Only translational motion (figure 24) – both the motors are powered with the same 

control voltage (8V), as a result no steering (𝜔𝐵 = 0) is occurred, robot moves in a 

straight line (practically not possible because of friction, slipping, motor nonlinearities 

etc.) 

ii. Only rotational motion (figure 25) – only right motor is powered (8V) as a result the 

robots rotates in place. 

iii.  With both translational and rotational motion (figure 26) – the motors are driven with 

a rectangular wave control voltage with amplitude of 8V.   
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Figure 24 Dynamics model verification – robot with only translational motion 

  

Figure 25 Dynamics model verification – robot with only rotational motion 

 
 

Figure 26  Dynamics model verification – robot with both translational and rotational motion 
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An illustrative example of dynamic behavior when both the motors are driven by signals 

with same amplitude is given in figure 27. The left motor is driven by signals with 10s time 

period and 50% duty ratio, and the right motor with same duty ratio but with a time period of 

20s. The saturation of different state variables which are the constraints of the real system can 

be inferred from the figure. It is not possible to excite above that level. e.g., it is important to 

consider these saturation levels for generating feasible trajectories for trajectory tracking 

control of robot.  

 

Figure 27 Dynamic behavior of robot – currents and motor speeds 
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7.  VELOCITY TRACKING OF WMR – DYNAMICS 

CONTROLLER 

In chapter 6, we discussed the mathematical modelling of the dynamics of a WMR 

considering the motor dynamics and chassis dynamics. A linear state space model of mobile 

robot dynamics has been derived with motor currents and motor speeds as state variables, motor 

control variables as manipulated variables, and linear and tangential velocities as outputs.   

This chapter presents the mobile robot dynamics (velocity tracking) controller. The aim 

of dynamics controller is to generate control voltages (𝑢𝐿, 𝑢𝑅) to the motors for controlling the 

tangential and angular velocities (𝑣𝐵, 𝜔𝐵). A general block diagram of the state space controller 

is shown in figure 28. The set points are the reference tangential and angular 

velocities (𝑣
𝐵,𝑟
, 𝜔𝐵,𝑟). Three controllers are studied: discrete PID, Linear MPC and static 

feedforward control.   

The dynamics of WMR is a TITO system with four state variables (see section 6.2). 

Discretizing eq (6.19) with a sampling time of 𝑇𝑠, the discrete linear state space model of 

dynamics of mobile robot is,  

𝒙𝐷(𝑘 + 1) = 𝑨𝐷𝒙𝐷(𝑘) + 𝑩𝐷𝒖𝐷(𝑘)
𝒚𝐷(𝑘) = 𝑪𝐷𝒙𝐷(𝑘)               

  (7.1) 

𝒙𝐷(𝑘) = [

𝑖𝐿(𝑘)
𝑖𝑅(𝑘)
𝜔𝐿(𝑘)
𝜔𝑅(𝑘)

] 𝒖𝐷(𝑘) = [
𝑢𝐿(𝑘)
𝑢𝑅(𝑘)

] 𝒚𝐷(𝑘) = [
𝑣𝐵(𝑘)
𝜔𝐵(𝑘)

] 

where 𝑨𝐷 , 𝑩𝐷 , 𝑪𝐷 are discretized version of matrices in eq (6.19). The only measurable variable 

is the motor speeds (𝜔𝐿, 𝜔𝑅). The state variables and output have to be estimated with state 

estimation.  

[vB,r ωB,r] DYNAMICS
CONTROLLER

MOBILE 
ROBOT

STATE 
ESTIMATION

[uL uR]
[vB ωB xB yB θB]

[iL iR ωR ωL]

[ωL ωR]
 

Figure 28 General block diagram of dynamics velocity controller 
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7.1 Discrete-time PID control 

The dynamics model is a multivariable system, where direct controlling of the velocities 

is not easy. The multivariable system can be decoupled in terms of motor speeds and can be 

controlled easily by PID control or by a steady state gain. Tangential velocity and angular ve-

locity equations, eq (6.12-6.13) are rewritten to derive motor speeds as, 

[
𝑣𝐵,𝑟
𝜔𝐵,𝑟

] =

[
 
 
 

𝑙𝐿𝑟𝐺
(𝑙𝐿 + 𝑙𝑅)

𝑙𝑅𝑟𝐺
(𝑙𝐿 + 𝑙𝑅)

−
𝑟𝐺

(𝑙𝐿 + 𝑙𝑅)

𝑟𝐺
(𝑙𝐿 + 𝑙𝑅)]

 
 
 

⏟              
𝒁

[
𝜔𝐿,𝑟
𝜔𝑅,𝑟

] 

 [
𝜔𝐿,𝑟
𝜔𝑅,𝑟

] = 𝒁−1 [
𝑣𝐵,𝑟
𝜔𝐵,𝑟

]   (7.2) 

Two PID controllers for controlling the reference motor speeds achieve the target velocity 

tracking. The control inputs are motor control voltages as can be seen in figure 29. 

[vB,r ωB,r]

ωR

PID_1

MOBILE 
ROBOT

Σ

+ -

[xB yB θB]MOTOR  SPEED 
CALCULATION

PID_2Σ

ωL,r 

ωR,r 

ωL

uL 

uR

+ -

 

Figure 29 Block diagram of PID wheel speed controller 

The standard parallel form of a continuous time PID (Proportional-Integral-Deriva-

tive) controller is given by, 

 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝜏)𝑑𝜏
𝜏

0
+ 𝐾𝐷𝑒̇(𝑡)  

where 𝑢 is the control input and 𝑒 is the control error, 𝑒(𝑡) = 𝑤(𝑡) − 𝑦(𝑡)  

There are several forms of discrete PID controller in literature, depending on the 

discretizing method. The discrete PID difference equation by Simson’s method of numerical 

integration with a sampling time of 𝑇𝑠, is,  

 𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝑞0𝑒(𝑘) + 𝑞1𝑒(𝑘 − 1) + 𝑞2𝑒(𝑘 − 2) (7.3) 

where, 

𝑞0 = (𝐾𝑃 +
𝐾𝐼
2
𝑇𝑠 +

𝐾𝐷
𝑇𝑠
) 
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𝑞1 = (−𝐾𝑃 +
𝐾𝐼
2
𝑇𝑠 +

𝐾𝐷
𝑇𝑠
) 

𝑞2 =
𝐾𝐷
𝑇𝑠

 

7.2 Mobile robot dynamics Linear MPC (LMPC) 

The formulation of LMPC is the same as that discussed in section 3.1. Considering the 

discrete time dynamics model as in eq (7.1), the prediction model is, 

𝒙𝐷𝑘+𝑁+1 = 𝑺𝐷𝑥𝑥𝒙𝐷𝑘 + 𝑺𝐷𝑥𝑢𝒖𝐷𝑁
            𝒚𝐷𝑁 = 𝑺𝐷𝑦𝑥𝒙𝐷𝑘 + 𝑺𝐷𝑦𝑢𝒖𝐷𝑁

 

where, 

𝒖𝐷𝑁 =

[
 
 
 
 
𝑢𝐿(𝑘)
𝑢𝑅(𝑘)
⋮

𝑢𝐿(𝑘 + 𝑁)
𝑢𝑅(𝑘 + 𝑁)]

 
 
 
 

;  𝒚𝐷𝑁 =

[
 
 
 
 
𝑣𝐵(𝑘)
𝜔𝐵(𝑘)
⋮

𝑣𝐵(𝑘 + 𝑁)
𝜔𝐵(𝑘 + 𝑁)]

 
 
 
 

 

Decomposing into free and force responses, the free response is given by, 

𝒙𝐷𝑓𝑟(𝑁 + 1) = 𝑺𝐷𝑥𝑥𝒙𝐷0 + 𝑺𝐷𝑥𝑢𝒖𝐷𝑁,0
              𝒚𝐷𝑓𝑟,𝑁 = 𝑺𝐷𝑦𝑥𝒙𝐷0 + 𝑺𝐷𝑦𝑢𝒖𝐷𝑁,0

     (7.4) 

and the forced response is,  

𝒙𝐷𝑓𝑜(𝑁 + 1) = 𝑺𝐷𝑥𝑢∆𝒖𝐷𝑁
            𝒚𝐷𝑓𝑜,𝑁 = 𝑺𝐷𝑦𝑢∆𝒖𝐷𝑁

 

where,     𝒖𝐷𝑁 = [

𝒖𝐷𝑘
⋮

𝒖𝐷𝑘+𝑁

] ; 𝒖𝐷𝑁,0 = [

𝒖𝐷𝑓𝑟,𝑘
⋮

𝒖𝐷𝑓𝑟,𝑘+𝑁

]; ∆𝒖𝐷𝑁 = 𝒖𝐷𝑁 − 𝒖𝐷𝑁,0 

  𝑺𝐷𝑥𝑥 = 𝑨𝐷
𝑁+1                                                                                ∈ ℝ𝑛𝑥×𝑛𝑥                           

        𝑺𝐷𝑥𝑢 = [𝑨𝐷
𝑁𝑩𝐷 𝑨𝐷

𝑁−1𝑩𝐷 ⋯ 𝑩𝐷]                                   ∈ ℝ
𝑛𝑥×(𝑁+1)∗𝑛𝑢                      

                  𝑺𝐷𝑦𝑥 =

[
 
 
 
 
𝑪𝐷
𝑪𝐷𝑨𝐷
𝑪𝐷𝑨𝐷

𝟐

⋮
𝑪𝐷𝑨𝐷

𝑁]
 
 
 
 

                                                                            ∈ ℝ(𝑁+1)∗𝑛𝑦×𝑛𝑥                               

𝑺𝐷𝑦𝑢 =

[
 
 
 
 
 
 
 
 

𝟎 𝟎 𝟎 𝟎 𝟎

𝑪𝐷𝑩𝐷 𝟎 𝟎 ⋯ 𝟎

𝑪𝐷𝑨𝐷𝑩𝐷 𝑪𝐷𝑩𝐷 𝟎 ⋯ 𝟎

𝑪𝐷𝑨𝐷
𝟐𝑩𝐷 𝑪𝐷𝑨𝐷𝑩𝐷 𝑪𝐷𝑩𝐷 ⋯ 𝟎

⋮ ⋮ ⋮ ⋱ ⋮

𝑪𝐷𝑨𝐷
𝑁−1𝑩𝐷 𝑪𝐷𝑨𝐷

𝑁−2𝑩𝐷 𝑪𝐷𝑨𝐷
𝑁−3𝑩𝐷 ⋯ 𝟎]

 
 
 
 
 
 
 
 

   ∈ ℝ(𝑁+1)∗𝑛𝑥×(𝑁+1)∗𝑛𝑢       
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Cost function 

𝐽(𝑁, 𝒙𝐷0, 𝒖𝐷𝑁,0) = ∆𝒙𝐷
𝑇(𝑁)𝑸𝐷𝑁∆𝒙𝐷(𝑁) + 𝒆𝑁

𝑇𝑸𝐷𝒆𝑁 + ∆𝒖𝐷𝑁
𝑇𝑹𝐷∆𝒖𝐷𝑁

∆𝒙𝐷(𝑁) = 𝒙𝐷𝑤(𝑘 + 𝑁 + 1) − 𝒙𝐷(𝑘 + 𝑁 + 1)                   
𝒆𝑁 = 𝒘𝐷𝑁 − 𝒚𝐷𝑁                                                    

∆𝒖𝐷𝑁 = 𝒖𝐷𝑁 − 𝒖𝐷𝑁,0                                                       

𝒖𝐷𝑚𝑖𝑛,𝑁 < 𝒖𝐷𝑁 < 𝒖𝐷𝑚𝑎𝑥,𝑁                                                     

 

The cost function is same as that discussed in section 3.3 with penalization on terminal 

state error, control error and control effort; with weighting matrices 𝑸𝐷𝑁, 𝑸𝐷, 𝑹𝐷 respectively. 

The desired terminal state 𝒙𝐷𝑤 is derived from steady state output 𝒘𝐷 as, 

𝒙𝐷𝑤(𝑘 + 𝑁 + 1) = [(𝑰 − 𝑨𝐷)
−𝟏𝑩𝐷][𝑪𝐷(𝑰 − 𝑨𝐷)

−𝟏𝑩𝐷]
−𝟏𝒘𝐷(𝑘 + 𝑁 + 1) 

The optimal control action is the solution of a quadratic programing problem by minimizing 

the criteria. 

 min
∆𝒖
𝐽 = ∆𝒖𝐷

𝑇𝑀∆𝒖𝐷 + 𝟐𝒎
𝑇∆𝒖𝐷 Such that 𝑨𝒐∆𝒖𝐷 ≤ 𝒃𝟎  (7.5) 

 where the matrix 𝑨𝒐 and the vector 𝒃𝟎 are the constraint matrix of control input,  

𝒖𝐷𝑚𝑖𝑛 ≤ 𝒖𝐷𝑁 ≤ 𝒖𝐷𝑚𝑎𝑥 

𝒖𝐷𝑚𝑖𝑛 ≤ ∆𝒖𝐷𝑁 + 𝒖𝐷𝑁,0  ≤ 𝒖𝐷𝑚𝑎𝑥
𝒖𝐷𝑚𝑖𝑛 − 𝒖𝐷𝑁,0 ≤ ∆𝒖𝐷𝑁 ≤ 𝒖𝐷𝑚𝑎𝑥 − 𝒖𝐷𝑁,0

 

7.3 Static feedforward control (with steady state gain) 

The standard state space model in discrete time is given by, 

𝒙𝐷𝑘+1 = 𝑨𝐷𝒙𝐷𝑘 +𝑩𝐷𝒖𝐷𝑘 

At steady state, 𝒙𝐷𝑘+1 = 𝒙𝐷𝑘 

(𝑰 − 𝑨𝐷)𝒙𝐷𝑘 = 𝑩𝐷𝒖𝐷𝑘 

𝒙𝐷𝑘 = (𝑰 − 𝑨𝐷)
−𝟏𝑩𝐷𝒖𝐷𝑘 

Assuming at steady state, system output 𝒚𝐷𝑘 is equal to set-point 𝒘𝐷𝑘,  

𝒚𝐷𝑘 = 𝒘𝐷𝑘 = 𝑪𝐷(𝑰 − 𝑨𝐷)
−𝟏𝑩𝐷𝒖𝐷𝑘 

 𝒖𝐷𝑘 = [𝑪𝐷(𝑰 − 𝑨𝐷)
−𝟏𝑩𝐷]⏟            

𝒁𝑠𝑠

−1
𝒘𝐷𝑘 (7.6) 

where 𝒁𝑠𝑠 is the steady state gain. 
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7.4 State estimation / observer  

Since the only measurable variable is motor speeds, the remaining state variables 

(currents) have to be estimated with state estimation. A general block diagram is depicted in 

figure 30. The dynamics model is rewritten into an estimation model incorporating the 

measured variable as,   

 
𝒙𝑒(𝑘 + 1) = 𝑨𝑒𝒙𝑒(𝑘) + 𝑩𝑒𝒖𝐷(𝑘)

𝒚𝑒(𝑘) = 𝑪𝑒𝒙𝑒(𝑘)               
  (7.7) 

where 𝒙𝑒 and 𝒚𝑒 are the estimated state variables (currents and motor speeds) and outputs 

(velocities), and the matrices 𝑨𝑒 and 𝑩𝑒 are same as that of dynamics model eq (7.1) and, 

𝑪𝑒 = [
0 0 1 0
0 0 0 1

] 

Assuming that the system is observable, then an estimation feedback gain 𝑲 can be designed 

which ensures the estimated state 𝒙𝑒 will asymptotically approach the actual state 𝒙𝐷. 

The estimated state 𝒙𝑒(𝑘 + 1) is then described as, 

 
𝒙𝑒(𝑘 + 1) = 𝑨𝑒𝒙𝑒(𝑘) + 𝑩𝑒𝒖𝐷(𝑘) + 𝑲[𝒚𝐷(𝑘) − 𝑪𝑒𝒙𝑒(𝒌)]

                          = (𝑨𝑒 −𝑲𝑪𝑒)𝒙𝑒(𝑘) + 𝑩𝑒𝒖𝐷(𝑘) + 𝑲𝒚𝐷(𝑘)             
 (7.8) 

where the observer gain 𝑲, can be determined as a solution of the dual task of an infinite horizon 

LQ control problem. In Matlab, by minimizing the cost function, 

 𝐦𝐢𝐧
𝑲
𝐽 = ∑ [∆𝒙𝐷

𝑇(𝑖)𝑸𝑒∆𝒙𝐷(𝑖) + (𝒚𝐷(𝑖) − 𝒚𝑒(𝑖))
𝑇𝑹𝑒(𝒚𝐷(𝑖) − 𝒚𝑒(𝑖))]

∞
𝑖=0  (7.9) 

where ∆𝒙𝐷 = 𝒙𝐷(𝑘) − 𝒙𝑒(𝑘) and 𝑸𝑒 and 𝑹𝑒 are positive semi definite matrices. 
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Figure 30 General block diagram of state observer 
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7.5 Simulation results  

The motor and chassis parameters are chosen as listed in Table III-IV. Assuming the 

wheel speeds are measurable (by wheel encoders), the system outputs (tangential and angular 

velocities) are calculated from these values with a sampling time of 10ms. All the state variables 

are estimated as in eq (7.8). The observer gain is calculated in Matlab, K 

= dlqr(AeT,CeT,Qe,Re)with matrices 𝑸𝑒 and 𝑹𝑒 as identity matrices. Figure 31 shows the 

simulation results of state estimation with zero initial condition for estimated state variables 

and system states with constant values (both motors are powered with 8V i.e. only linear 

motion). The dashed line represents system states and the bold line represents estimated state 

variable. The wheel speeds are calculated from reference tangential and angular velocities by 

eq (7.2). 

 

Figure 31 Dynamics state estimation– State variables and outputs 

The reference velocities were tracked by two discrete PID control in the form of eq (7.3). 

The reference wheel speeds were calculated by eq (7.2). The controller parameters of the mobile 

robot dynamics control with PID controllers were 𝐾𝑃 = [0.5 0.5], 𝐾𝐼 = [4.5 4.5].  

LMPC was performed by calculating the predicted state variables and outputs as in eq 

(7.4), using the optimization function as in eq (7.5), the optimized control sequence for a hori-

zon length of 𝑁𝐷 was calculated, only the first control action was applied. Constraints for input 

were considered with −8 𝑉 ≤ 𝑈0𝑢𝐿 ≤ 8 𝑉; −8 𝑉 ≤ 𝑈0𝑢𝑅 ≤ 8 𝑉. The controller parameters 

were 𝑁𝐷 = 5, 𝑸𝐷 = 𝑑𝑖𝑎𝑔(1,1), 𝑹𝐷 = 𝑑𝑖𝑎𝑔(0.1,0.1), 𝑸𝐷𝑁 = [0.1 0.1 0.001 0.001]. 
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The sampling time for the PID controllers was 10ms and that of LMPC was 100ms. In 

the first simulation experiment, the set-points were a series of step changes in velocities. Figure 

32 shows the comparison between PID and MPC control responses. There weren’t significant 

differences in the control response, though MPC showed slightly better performance.      

In the second simulation experiment, the reference velocities for a trajectory were gen-

erated by an open loop simulation as discussed in section 6.4. Figure 33 shows the system re-

sponses of the two control approaches. Constraints were applied to the input for MPC. Figure 

34 shows the control actions, motor currents and motor speeds of MPC. 

 

Figure 32 PID vs LMPC - Step Response 
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Figure 33 PID vs LMPC control responses (solid line – simulated, dotted line – reference) 

 

Figure 34 LMPC dynamics control – state variables and control actions (Red -left motor, Blue -right motor) 
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The main advantage of MPC over PID control is the possibility to consider constraints 

(real physical constraints) when generating the required control action with respect to current 

and future states. As well-known problem of MPC implementation - high computational re-

quirement, which makes it harder to work with faster systems. The designed LMPC for dynam-

ics of mobile robot with a sampling time of 100ms (much higher when compared to PID -10ms) 

requires less than 4.5ms average CPU (for Intel core i5-4310M, 2.70GHz CPU) time for every 

control step, which clearly shows the possibility of MPC in real application. Furthermore, the 

computation time can be considerably reduced by coding into C code (automatic code genera-

tion in SIMULINK) and an offline code will help to work with real systems.  
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8.  TRAJECTORY TRACKING OF WMR – KINO-DYNAMICS 

CONTROLLER 

In section 5, we discussed trajectory tracking by kinematic controllers by assuming a 

perfect velocity tracking low-level controller is present, which will generate the desired 

velocities. This is followed by an assumption that the dynamics of the robot is very fast, and 

the low-level controller is able to generate motor voltages to make the robot drive with required 

velocities. However, in practice, this is not always the case, especially when the robot’s 

dynamics is slow and there are physical saturation limits. This brings us to consider dynamics 

of the robot as well. In section 6, we discussed modelling of the WMR considering motor and 

chassis dynamics. Dynamics controllers were designed in section 7, considering the robot’s 

parameters and constraints.  

To begin with, let us consider a situation when the robot’s dynamics is slow and what 

happens when we assume ‘perfect velocity tracking’ ability of low-level controller. A 

feedforward controller is replaced by a low-level controller to see the effect i.e. by considering 

the dynamics of the WMR. Figure 35 shows the control scheme with static feedforward control 

as a low-level controller. As discussed in section 7.3, the control actions (motor voltages) by 

feed forward control, eq (7.6) is given by, 

𝒖𝐷𝑘 = 𝒁𝑠𝑠
−1𝒘𝐷𝑘   

where 𝒁𝑠𝑠 is the steady state gain and, 

𝒖𝐷𝑘 = [
𝑢𝐿(𝑘)
𝑢𝑅(𝑘)

]; 𝒘𝐷𝑘 = [
𝑣𝐵,𝑟(𝑘)

𝜔𝐵,𝑟(𝑘)
] 
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T xr=[xr yr θr]

T
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Figure 35 Block diagram of static feedforward dynamics controller 

Figure 36 shows the trajectory tracking response of the mobile robot with NMPC2 as 

kinematic controller (parameters as in section 5, simulation experiment S4) without considering 

constraints on velocities and motor voltages. As can be noted in the figure, large tracking errors 
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are visible even without considering the constraints on a low level and with the same initial 

conditions. This shows the importance of feedback controllers at the low level. 

 

Figure 36 Trajectory tracking response with static feedforward control as low-level controller without 

considering constraints. 

8.1 Trajectory tracking with Kino-Dynamics controller 

The trajectory planner generates the reference velocities, position and orientation with 

the information on time parameterized reference waypoints. The trajectory tracking is done at 

two levels – kinematic control and dynamics control. A general control structure is shown in 

figure 37. The high level consists of a kinematic controller with feedback of position and 

orientation (overhead camera). The outputs of the kinematic controller are reference velocities 

(𝑣𝑟,𝐵, 𝜔𝑟,𝐵)  which are the inputs to the low-level controller. In dynamics control, the motor and 

chassis dynamics and constraints of the mobile robot are considered. The measurable variables 

for the dynamics part are motor speeds (measured by encoder). The output of the dynamics 

controller are motor voltages with respect to current and reference velocities. The constraints 

on velocities were considered as, 

 −0.05 𝑚/𝑠 ≤ 𝑣𝐵 ≤ 0.05 𝑚/𝑠        ;         −0.35 𝑟𝑎𝑑/𝑠 ≤ 𝜔𝐵 ≤ 0.35 𝑟𝑎𝑑/𝑠   (8.1) 
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Figure 37 General control structure of Kino-Dynamics controller 

8.1.1 Trajectory tracking with low level discrete PID controller 

A feedforward controller is replaced with discrete PID controller, eq (7.3), at low level, 

whose design is discussed in section 7.1.  

[xr yr tr]
T xr=[xr yr θr]

T
[xB yB θB]T
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ωL
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Figure 38 Block diagram of Kino-Dynamics controller with PID as low-level controller 

The low-level PID controllers track the reference motor speeds which are calculated 

from the reference velocities, eq (7.2) - see figure 38. The measured wheel speeds are fed back 

to the control loop. The PID controllers are sampled at much high frequency (Sampling time 

10ms) than the kinematic controller (100ms). The parameters of PID controllers are the same 

as discussed in section 7. Figure 39 shows the simulation results with Kanayama Controller 

(KC) as the high-level controller and PID controller as the low-level controller. Constraints 

were considered for the low-level controller, −8 𝑉 ≤ 𝑈0𝑢𝐿 ≤ 8 𝑉 ; −8 𝑉 ≤ 𝑈0𝑢𝑅 ≤ 8 𝑉.  
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Figure 39 KC-PID trajectory tracking with constraints – Reference vs tracked trajectory, speeds and velocities, 

control voltages 
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8.1.2 Trajectory tracking with low level LMPC 

LMPC is considered as a low-level controller where the set points are obtained from the 

output of the kinematic controller. The main advantage of Kino-Dynamics LMPC, in contrast 

to other classical controllers, is the flexibility in usage of the information about future set-points. 

In the case of NMPC as a kinematic controller, the velocities control inputs 𝒘𝐷 (output of 

kinematic controller, 𝒚𝐾) are vector of velocities calculated from optimal control actions 𝒖𝐾(𝑖),

∀ 𝑖 = {1,2,… ,𝑁𝐾}. This future set-point information can be used either as future set-points 

and/or can be used to calculate the terminal state for low-level controller.  

The design of LMPC is discussed in section 7.2. The dynamics model consists of 

currents and motor speeds as state variables. The state variables are estimated, as discussed in 

section 7.4, from the measured motor speeds. The objective function of LMPC consists of costs 

to control effort, control error and terminal state error. Figure 40 shows the general block 

diagram of MPC as a low-level controller.  
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T
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T
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T
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STATE 
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Figure 40 Block diagram of Kino-Dynamics controller with LMPC as low-level controller 

The simulation experiment of trajectory tracking of WMR with a Samson controller, eq 

(5.11) as the kinematic controller and LMPC as the low-level dynamics controller was 

performed. The set-points for LMPC controller were reference velocities (𝑣𝐵,𝑟, 𝜔𝐵,𝑟) which were 

kept constant during the entire horizon. There are several options for choice of terminal state 

calculation – e.g. use the reference velocity from the kinematic controller or use the reference 

velocity from the trajectory planner. In the simulation experiments, reference velocity from the 

trajectory planner was chosen and the reason for this choice is explained in the forthcoming 

section.  

The controller parameters of low level LMPC were 𝑁𝐷 = 5,𝑸𝐷 = 𝑑𝑖𝑎𝑔(1,1), 𝑹𝐷 =

𝑑𝑖𝑎𝑔(0.1,0.1),𝑸𝑁 = [0.1 0.1 0.001 0.001] and sampling time of 100ms. Velocity constraints as in 
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eq (8.1) were considered. Figure 41 shows the result of the SC-LMPC trajectory tracking 

simulation experiment - reference and tracked trajectory and velocities, estimated currents, 

control voltages, and the measured motor speeds. It can be noted that the performance of the 

controller was better than with PID controller as a low-level controller. 

 

 

Figure 41  SC-LMPC trajectory tracking with velocity constraints – Reference vs tracked trajectory, speeds and 

velocities, control voltages 
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8.2 Comparative analysis of control structures 

The effectiveness of the control structures were analyzed by various simulation 

experiments. The high-level kinematic controllers were NMPC1, NMPC2, Kanayama 

Controller and Samson Controller as discussed in section 5. The low-level kinematic controllers 

were PID and LMPC as discussed in section 7. Table V shows the SSE’s of the simulation 

experiments conducted with different control structures. Figures corresponding to particular 

simulation experiments are also listed. The initial pose of the mobile robot and reference robot 

were considered as the same (i.e. same initial condition). Comparison has also been made with 

a “perfect velocity tracker” and a feed forward control. The “perfect velocity tracker” refers to 

the assumption that the kinematic controller will generate the required tangential and angular 

velocities, assuming that there is a perfect velocity tracking control at low level on the mobile 

robot. Feedforward control refers to the condition when the kinematic controller generates the 

velocities, and what happens when there isn’t a perfect velocity tracker i.e. dynamics of robot 

is taken care of. 
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Table V Comparison of SSE’s of trajectory tracking with constraints 

Simulation 

Exp 
Figure Kinematic Controller 

Dynamics 

Controller2 

SSE 

[SSExy    SSEθ] 

S1 -- 

NMPC1 

-none- [1.0101 6.3563] 

S2 -- Feedforward [7.1278 30.854] 

S3 -- PID [2.7950 13.274] 

S4 -- LMPC [0.1334 0.8368] 

S5 -- 

NMPC2 

-none- [0.1690 5.9869] 

S6 Fig 36 Feedforward [0.5182 16.401] 

S7 -- PID [0.2225 7.1509] 

S8 Fig 42 LMPC [0.1264 0.6414] 

S9 -- 

KC 

-none- [0.0604 6.0890] 

S10 -- Feedforward [0.6867 21.274] 

S11 Fig 39 PID [0.0995 7.5049] 

S12 -- LMPC [0.1819 1.1997] 

S13 -- 

SC 

-none- [0.0606 6.0924] 

S14 -- Feedforward [0.6862 21.273] 

S15 -- PID [0.0997 7.5084] 

S16 Fig 41 LMPC [0.1819 1.1996] 

 

                                                 
2 ‘none’ refers to the assumption of perfect velocity tracking, i.e. without considering dynamics of robot  
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Figure 42 NMPC2-LMPC trajectory tracking with constraints - Reference vs tracked trajectory, control voltages, 

estimated currents and measured speed 
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8.3 Discussion  

Perfect velocity tracking: The dynamics of the robot was not considered (w/o dynamics 

controller) and the controllers generated control velocities. All the control structures produced 

low SSE other than with NMPC1, which produced significantly high tracking errors. The state 

tracking controllers, KC and SC, were slightly better than NMPC1. 

Feedforward control: Dynamics of the mobile robot, as discussed in section 6, were 

considered. The motor voltages were calculated by the static feedforward gain as in eq (7.6). It 

can be noted that very high tracking errors are generated when dynamics of robot is taken into 

account. This shows the significance of feedback control on low level considering dynamics of 

the robot. Again, all controllers other than NMPC1 generated comparatively the same tracking 

errors, even though NMPC2 was slightly better. 

Low level PID control: The motor voltages are generated according to the reference 

motor speeds and current speeds of motor. The advantage of feedback control on low level is 

visible by comparing the SSE’s with that of feedforward control. In the same way as the 

previous two cases, NMPC2 produced low tracking errors. 

Low level LMPC: The trend of tracking errors of all the three previous cases were 

obvious. However, very interesting results can be noted in the case of LMPC on low level. The 

SSE’s were significantly lower for all the controllers when compared with feedforward or PID 

control, see figure 42.  The tracking errors of NMPC1 were very high, when compared with 

other controllers in all the three previous cases, but the control structure NMPC1-LMPC were 

able to track the robot closer to the reference trajectory than state tracking controllers. The 

NMPC2-LMPC control combination was the best among all the other combination. The 

advantages of MPC on the dynamics level can be clearly seen in the figure 43, when compared 

to the PID control, feedforward control and perfect velocity tracker (only kinematic control).  
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Figure 43 Comparison of trajectory tracking –NMPC2 as high-level controller 

It is interesting to note that, the Kino-Dynamics controller performance was better than 

the “perfect velocity tracker”. This is achieved by the choice of set-points on low level LMPC 

controller. The set-point for the 𝑁𝐷 horizon is kept constant, where the terminal state is 

considered to be the same as that of the original reference velocity. Consequently, the terminal 

state penalization will force the robot to converge to the reference trajectory. By contrast, the 

MPC on low level control will not only track the reference velocity from the kinematic 

controller, but also will reduce the overall tracking error caused by kinematic control. This was 

achieved by proper choice of MPC structure.   
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9. CONCLUSION  

The trajectory-tracking problem of the mobile robot is a well-researched area. However, 

most of the research has concentrated on the kinematics of mobile robot, assuming an ideal 

dynamics controller (“perfect velocity tracker”) is present at the lower level. This is followed 

by the assumption that dynamics of the mobile robot is faster, and a dynamics controller is able 

to generate the required (tangential and angular) velocities at every time instant. But, in practice 

this is not an ideal solution especially when the dynamics is slower and highly non-linear.  

The thesis investigates the possibilities of using MPC in trajectory tracking problem for 

the mobile robot at both kinematic and dynamics level. Linear and Non-linear state space MPC 

were derived by decomposing the free and forced responses. Criteria consisting of penalization 

of control error, control effort and terminal state deviation were considered for calculating the 

optimal control actions. The trajectory-tracking problem was studied by separating the thesis 

into three parts. 

Firstly, the kinematics of a non-holonomic mobile robot was considered assuming a 

perfect velocity tracker is present at the lower level. The basic non-linear kinematic equations 

were linearized into two LTV models based on the choice of coordinate frames. The successive 

linear model and error-based model were derived, with respect to the world coordinate system 

and local coordinate system of the mobile robot respectively. Non-linear MPCs were applied 

considering these models to the kinematic trajectory-tracking problem, with a cost function 

consisting of penalization of control error, control effort and terminal state deviation. The 

responses were compared with state-of-the-art control techniques (Kanayama and Samson 

controllers) and the simulation results showed that the NMPC with an error-based model was 

able to track the mobile robot with comparatively less tracking error when compared with the 

other three controllers.  

Secondly, the mathematical model of dynamics of the mobile robot was derived and 

linear MPC was applied to track the desired velocities. A linear state space model was derived 

with state variables as motor speeds and currents, control inputs as motor control voltages, and 

the outputs as velocities. Linear MPC and discrete PID controllers were designed and simulated 

for the velocity-tracking problem. The simulation results showed that efficiency of LMPC for 

dynamics control when compared to PID control. This was achieved by considering constraints, 

and optimizing the criteria with weights on control effort, control error and terminal state 

deviation. 
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Finally, the trajectory tracking problem was solved by different Kino-Dynamics control 

structures. The simulation results show the advantage of MPC on dynamics part in contrast to 

the assumption of “perfect velocity tracker”. It has been noticed that, MPC on the dynamics 

part can, not only generate the optimal control action for the dynamics part, but also can affect 

the kinematic part and decrease the overall tracking errors. The NMPC-LMPC control structure 

have several advantages for the trajectory tracking problem: it can generate optimal control 

actions by considering system constraints, increase the overall stability, decrease the overall 

tracking errors etc. 

To sum up, the thesis proposes a simple solution for the trajectory-tracking problem by 

leveraging various advantages of MPC. Though the thesis mainly concentrated on simulation 

analysis, various implementation issues and suggestions are also covered to some extent. The 

simulation results demonstrate the advantages of Kino-Dynamics MPC over various state-of-

the-art approaches. However, several implementation issues are open for future research.  

9.1 Future directions 

Although we consider that the objectives of this thesis have been accomplished, there 

are plenty of improvements that could be done in order to achieve better results. Here, only the 

main points are summarized. 

MPC – Even though the non-linear MPC with LTV and the non-linear model proposed in the 

thesis, was able to achieve the desired results, there are various designs of NMPCs available in 

the literature. Explicit MPC lessens the computation burden when dealing with faster systems 

when comes to real world implementation.  

Kinematics – The derived kinematics models for non-holonomic robot only deals with the 

trajectory-tracking problem and doesn’t consider the point stabilization problem. There are 

various other models in literature (e.g. (Xie & Fierro 2008)) which consider both the motion 

control problems simultaneously.  

Dynamics – The dynamics model was derived without considering various other non-linearities 

(e.g. motor saturation, backlash, dead zone etc.). The moment of inertia of the robot was 

assumed as constant, however it varies with the load on mobile robot. For better performances, 

non-linear model is more suitable and the parameters have to be identified by offline-online 

methods. Furthermore, advanced state estimation methods like the Moving Horizon estimation, 

Extended Kalman Filter, particle filter etc. can also be employed for model uncertainties and, 

together with non-linear MPC would steer the robot through the desired direction.  
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Implementation – There are several implementation issues which can be expected, especially 

the problem with time delays. A Model-Based Design (MBD) is much more suited and 

SIMULINK allows lot of possibilities for developing MBD, e.g. time delay simulation, real 

time testing, automatic code generation, Hardware-in-the-Loop (HIL) testing etc.   

Localization – For laboratory experiments, an overhead camera together with image processing 

algorithms can localize the robot. As part of the thesis work, localization of mobile robot with 

an overhead camera and Raspberry Pi has been developed.  However, this is not included in the 

thesis, as the main objective was to do simulation analysis. In case of real world 

implementation, a GPS sensor with sensor fusion techniques is recommended.  
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