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ABSTRACT

In the age of self-driving cars, a great deal of attention is being paid to research on the
motion control problems of the mobile robot / autonomous vehicle. The trajectory tracking of
the mobile robot is one of the motion control problems, which refers to tracking the robot
through a time parameterized reference trajectory. This is generally achieved by a kinematic
controller and a dynamics controller. Kinematic MPC, assuming a “perfect velocity tracking”
dynamics controller on low level, has been successfully applied in academia as well as industry.
A dynamics controller (commonly PID) at dynamics level produces the required forces for
motion control. However, advanced controllers are still not applied to the dynamics of the
mobile robot. This is mainly because of the difficulties in modelling the dynamics of the mobile
robot.

The thesis proposes modelling of dynamics of a differential drive robot, and application
of MPC in both the kinematics and dynamics parts. The thesis is divided in to three parts:
kinematic modelling and predictive control, dynamics modelling and control, and Kino-
Dynamics control. Firstly, the non-linear kinematic equations were linearized into two different
models and nonlinear MPCs were applied with these models. The responses were compared
with state-of-the-art controllers. Secondly, the mathematical model of dynamics of mobile robot
was derived from first principles. The tangential and angular velocities were controlled by
generating motor voltages by Linear MPC and the response was compared to PID controllers.
Thirdly, the kinematic controllers and dynamics controllers were cascaded and a comparative
study has been conducted with respect to different control structures. It has been noticed that,
MPC of the dynamics part, can not only generate an optimal control action, but also can
influence the kinematic part and decrease the overall tracking errors.

The NMPC-LMPC control structure has several advantages for a trajectory-tracking
problem: it can generate optimal control actions by considering system constraints, increase the
overall stability, decrease the overall tracking errors etc. The thesis concludes with the
comparative analysis of control structures for trajectory tracking problem. Suggestions for

future research work are also presented.
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NAZEV

Rizeni pohybu mobilniho robota pomoci prediktivniho reguléatoru

ANOTACE

V préci je navrzeno dvoutroviové fizeni pohybu mobilniho dvoukolového robotu
zajistujici sledovani znamé trajektorie. V obou turovnich je pouzit prediktivni regulator s
uvazovanim omezeni. Pro navrh fizeni ve vyssi trovni vychdzejici z kinematického modelu
(zavislost polohy a orientace robotu na jeho aktualni tangencialni a Ghlové rychlosti) byly
vytvoreny dva nelinearni modely chyby sledovani znamé trajektorie. Pro navrh fizeni v nizsi
arovni a pro moznost simula¢niho ovéfeni celého fizeni robotu byl vytvoien metodou
matematicko-fyzikalni analyzy linearni dynamicky model robotu popisujici zavislost jeho

tangencialni a tthlové rychlosti na napétich elektromotort pohanégjich obé kola.

Simula¢né byly porovnany prubéhy fizeni pro rtizné struktury fizeni i regulatory. Pozornost
byla vénovana zejména vlivu zanedbani dynamiky robotu a pfinosu prediktivnich regulatorti
oproti standardné pouzivanym feSenim jak v kinematické tak 1 dynamické Grovni. Vysledky
simulaci ukazuji, Ze prediktivni reguldtor dynamické casti, kromé respektovani zadanych

omezeni, také ovliviiuje kinematickou ¢ast a zvySuje celkovou kvalitu regulace.

KLICOVA SLOVA

roMs

Prediktivni fizeni, fizeni pohybu mobilniho robota, modelovani, optimalizace
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1. INTRODUCTION
1.1 Introduction and state of the art

The past few decades have witnessed an increased research effort in the area of motion
control of autonomous vehicles. In the age of self-driving cars, the importance of the study of
motion control of the autonomous systems is ever increasing. Robust motion control algorithms
are fundamental to the autonomous operation of mobile robot. Motion control refers to “how to
control the robot to make some particular motion- either time bound or not”. There are basically
three types of motion control problems: trajectory tracking, path following and point
stabilization. Point stabilization (parking) refers to stabilization of the robot into a predefined
position and orientation. Path following refers to move a robot along a path in a time
independent manner. The trajectory tracking problem is similar to path following problem, but
in a predefined time. A typical motion control problem is trajectory tracking, which is
concerned with the design of control laws, that force a vehicle to reach and follow a time
parameterized reference (i.e., a geometric path with an associated timing law). The degree of
difficulty involved in solving this problem is highly dependent on the configuration of the
vehicle and quality of position information.

Wheeled mobile robots (WMR) are widely used in many applications mainly because
of the high loading capacity, less complexity, ease of control etc. Design of WMR depends on
application with which they are applied (Cook 2011; Niku 2001). The number of wheels,
configuration, type of steering, motors etc. depends on various design considerations. Mobile
robots use several wheel configurations, such as differentially driven, car-type, omni-
directional, and synchro drive (Siegwart et al. 2011). The most common wheel configuration
used in mobile robot designs is the differential drive. In a differential drive, the movement is
based on two separately driven wheels on either side of the robot and one or more castor wheels
which provide the stability of the robot. The steering is achieved by a relative rate of rotation
of the wheels and hence no additional steering mechanism is needed. Differential drive vehicles

have the added advantage that they can turn in place.

Differential drive mobile robots have many potential applications, but motion planning
is difficult as they are subject to rolling constraints that limit the possible directions of motion,
I.e. they cannot move sideways directly, but must move forwards or backwards in order to turn.
Hence, complicated manoeuvres may be required to move from one configuration to another

nearby one; even in the absence of obstacles. Such constraints, that limit the possible directions
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of motion are called non-holonomic (Triggs 1993). The difficulties of non-holonomic system
are that, the non-holonomic system does not satisfy the Brockett theorem (Brockett 1983), so
there does not exist smooth time-invariant state feedback control such that can makes the system
asymptotically stable. However, it has been proven that, the asymptotic stabilization can be

obtained using time-varying, discontinuous or hybrid control laws.

The tracking control problem is classified as a kinematic control problem or dynamic
control problem based on the system description — by kinematic model or dynamic model. The
structure of the kinematic and dynamic models of WMR are analyzed and classified in
(Campion et al. 1996). At the beginning, the research effort was focused only on the kinematic
model, assuming that there is perfect velocity tracking (Kolmanovsky & McClamroch 1995).
The main objective was to find suitable velocity control inputs, which stabilize the kinematic

closed loop control.

The dynamics of WMR are nonlinear and involve non-holonomic constraints, which
cause difficulty in their modeling and analysis. There are two common formulations for mobile
robot dynamics in the literature; one based on Lagrangian mechanics and the other on Newton-

Euler mechanics (refer (Hatab & Dhaouadi 2013) and the references with in).

The problem with control of dynamics part are precomputation of velocities by a pair
of PID controllers. Furthermore, there are problems with constraints and noises too. At present,
the PID controller is still widely used in motor control of mobile robot. However, its ability to
cope with some complex process properties such as nonlinearities, and time-varying parameters
are known to be very poor. The reference trajectory is not tracked directly, but by two
controllers — high level controller for generating velocity control inputs (kinematics controller)
and low level controller for generating motor torque (dynamics controller). The usage of more
sophisticated controllers can solve these problems, which require dynamic model of the mobile

robot.

Controlling non-holonomic systems as they follow a reference path is a well-known
problem that has been studied by many authors. The control problem is solved by considering
its first-order kinematic model. The obtained model can later be upgraded to include the
dynamic properties. Usually, the reference trajectory is obtained by using a reference robot;
therefore, all the kinematic constraints are implicitly considered in the reference trajectory. The
control inputs are mostly obtained by a combination of feedforward inputs which are, calculated

from the reference trajectory, and feedback control law, as in (Wenjie Dong et al. 2000; Sarkar
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et al. 1994; De Luca & Oriolo 1995; Oriolo et al. 2002). Lyapunov stable time-varying state-
tracking control laws were pioneered by (Kanayama et al. 1990; Samson & Ait-Abderrahim
1991; Fierro & Lewis 1995) , where the system’s equations are linearized with respect to the
reference trajectory; and by defining the desired parameters of the characteristic polynomial,
the controller parameters are calculated. A sliding mode control law is proposed for
asymptotically stabilizing the mobile robot to a desired trajectory (Yang & Kim 1999).
Dynamic feedback linearization is presented in (Oriolo et al. 2002), for both trajectory tracking

and point stabilization problem.

All the above-discussed techniques consider only kinematic model and assumes a
“perfect velocity tracking” controller (to generate actual velocity control inputs) is present at
lower level. However, dynamics of mobile robot cannot be neglected, especially when high
performance is required. A dynamical extension that makes possible the integration of a
kinematic controller and a torque controller is presented in (Fierro & Lewis 1995). Various
other non-linear techniques are also proposed in literature, e.g. sliding model controller (Yang
& Kim 1999), adaptive controller (Kim et al. n.d.; Fukao et al. 2000), robust adaptive controller
(Pourboghrat & Karlsson 2002) together with various artificial intelligence techniques (Fierro
& Lewis 1998; Das & Kar 2006; Hu & Yang 2001) considering system disturbances and

unknown parameters.

The Model Predictive Control (MPC) (also known as Receding Horizon Control (RHC))
has been an important research area for decades. MPC is also seems to be very promising in the
field of mobile robotic trajectory tracking, because the reference trajectory is known
beforehand. It is designed to handle complex, constrained, multivariable control problems. It is
an online optimization tool, which will generate optimal control actions required at every time
instance by minimizing an objective function based on predictions (Camacho & Bordons 2004)
and by respecting constraints. With the increase in computational power, the MPC is not only
limited to slow dynamics processes, where dynamical optimization is easily possible, but also
there are new applications for faster systems. Most of the MPC technologies are based on linear
dynamic models and therefore referred to as a linear model predictive controller (LMPC).
However, many processes are sufficiently nonlinear which hinder the successful application of
LMPC. This has led to the development of nonlinear model predictive controllers (NMPC) in
which nonlinear models are used for prediction and optimization. The main problem with

NMPC is that, the nonlinear program has to be solved online at every sampling time to generate
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control action, which is a computationally heavy task. There are various NMPC formulations
in the literature (refer (Henson 1998) and the references with in).

In case of trajectory tracking of mobile robots, MPC techniques produce promising
results as shown by (Maurovic et al. 2011; Chen et al. 2009; Kunhe, F., J. Gomes 2005; Lages
& Vasconcelos Alves 2006; Kuhne, Felipe, Walter Fetter Lages 2004). In (Klan¢ar & Skrjanc
2007), a tracking error based predictive control is presented. A mobile robot trajectory tracking
problem with linear and nonlinear state-space MPC can be seen in (Kunhe, F., J. Gomes 2005).
A survey of motion control problems of Wheeled Mobile Robots (WMRs) using MPC can be
found in (Kanjanawanishkul 2012).

1.2 Problem formulation and objectives

Trajectory tracking of mobile robots requires usage of nonlinear kinematic differential
equations. This requires, either linearizing the model and applying the LPMC or using nonlinear
equations in prediction and/or in optimization and applying the NMPC. Various LMPC
techniques applied to the trajectory-tracking problem (that can be seen in the literature) but
usage of NMPC is quite rare, mainly because of the computation time requirement. One solution
could be, linearize the nonlinear model into a LTV model and use it for prediction and

optimization or use a combination of LTV model and non-linear model.

In most of the trajectory tracking problems, the solutions in literature considers only the
kinematics and the dynamics of the mobile robot is neglected. This is mainly because of the
difficulty in modelling and identifying the nonlinearities associated with dynamics of the
mobile robot. However, the kinematic trajectory tracking with cascade structure (high-level
kinematic controller — low-level dynamics controller) has successfully been applied by many
researchers. In a typical trajectory tracking problem, the trajectory is tracked by generating
reference tangential and angular velocities (kinematic controller), assuming a perfect velocity
tracker is available and this velocity is tracked by generating motor torques using a pair of PID
controllers. If the dynamics of the mobile robot can be modelled and identified with
considerable precision, the mobile robot motion control problems can be solved with adequate
accuracy - considering non- holonomic constraints and other soft constraints (e.g. energy,
comfort (acceleration, jerk, slipping, skidding etc.)). A straight forward control of motor power
(control actions) to track a robot into a trajectory (outputs) has obvious advantages when
compared to controlling with a high level (kinematic) controller (usually implemented in PC)

and low level (dynamics) controller (usually PID implemented in mobile robot controller).
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Dynamic constraints (soft and hard) can also be easily integrated with kinematic (non-

holonomic) constraints, and control action can be computed. This integrated kinematic-

dynamics model can also leverage the possibility of different feedback configurations (e.g.

mobile robot positioning systems (Borenstein et al. 1997)).

MPC is a straightforward choice for the trajectory-tracking problem because of the

following reasons,

a.
b.

C.

Flexibility in the formulation of MPC elements (prediction, cost function and constraints)
In the trajectory tracking problem, the future set-point are known

Ease of constraint handling (physical constraints of mobile robot and soft constraints)
capability

Capability of dealing with non-linear (kinematic model is non-linear) and multi variable

control system

To summarize the objectives,

a.

Design linear and non-linear state space model predictive controller with a criteria
penalizing the control effort, control error and terminal state error.

Derive the linear time varying model and reference variables from the basic kinematic
equations. Conduct open-loop model verification experiments.

Design the kinematic MPC and state-of-the-art controllers for trajectory tracking of
mobile robot and to compare the performances.

Derive mathematical model of dynamics of mobile robot considering motor dynamics
and chassis dynamics. Verify the model by simulation and open loop experiments.
Design Dynamics controllers for velocity tracking of mobile robot and compare the
performances.

Study the performance of different control structures for Kino-Dynamics controllers for

trajectory tracking problem. Discuss the advantages of different control structures.

1.3 Assumptions

The following assumptions are considered in the thesis,

a) An ideal mobile robot respecting non-holonomic constraints (rolling without slipping)

b) A perfect localization system is present, i.e. robot’s position and orientation are known

at every time instant

c) An ideal differential drive robot powered independently by two motors and a castor

wheel to support the robot
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d) Non-linearities of gears (saturation, backlash and friction) are not considered in the
dynamic model
e) There is no time delay between measurement-control action calculation, actuation-

measurement etc.

The other assumptions are mentioned in respective chapters.

1.4 Thesis outline

This chapter introduces the main idea of the thesis and outlines the motivation and

objectives of the research. The rest of the thesis is organized in the following manner:

Chapter 2 provides the control strategies for trajectory tracking of the mobile robot.
This includes trajectory generation, kinematics and dynamics of the mobile robot

Chapter 3 explains basics of predictive controller and design of state space linear and

non-linear MPC.

Chapter 4 examines the non-linear kinematic model of non-holonomic robot. Two
models are derived based on reference co-ordinate frame — world coordinates and local

coordinates system of the robot. Open-loop model verification experiments are also provided.

Chapter 5 presents the kinematic control of non-holonomic mobile robot with two non-

linear MPCs and a comparison with respect to state of the art trajectory tracking controllers.

Chapter 6 explores in detail the mathematical modelling of differential drive robot. A
state space linear model is derived and open-loop model verification experiments are

conducted.

Chapter 7 describes the dynamics velocity tracking controller design. A linear MPC

and PID controllers are proposed and a comparative study also provided.

Chapter 8 illustrates Kino-Dynamics controller design for trajectory tracking problems.
Design of various control structures are explained and a comparative analysis based on the

performance of control structures is described.

Chapter 9 consists of the overall conclusions of the research and proposes future

remarks.
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2. CONTROL STRATEGY FOR TRAJECTORY TRACKING
OF MOBILE ROBOT

Trajectory tracking of mobile robot refers to track the mobile robot in desired positional
coordinates and orientation in a time parameterized way. The reference positional coordinates
are usually the inputs which are way points (or goals) to be tracked at particular time instance.
The trajectory planner interpolates the way points into smooth trajectory (robot pose —
coordinates in x,y axis and orientation) with equidistant time samples. The ideal feasible
tangential and angular velocities at particular time instant is also generated. The next stage is
to generate the velocities control inputs depending on current and reference robot poses and
velocities. Motor control voltages are generated with respect to the required velocity
commands. Figure 1 shows a general block diagram of trajectory tracking which is subdivided

into various levels.

TRAJECTORY PLANNER
W =[x(ti),yr(t:),6:(ti)]

Level 3
Planning level

POSITION PLANNING ur=[vi(ti),w(t)]
W=[xo(t),Yo(t),t], t=0:Teng ’ i=0:Tena/Ts il
" TANGENITAL &  [€ w; =
K N>
ANGULAR VELOCITIES |« u; T2
r uK=[VB,r(k)le,r(k)] ¢ Xg EJ -go
I

MOTOR VOLTAGES
up=[uy(k),ur(k)]

|
|
£ |
|
|
|
|
|
|
|
|
|
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
I
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; =%

ROBOT STATE g2

Ba ESTIMATION ] 1
xe=[ie(k)ine(K), w1 (k) wge ()] |
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* P xe(k) [ © o
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Ly el T2

ur(k) o W (k) Xa ID_
—— R |

Figure 1 General block diagram of trajectory tracking
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Level 3 (planning level): The reference way points (x,, y,, t) are interpolated into smooth
trajectory w,. = (x,,y,, 6,) with a sampling time of T;. The tangential and angular velocities
u, = (v, w,) of reference robot travelling through the smooth trajectory are generated from the

first order kinematic equations.

Level 2 (high level): The command velocities ux = (vg,, wg,) for the real robot are
calculated from the reference pose and current pose of the robot with respect to the reference

robot.

Level 1 (low level): The motor voltages u, = (ug,u;) are generated according to the
command velocities. The motor speeds (wg, w,) are measured by encoder and the motor state

variables (motor currents i, i;) are estimated.

Level O (physical level): The robot motors are independently driven by the control
voltages calculated by the previous level. The robot position and orientation xz = (xz, yg, 05)

in Cartesian coordinates are measured by an overhead camera.
2.1 Trajectory Planner (Planning level)

The functions of the trajectory planner are smooth trajectory generation and reference
velocities generation. The feasible smooth trajectory is generated by path planning algorithms
or by interpolation methods. As path planning is out of scope of this contribution, a simple

interpolation method is preferred. The way points (or data points) (x,,y,,t) are interpolated

into N, = int(TeT—"d) data points as {x, (ty), vr(tx), t-(tx)} and t, = kT;,¥ k=0 : N,

The reference velocities are velocities and orientation of a reference robot traveling
through the smooth trajectory. The first order (continuous time) kinematic equation is given

by,

X, = v, c0s 0,
Yr = VpSin 0, (2.1)
6, = w,

The tangential velocity at every time instant is approximated by,

Ur(tk) — \/Xr(tk)_;:r(tk—l) + yr(tk)—;slr(tk_l) (22)

The orientation at every time instance is,

0, (t;) = arctan2 (

V(i) =yr(te—1) xr(tk)—xr(tk—ﬂ) (2 3)
Ts ! Ts ’
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Angular velocity is obtained as,

wr(tk) — 0r (L) =0y (tr—1) (24)

Ty
In order to generate feasible reference trajectories, the constraints have to be taken into account
during trajectory generation. Let the constraints on tangential and angular velocities are vy,
and w4, respectively. It is not possible to generate maximum tangential and angular velocities
at the same time as curvature radius cannot be preserved. A velocity scaling will preserve the
curvature radius corresponding to tangential velocity v and angular velocity w. The actual

reference velocities are computed by defining (De Luca et al. 2001),

o (k) = rmx{lv(k)l ’ lw (k) ’ 1}
vmax wmax
and letting,

. o) RG]

vy (k) = sign(v(k))Vmax, wr (k) = k) if o(k) = —
k k

v (k) = %.wr(k) = sign(w(k))wmax  if o(k) = Iz( )
vy (k) = v(k), 0, (k) = w(k) if (k) =1

The parameters of the reference robot are,

(2, wr] = [0 (tr) yr (tk) 6r(t) v (tk) wr (tic)]
The calculated robots reference velocities will drive the robot through the desired trajectory
only if there are no disturbances and no initial state errors. However, in real world scenario, this
is not always the case, and this brings us to design a kinematic controller, which can cope with

these uncertainties.

2.2 Kinematics (High level)

According to Wikipedia, Kinematics is “the branch of mechanics that deals with pure
motion, without reference to the masses or forces involved in it”. Only the geometry of motion
is considered at the kinematics level — robot pose and velocities. The kinematics of non-
holonomic mobile robot is described as in eq (2.1). The Kinematics level is responsible for
generating the required tangential and angular velocities to track the robot through a desired
trajectory. Usually a kinematic controller generates the required velocities by considering, the
current and reference pose of the WMR and the reference velocities. Chapter 4 is dedicated to
kinematic modelling and chapter 5 for kinematic controllers. Even though, the described
kinematics is common to all non-holonomic mobile robots, only a differential drive mobile

robot is considered at the dynamics and Kino-Dynamics level.
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2.3 Dynamics (Low level)

According to Wikipedia, dynamics is “the branch of mechanics concerned with the
study of forces and torques and their effect on motion”. A differential drive robot with
independently controlled motors is considered. The required forces and torques (for particular
motion) are generated by controlling the motor voltages. A dynamics controller is often required
to generate the motor voltages depending upon the current and reference velocities and the state
variables. A state space model describes the dynamics of the motor with state variables having
physical meaning, e.g. motor currents, motor speeds etc. These state variables have to be
estimated from the measured variable. The dynamics modelling is described in chapter 5 and

dynamics controllers in chapter 6.
2.4 Mobile robot and localization system (Physical level)

At physical level, it is assumed that an ideal differential drive robot and a localization is
present. A differential drive mobile robot with two wheels independently controlled by motors
and a caster wheel is considered. The motor speeds are measured by wheel encoders attached
to the wheel. An onboard microcontroller with wireless communication module has the
functions: get the command motor voltages or velocities, measure the motor speeds, and send

the measured motor speeds.

The localization system consists of an overhead camera and necessary image processing
algorithms. Markers are attached to the robot to localize the robot, and with the help of suitable
image processing techniques, the robot is localized. A coordinate frame is fixed and the robot’s
position and orientation are measured with respect to the coordinate axis. Tangential and

angular velocities are also calculated from this information.
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3. MODEL PREDICTIVE CONTROL

Model predictive control is based on a philosophy which reflects human behavior
whereby the control actions which are brought about by our thought processes, lead to the best
predicted outcome, over some limited horizon optimizing certain criteria (Rossiter 2003). E.g.
while driving a car through a rough terrain, the required acceleration and steering (control
actions) will be decided by taking into account several factors: the way (set-points); braking,
acceleration and steering (control actions); obstacles, fuel efficiency, comfort, jerking
(constraints) and various others. The key advantage of MPC when compared to classical control
theory is the flexibility in the formulation — prediction model, criteria, optimization, constraints

etc.

In general, for practical implementation, the MPC methods for linear or nonlinear
systems are developed by assuming that the plant under control is described by a discrete-time
representation. At each sampling time, the model predictive controller generates an optimal
control sequence by optimizing a cost function. The first control action of this sequence is
applied to the system. The optimization problem is solved again at the next sampling time, using
the updated process measurements and a shifted horizon. The cost function formulation depends

on the control requirements.
Let a continuous time system, linear or nonlinear be in the form of,

x = f(x(0), u(®),t) x(t = ty) = x9 (3.1)
y(©) = gD, u®),0) ¢t |

A prediction model, which predicts the system output y(t) for a finite horizon ¢y, is the key to

MPC approach. If the system is linear, the output can be decomposed into the sum of two wave-

forms - free response and the forced response (see figure 2).

- Free response, y ., represents the outputs of the system when all system inputs u, (t)
will vary according to the known waveform (e.g. will be constant from the time ¢,) with
the initial conditions as current state.

- Forced response, y, represents the portion of actual output of the system which varies
from the actual free response output when changing the input variables (Au(t), the differ-
ence from the known course u,(t)), under zero initial conditions.

Yy (), u(t), t = to) = ¥ (X (£, up(8), t 2 to) + Y50 (%70 (1), Au(t), t = t)

system output free response forced response (32)

Xpr(to) = x(to) Xfo(to) = 0 Au(t) = u(t) —uo(t)
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Figure 2 Prediction — decomposition into free and force response

If we know the system eq (3.1) and the initial state vector, the free response y, in eq
(3.2) can be determined from the process (LTI/LTV) model — with the information of the past
state variables and inputs. The forced response yr, depends on the process model and unknown
input variable Au. Hence, the objective is to calculate the course of the variable Au, in such a

way that the sum of free and forced responses will have the desired course.

For control design purposes, we consider the discrete time representation. The
prediction horizon N (number of samples), is the time interval for which the control inputs are
calculated, solving a constraint optimal control problem for the current state of control. There
are two main approaches when considering the horizon — input horizon N,, (the horizon at which
control input is considered) and output horizon N,, (the horizon at which the predicted output is
considered). For the sake of simplicity, the input horizon is chosen to be the same as the output

horizon i.e. N, = N,, = N in the following formulation.

3.1 Linear MPC — output prediction with linear model

Let the plant model, eq (3.1), be linearized into a discrete time LTI state space model

with a sampling rate of T; s,

Xp+1 = Axk + Buk

Y = ka + Duk (33)

x € R™ u € R™ y € R

Where, A€ R B e RXMu Cec ]Rnyxnx D e Rnyxnu
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For n, state variables, n,, control variables and n, output variables. The matrix D allows direct

coupling between inputs and outputs and is absent in most of the applications (D = 0).

Prediction model

The future state variables and outputs are recursively calculated from the linear model.

For e.g. at sampling time, t = (k + 1T, ,

Xp42 = A(Axk + Buk) + Buk+1
= A?x), + ABuy, + Buy,,,
Yiv1 = C(Axpyq + Buy) + Duy 4
At sampling time, t = (k + 2)Ty,
Xi+3 = A(A%x, + ABuy, + By, 1) + Buyy,
= A3xk + AzBuk + ABuk+1 + Buk+2
Yisz = C(A%x; + ABuy, + Buyyq) + Duyyq
Representing in general form of the predicted state vector and output vectors for a horizon

length N, at sampling time, ¢, as,

Xkan+1 = SxxXk + Sxuly

YN = Syxxk + SyuuN (34)

Uy Yk
where, uy=| * [yn=| °
Uk+N Yk+N
S, = ANt € R
=[a"B A"-'B .. B] € RV
[ €]
CA
=|cA? € RV myxny
lCANJ
D 0 0 0 0
CB D 0 0
s - CAB CB D 0 € RN+ x(N+1)#ny,
yu 2
CA%B CAB CB 0
L.cAN-1B cAN-?B cAY3B - D
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The output, yy, is decomposed into the sum of free and forced responses. The free response
depends on the current state and constant current input and forced response depends on zero

initial condition and deviation control input as,
YN = yfr,N(xOIuN,O) +¥5on (0, Auy)
where, x, 1S a vector of state variables at ¢

uy o 1S a column vector of control input at time (¢ + iT) Vi = [0,1...N]

Auy =uy —uyyp
The free response is given by,
Xfr(k + N+ 1) = Sxxxo + quuNO
_ ' (35)
yfr,N - Syxxo + SyuuN,O
and the force response is derived as,
Xro(k + N + 1) = Sy, Auy
YfoN = SyuAuN

3.2 Non-Linear MPC - output prediction with non-linear model

(3.6)

Linear MPC is the most commonly used predictive controller because of the easiness of
using the linear model in prediction and optimization. If a fairly accurate linear model of process
is available, it’s better to apply LMPC because of low computational requirements. However,
most of the systems are non-linear and a non-linear feedback control of the system is inevitable.
LMPC can be easily extended to NMPC by using a non-linear model. The simplest way to
employ a non-linear model is by linearizing the system at many time instances (LTV model).
Another possibility is to use the non-linear model as it is, with an ordinary differential equation
(ODE) solver.

Let the discrete time state space LTV model of the continuous time model, eq (3.1) be

written as,

X1 = Apxy + Cruy
Yi = Crxy + Dyuy,

(3.7)
where A, B, Ci, Dy, are the time varying matrices at time ¢t = t; .
Prediction model

The predicted state variables and outputs at horizon N are derived as follows:

Xp+N+1 = Sxx,kxk + qu,kuN
YN = Syx,kxk + Syu,kuN
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The free response, either is obtained by the solution of nonlinear equation, eq (3.1) or can be

derived from the LTV model as given by,

xfr(k +N+ 1) = Sxx,kxo + qu,kuN,O

3.8
YfrN = Syx,kxO + Syu,kuN,O ( )
and the forced response is given by,
Xfo(k + N + 1) = qurkAuN (3 9)
Yfon = Syu,kAuN .
where,
Sxxte = Ax+n Axen-1 - Ap+14x
Siuk = [AksnArsin-1 - Ak+1Br  AgsnAksn-1 - Aks2Brs1  AgenBren-1 Bran]
[ Ce 1
| Cr+14x |
Syxk = | Ck+2Ak+1Ak |
le+NAk+N 1- Ak+1AkJ
D, 0 0 0 0
Cr+1Bx D11 0
Cr124k+1Bk Cri2Bi+1 Dy»
Syu,k -
K+N—1 K+N—2 K+N—3
Crin 1_[ ApyiBrCryn 1_[ ApyiBri1Cran 1_[ ApyiBiy2CrynBiin- 1Dk+N
- i=k+1 i=k+2 i=k+3

3.3 Optimization

The main task of optimization is to achieve the best possible approximation of the small-
est deviation of the system output, from the desired output waveform; by the smallest possible
change in the system input, during future time interval (i.e. horizon). The mathematical formu-
lation of this goal is an optimization task — choice of input to minimize a cost function, which

expresses the “rate of fulfillment” of the goal.

The MPC allows a lot of flexibility in the choice of cost function. A general cost func-
tion consists of three parts: costs to penalize the control error during the horizon, costs to pe-
nalize the control effort during horizon, and a terminal cost to ensure stability of the control at
the terminal state. The cost function is defined as follows:

J(N,xo,up) = AxT(N)QnAx(N) + ey" Qey + Auy"RAuy

ey =Wy —JYn
Mty = uy — iy o (3.10)

umin,N < Uy < umax,N
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where @y is the weighting matrix for the terminal state error, Q is the weighting matrix for
control error and R is the weighting matrix for control effort.

w(ty) y(tk) ]
wy = w(tk + iTs) | = ]R(N+1)ny><1 yy = y(tk _|_ lT) | € R(N+1)ny><1
\w(t, + NT) y(t, + NTY)
u(ty) [ upr(ty) 1
: : |
uy = u(tk + iTS) | € R(N+1)nu><1 Uy = ufr(tk + iTs) | € RIN+1D)nyx1
lu(t, + NTS)J [up (ty + NT)

and the deviation of the final state is given by,
Ax(N) = x,, (tx + (N + DTs) — x(t, + (N + 1)T;) € R™

where, x,, is the desired terminal state, i.e. the steady state corresponding to the desired value

at the end of horizon (valid only for square system).
Rewriting the criteria, eq (3.10) in terms of free and force response, we get,
J(N, xo,un0) = [2 (N) =X (N) = %70 (N)]7 Qv [2 (N) — x5 (N) — x76(N)] +
+(Wy = Yrrn—Yron) QWy — ¥srn = Vo) + Ay RAuy
Substituting eq (3.6) and eq (3.9), then,
J(N, x0,1y,0) = [ (N) =27, (N) = Sy bun]" Qu % (N) = X (V) — Sy Auy] +

+(wy — yfr,N_SyuAuN)TQ(WN = Yfrn — Syuluy) + Auy"RAuy
= [xW(N)_xfr(N)]TQN [xW(N) - xfr(N)] + (WN - yfr,N)TQ(WN - yfr,N) -

Cc

+AuNT {quTQN [xw(N) - xfr(N)] + SyuTQ(WN - yfr,N)} - (311)
- {[xw(N) - xfr(N)]TQNqu + (WN - yfr,N)TQSyu} AuN +
_mT
+0uyT [Se" QnSxu + Syu” @Sy + R] Auy
M

= Auy"MAuy + Auy™m + mTAuy + ¢

where,

m= _quTQN [xw - SxxxO - quuN,O] + SyuTQ(WN - Syxxo - SyuuN,O)
M= quTQNqu + SyuTQSyu + R
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In case of unconstraint control, an analytical solution is derived by differentiating with respect
to Au. Assuming the weighting matrices (Q, Qy, R) to be positive semi definite, the control law

is then in the form of,
Au=-M"1m (3.12)

In case of constraint control, the criteria, eq (3.11), is written in the form of a quadratic pro-

gramming problem.

. _ T T T
IAILIS](N, X0, Uyyp) = Auy"MAuy + Auy"m +mTAuy + ¢ (3.13)

Umin — uN,O < AuN < Umax — uN,O
The optimal control action is the solution of the quadratic programing problem, obtained by
minimizing the criteria.

min/ = %AuTMAu + mT Au such that A,Au < b,
u

where the matrix 4, and the vector b, are constraint matrices of control input,
Umin Suy < Umax
Unin < Auy + Uy < Uy

Umin — uN,O < AuN < Umax — uN,O

Representing the constraints for future control inputs for horizon N, is derived as,

[1 0} [umax_uow
r - 1 Umax — Up
|—I 0 |Au < U + U (3.14)
l_I _IJ —Unmin +u0

where u, is the last control action, u, = u(k — 1).

In MATLAB, the solution to the quadratic programing problem by the function
quadprog.

Au = quadprog (M,m,Ao0,bo)
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4. KINEMATICS OF WHEELED MOBILE ROBOT

Let the pose of the WMR in Cartesian coordinate with an angle 65, be measured clock

XB
xB = [yB]
g

The basic kinematic equations of the differential drive mobile robot are given by,

wise from the x-axis,

Xp = vp cosbp
J‘/B = UB Sin 63
éB = wp
where v; and wg, are the tangential velocity and angular velocity respectively. This can be

represented in matrix format,
cos Oy O
Xp = }’B = [sm@B 0 ] (4.1)

Trajectory of a mobile robot refers to the locus of all the points (xz,yg) in the Cartesian
coordinate. In a trajectory-tracking approach to a mobile robot motion control problem, the
reference trajectory must be known beforehand. A feasible trajectory considering, the velocity
and acceleration limits, non-holonomic and holonomic constraints, and an obstacle free
trajectory should be generated (by trajectory planner module). The reference trajectory

Cartesian coordinates (x, y;.), orientation 6,,, and velocities (v, w,) fulfil the same kinematic

%
iy = |

6,

equations, eq (4.1), as,

Wy

cos6, 0] ,
= [sin 0, OM r] (4.2)
0 1

In trajectory tracking control of the WMR, the aim is to minimize the difference between a
reference trajectory state vector and a current state vector of the mobile robot (i.e. tracking

deviation).

xT‘
Xr —Xg = [yr
0,

XB
)’B]
g
There are two major approaches on how to express the tracking deviation, which are further
linearized to get an approximate linear model. The starting point of both the models is the basic
kinematic equations eq (4.1), but the main difference lies in the choice of the co-ordinate frame

of the mobile robot and reference trajectory.
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4.1 Successive linearized kinematic model (M1)
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Figure 3 Coordinate System of Real Robot and Reference Robot

A linear model can be derived from the non-linear model, eq (4.1), by successively
linearizing around the trajectory of the reference robot (see figure 3). A reference robot can be
considered as a robot with reference (desired) parameters of the robot, which follows a

reference trajectory. The kinematic equations eq (4.1) can be represented as a simple model,
xp = f(xp,up) (4.3)
where state variables x5 = [xg, y5, 05]" and control inputs ug = [vg, wp]"

Let the reference robot be following a reference trajectory (x,.,y,.) with an orientation

of 6,.. The kinematic equations are same as that of the real mobile robot.

X, = f(xp,uy) (4.4)

The reference parameters are [x, v, 6, v, w,]. The tangential velocity, orientation angle and
angular velocity of the reference robot can be calculated from eq (2.1-2.3). Applying the Taylor

series approximation to eq (4.2), around the time varying reference points (x,. u,.) we can derive,

o of (xp, up) 0f (xp, up)
xp = f(x,, up) + B R N (xp —x;) + T ouy s (up —u,)
up =u, up =u,
xB = f(xr: ur) + Zs(xr: ur)- (xB - xr) + ES(xrr ur)- (uB - ur) (45)
Ax Au
Subtracting eq (4.5) from eq (4.4) gives,
Ax = As(x,,u,). Ax + Bg(x,,u,). Au (4.6)
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where Ax is the error vector of state variables and Au is the error vector of control variables
with respect to the reference robot. The approximation of Ax in eq (4.6), by the forward

differences, gives the following discrete-time linear time-variant state-space model:
Ax(k + 1) = Ag(k)Ax(k) + Bs(k)Au(k) (4.7)
1 0 —v,.sinf,.(k)T;

As=(0 1 wv,.cos0,.(k)T;
0 0 1

cosO,.(k)T, O
B, =|sin6,.(k)T, 0
0 T,

x5 (k) — 2, (k)
Ax = |yp(k) — y,(k) | 5 du = [
8 (k) — 6, (k)

vp (k) — vy (k)
wp (k) = wy (k)

where T; is the sampling period and ax is deviation state vector which represents the error with
respect to the reference robot and au is associated with the control input. The reference values,

v, 0, , w, are the reference tangential velocity, orientation angle and angular velocity.

4.2 Tracking error based linear model (M2)
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Figure 4 Tracking error based linear model: Coordinate System of Real Robot and Reference Robot

Another way of modeling is to consider the difference, in the local coordinate system
of the mobile robot, see figure 4. This differences in local coordinate system is called as

“tracking error” represented as,
cosfg sinfg O
e= [6’2] = [—sm 0 cos 93 O]

where, T, is the coordinate transformation matrix. Now the aim of the trajectory tracking

X, — Xp
Yr — VB
91”_68

= Tx(xy — Xxp) (4.8)

controller is to tlirg e(t) = 0. Differentiating eq (4.8) by considering eq (4.1) and eq (4.2),
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é, = (& — Xp) cos O + (yr — yp) sinOp — (x, — xp) sinbp O + (¥ — yp) cos O Op
= e,wp + X, c0sOg + Y, sin g — v cos?0y — v sin?Og
= e;wp — Vg + X, c0s Op + ¥, SinOp
= e,wp — vg + X, cos(6, — 0,) + y,-sin(6, — 6,)
= e,wg — Vg + X,(cos B, cos B, + sin O,.sinb,) + y,.(sin O, cos 6, — cos O, sin b,,)
e,wp — vg + (x,.cos 6, + y,sinb,) cos b, + (x,sin b, — y,. cos B,.) sin b,
= e;wp — Vg + v, Ccos O,
= e,wp — Vg + V. COSe;

é; = —(%, — xp) sinBp + (¥ — yp) cos U — (x, —xp) cosOp Op — (¥ — yp) sinbp Op
= —eqwp — Xp SinfOg + yp cos g — X, sin O + y,- cos Oy
= —e,wg — X, sin(6, — 0,) + v, cos(6,. — 6,,)
= —e;wp — X, sin(sin 6, cos 6, — cos 6, sin B,) + y,-(cos 6, cos B, + sin O, sin 6,,)
= —e;wg — (x,cos 6, + y,.sin6,.) sin b, + (¥, cos 8, — x,.sin 6,.) cos b,
= —eqwpg + V- Sin 6,
= —eqwp + v, sine;

Rearranging in matrix format,
e,wpg — Vg + v, COS e3
e= [ezl = [ —ele + v, sine; ] (4.9
In order to get a linear model, eq (4.9) is linearized around the equilibrium point (e = 0), and

the operating points as [vg wg]| = [v, w,] and by the approximation sin 8 ~ 6 (at small angles —

6 is error variable and the aim is to minimize the errors), we arrive at,

e.l 0 @ 077 VU, COSe3 — Vg
€2| = |~wr 0 v, [ W, — g ]
é3 0 0 o0lles

The continuous time state space model after linearization and approximation is given by,

O [ Oy
v, 0 o, 2] (4.10)

Lo o ol es lo 1l

T Br

Separating control inputs as feedforward and feedback inputs,

w = [l = o) = [0 1= [00) (@11
uff up

eq (4.11) can be seen as the transformation of u,. into the local coordinate system of the robot:
Usp = Ty,(u,) —up

where, T, is the transformation function. After discretizing with a sample time of T, then the

discrete time LTV state space model is given by,
e(k +1) = Ag(k)e(k) + Bg(k)ugs, (k) (4.12)
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where, A and B, are discretized version of matrices 4 and By as given by,

1 wr(k)TS 0 Ts 0
Ap(K) = |—v, (T, 1 20T, :BE(k)z[O 0]
0 0 1 0 T,

4.3 Model verification — comparison of linear model vs non-linear model

The linearized models, eq (4.7) and eq (4.12), are verified by considering the error
between the discrete approximations (linear model) and the continuous time nonlinear
kinematic equations, eq (4.1). The real robot and the virtual reference robot (reference trajectory
tracked in ideal conditions) are simulated with different sets of control inputs and initial

conditions. The linear model is simulated with deviations in control input and initial conditions.

TRAJECTORY GENERATOR

u=[ve(t) wi(t)] | eq (41) X=[x(t) ye(t) 6,(t)] -

: x{(0)=xXro :
vt 8i(t)]_ !

] + ]
Au(ty eq (4.7) Ax(ty) éX*(tk)
i_,_ +

Ax(0)=x10-Xr0

MODEL

: eq (4.1)
us=[va(t) wi(t)] X1(0)=X10 | x =[xy (t) y(t) O(t)]

MOBILE ROBOT

\ 4

v

Figure 5 Comparison scheme for successive linear model

The smooth continuous time reference trajectory (x,., y,., 6,-) is generated with eq (4.1)
based on the initial condition x,, and with input u,. Let the real robot be driven with initial

condition x;, and input u,.

The same trajectory is calculated by the discrete time linear model (M1), eq (4.7), with
zero initial condition. The approximated trajectory is then x*(t) = x,.(t) + Ax(t) and the input
is the deviation variable, Au(t) = u,(t) — u,(t). The block diagram in figure 5 explains the

simulation scheme in detail.

The open loop simulation of error tracking model (M2) consists of a feed forward
control input part. The approximated trajectory is calculated with the discrete time LTV model,
eq (4.12), with initial condition e, (which is coordinate transformed initial condition Ax(0)).
The input to the model uy,, is the difference between feedforward input and original input as in

eq (4.11). The error state is transformed back to global coordinates and combined with
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feedforward outputs (reference variables) to get the approximated trajectory, x*. See figure 6
for more details.

TRAJECTORY GENERATOR

u=[v(t) we(t)] | eq (4]_) Xr=[x:(t) yi(t) 6:(t)]
. | .

| ()] 8,(t |

. : +
' eq(4.12) | B
upltd | e(0)=Ty(xwoxo) | e(td——ax(t)

MODEL

\ 4

i » ed (4.1)
ur=[va(t) wa(t)] x1(0)=x1 x1=[x1(t) ya(t) 61(t)]

MOBILE ROBOT

\ 4

Figure 6 Comparison scheme for tracking error linear model

The input (velocities to move the robot in the reference trajectory) to the reference
generator is,
. T
" = [Vr] _ 1+ sin (1—5t)
-
@r —sin (125 t)

0<t<15s (4.13)

The same initial condition for the trajectory generator is used for all the simulation schemes
with a sampling time, T; = 0.1s for the discrete time linear models (M1 and M2). Three inputs
to the mobile robot are used in the simulation — with same linear velocities but different angular

velocities (zeros, time varying, constant) as,

[ /2T
IN1: = u, + [S0 (ﬁ tk)‘
0

r ) (Znt)
Sin 75 k
0.2 si (Znt)
0.2 sin 3tk

[ /27
IN3:=u, + [S0 (ﬁ tk)]
-0.1 J
Figures 7 -10 show the simulation results. Table 1 lists the simulation parameters — Initial

Conditions (IC), input and Sum Square Error (SSE). The SSE is calculated by,

IN2: = u, + bt =0<T, <15

SSExyG = |x, — x*|2

The simulation scheme S1-S3 shows the trajectories, approximation errors and inputs after
applying the three inputs with same initial conditions for both real and reference robot. There

is no significant difference in SSEs between both the models. The simulation scheme S4-S7
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shows the trajectories when the initial condition (starting location of robot and first point to be
tracked) is different. The linear model M2 more closely follows the real robot trajectory than
the model M1 and the approximation error is comparatively smaller. The problem with
successive linearization model, M1, is that it does not consider the initial tracking error, and as

a result of this, a large approximation error will be accumulated over the time of tracking.
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Table I Model verification — Input, Initial condition and SSE

Time [s]

S1 S2 S3 S4 S5 S6 S7
fig. 7 fig. 8 fig. 9 fig. 10 fig. 10 fig. 10 fig. 10
Xr0 [0 0 -pi/4]
IC
X10 [0 O -pi/4] [00-pi/4] | [00-pi/4] | [0.50.5 -pi/4] [0 0 -pi/6] [0.50.5 -pi/6] | [0.50.5 -pi/6]
Ur eq (4.13)
Input
U1 IN1 IN2 IN3 IN1 IN1 IN1 IN2
SSE | M1 0.0902 13.8958 | 408.7267 0.0919 106.8508 106.8502 166.6250
M2 2.6181 8.9507 | 499.3891 2.0085 0.9642 1.4009 4.7890
. . IC: different IC: different
Remarks IC: Same IC: Same IC: Same ICI'O?:%%?M Ic?rliedrllgiirgrqt orientation & | orientation &
location location
0 Robot Trajectory 5 Difference - x direction
2+ g al
4+ 4 g oL
6 i °
-8 Reference ] 0 0 ) é 1
~10 H ;jal . 0 D‘ifference -y directioln
1 —_—M2 | \ Y
6 5 -4 3 -2 4 0 1 2 3 4 5 8 ol ~ — Ayt |
X g Ay2
[
Input % “4r
3 T T
6 ! —
L ] 0 5 1¢
2 //———\\ r 108 Difference - 0
3, g 2f i
Ve “r Vi “1 ‘ g) o /\V/\ /\ /\V/\Vf\v
0 2 R
\ / :% 2= A1()1r \/ \/
- 4 A2

Figure 7 Model verification simulation scheme S1
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Figure 9 Model verification simulation scheme S3
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Robot Trajectory: S4 Robot Trajectory: S5
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Reference Reference
Real
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—_— M2
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Figure 10 Model verification simulation scheme S4-S7
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5. TRAJECTORY TRACKING OF WMR - KINEMATIC
CONTROLLER

The kinematic modelling of WMR was discussed in Chapter 4. Two LTV models were
derived based on the choice of coordinate frame. This chapter presents the trajectory tracking
of the mobile robot by considering the kinematics. A perfect velocity-tracking controller (which
is able to track the desired velocities perfectly) is assumed at the lower (dynamics) level. Non-
linear MPCs based on the two models are designed with constraints on inputs and compared

with state-of-the-art (Kanayama and Samson) controllers.

The trajectory tracking of WMR in a reference trajectory is achieved by generating
tangential and angular velocities by discontinuous discrete feedback. At every time instant,
control inputs are generated based on the tracking error (difference between real and reference

points). The basic non-linear model of WMR based on kinematics, as discussed in Section 4 is,

Xp = vp cosbp

Yg = Vg Sinfg

éB = Wpg
The successive linear model is derived by successively linearizing around the reference trajec-
tory points with respect to world coordinates. The resultant LTV model has states, inputs and
outputs as deviation variables from the reference trajectory. Figure 11 shows the control

scheme. The discrete state space model by successive linearization, as given by eq (4.7) is,

Ax(k + 1) = Ag(vy(k), 6, (k))Ax(k) + B (6, (k))Au(k)

where,
1 0 —v,.sinb,.(k)Ts cos,.(k)T, 0O
As=(0 1 wv.cos0,.(k)T,|; Bs=|sin6.(k)T, 0
0 0 1 0 Ts
xg (k) — %, (k) i
vg(k) — v, (k
Ax = [yg(k) -y (K)|; Au= wZ(k) 3 wr((k))
0p (k) — 6, (k) ] "
u=[ve wr]T
N I
[x-yrt]" | TRAJECTORY o Ax Au u MOBILE |[X8 Ve BE]T
1 BLANNER Y. i+ CONTROLLER 2 B R OBOT >

Figure 11 General block diagram of trajectory tracking kinematic controller with successive linear model
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The reference parameters [v,., w,., 6,] are generated by the trajectory generating module
as discussed in section 2.1.

v (t) = \/xr(m—gr(tk_l) + yr(tk)—gr(tk_l) )

gr(tk) = arctan? ()’r(tk)_ﬁ’r(tk—l)’xr(tk)_:r(tk—l))
O (tx)—6r (tg—1)

wy(ty) = . T, = J

In error-based modeling, the error is considered in the local coordinate system of the mobile
robot. The world co-ordinate pose error is transformed into the mobile robot coordinate frame,
eq (4.8), as,

€1 cosfg sinfg O
e= [ezl = [—sin 0 cosfp O

€3 0 0 1
Ty

X, — Xp
[Yr _YB]
0, — 05

Discretizing with a sample time of Ty, then the discrete time LTV state space model, eq (4.12),

is given by,
e(k + 1) = Ag(w,(k), v, (k))e(k) + Bpusp (k)
where,
1 Tow, (k) 0 T, 0
Ag (k) = [-T,w,(k) 1 Tsv,(k)|; Be(k) = [0 0
0 0 1 0 T,

and the real control input is sum of the error-based model feedback control input and

feedforward input as,

V) COS 63] [UB]

ufb = [ w, wg
N —
uff up

Figure 12 shows the general control scheme of the kinematic controller, which uses error-based

model.
T T
u=[vrw] | FEED FORWARD us=[ve(cos e3) w/]
CONTROL
A
e v +

T

[ vet]| | TRAJECTORY CORDINATE e s, ug MOBILE  |[Xs Y5 6sl

_’ ‘V
PLANNER |y -[xy.0] + % TRANSFORMATION CONTROLLER : ROBOT

Figure 12 General block diagram of trajectory tracking kinematic controller with error-based linear model
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5.1 Trajectory tracking by NMPC
The kinematics of non-holonomic robot is non-linear which requires a non-linear con-

troller to track the trajectory. NMPC has several advantages over other controllers, mainly be-

cause of the possibility to use the knowledge of future set-points (trajectory way points).

The formulation of NMPC of trajectory tracking follows the same formulation as dis-
cussed in Section 3, with slight changes. Since the state variables correspond to the output of
system, the term output, y, in the formulation, is omitted. The kinematic LTV model is a
MIMO system with 2 inputs and 3 outputs. The linear discrete time state space model, consists

of only the state equation represented as,
Xkps1 = Ak Xk t B Uiy, (5.1)

where, Xy, is the state variable, and matrices Ay, , By, are the same as that in eq (4.7) for the

successive linear model and eq (4.12) for the error-based model.

5.1.1 Prediction model from LTV model
The prediction equations are same as that discussed in Section 3, but with time varying

matrices.
)_(KN = SKxx,kak + SKxu,kﬁKN (52)
where,
ﬁKk YKk+1
ugy=| ¢ |€ERY Xyy=| i |€RV™
UK ke N-1 XKk+N

Decomposing eq (5.2) into free Xy FrN and forced responses X P

XKfr,N = SKxx,kYKk + SKxu,kl_lKN,O (53)
XKfo,N = SKxu,kAuKN (54)
where,
ﬁKfr,k
AuKN == ﬁKN - ﬁKN,O 5 ﬁKN,O = _ : € RN
UK fr ks N-1

and the time varying prediction matrices are,
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[
AKk+1AKk

e ]

Skxxk = [ Ak oAk 1Ak

AKk+1v AKk+N—1 AKk+1AKk

By, 0 0 0 0
AKk+1BKk BKk+1 0 0 0
Sk = AKk+2AI;k+1BKk AKk+1EBKk+1 BK:k+2 0 0
k+N-1 k+N-2 k+N-3
l_[ Ak By, l_[ Ak By 1_[ A Biyry AxiinBriin-1Brpin
L iZkdN i=k+N i=k+N :

5.1.2 Cost function

The aim of kinematic NMPCs is to bring the state variables closer to zero by optimizing
a cost function. The state variables for both the error based and successive linear model are
deviation variables but computed with respect to different coordinates. The MPC allows a lot
of flexibility in the choice of cost function. A general cost function consists of three parts: costs
to penalize the control error during the horizon, costs to penalize the control signal during hori-
zon and the terminal cost to ensure stability of the control at the terminal state. In the case of
the trajectory-tracking problem, a separate terminal cost in the criteria formulation is omitted
(included in the control error cost instead), as the output of system directly corresponds to the
state variables.

— — = T =
](NK, xKO,uKNIO) = DXy, QxAXy + Duy, TRyhuy

AuKN = ﬁKN - ﬁKN,O (55)

uKmin,N < Uk y < uKmax,N
where AX ., is the state deviation of future state variables X, from desired state variable X, ..,
i.e. AXy, = Xx, — Xy, Since the aim is to bring the state variables to zero (origin), the de-

viation state variables become, AX, = X,. The weighting matrix Q is positive semi definite

(Qx = 0) and matrix Ry is positive definite (R > 0).

Qk = diag (qu)

Vi=1toN
RK = dlag(RKl) } ! to K

The criteria consist of a cost for control effort and a cost for state variable deviation. The aim
of the trajectory tracking controller is to generate optimal control actions which brings the state
variables to zero over a finite time horizon Ng. The output of the system directly corresponds
to the state variables. The last diagonal element in the matrix Q, i.e. Qx, can be seen as ter-
minal state cost and can be tuned to achieve terminal state stability.
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Rewriting the criteria, eq (5.5) in terms of free and force responses by substituting eq
(5.3) and eq (5.4),

J (N Fi o B g) = X + X fo,N]T Quc [ + Xicpoe| + Dty Richtg
= [ jon + stu,kAuKN]T Qx [XK " stu,kAuKN] + Ay, TR Duy
- XKfr,NTQKXKfr,N + )_(Kfr,NTQKAuKNTSKxu,kT + Aul'ﬁvT‘S‘Kxu,kTQl’()_(th +
gy Sk Qi Mty + AT Ricbug
= )_(Kfr,NTQKXK e AT Sk QX + ’_‘fr,NTQKSKxu,k Auy, +
c m mT
+Auy, " (SKxu,kTQKSKxu,k + Rg) Aug

M
= Auy  "MAuy , + Aug,"m + mT Auy, + ¢

where,
m = SKxu,kTQK(SKxx,kka + Sk WKy, )
M = Sk QuSicyic T Ri
In case of the unconstraint control, the analytical solution is as follows,
Augy = —M'm
In case of the constraint control, the optimal control action is the solution of the quadratic pro-

graming problem, obtained by minimizing the following criteria.

rAnin] = Auyg T MAuy + 2mT Auy such that A,Au, < b, (5.6)
Uk

5.1.3 Constrains on manipulated variable

Considering the control input constraints of the successive linear model for a finite
horizon Ny,

Uk min S Uky S UK payx
UK min S AuKN + Uk o T UK, S Uk, (57)

UK pmin — uKN,O - uKN,r = Aul"N = Uk max — uKN,O - uKN,r

where u, is the last control action, u, = ux(k — 1) and uy,, .. is a vector of reference inputs

for the horizon. Deriving the inequality constraints for a horizon Ny,

I 0 UK max — UK _uKk,r
[ I - 1 ‘Au < UK max — Uko ~ UKpanr
k<| _ —
|1 0 | Uk min T Uk T Uk,
;.. _ -
— | UK min +uK0 +uKk.+N,r-
o

b
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and for the error-based model,

UK min = Uk = UK max
UK min = quf,N - (AuKN + uKN,O) = UK max (58)
U in T UKy ~Ukpry S “AUKY S U0 UKy o~ Uk ppy

UK max + Uk _quf,k

UK max + Ugy — quf,k+N

Auy < —
Uk pin T Ukg T UK pp g
| S | _ o
S [~ Ukpin — Uk + UK ff jesn
o
by

Figure 13 shows the control scheme of NMPC based on the successive linear (NMPC1) on LTV
model. The control scheme of the error-based models (NMPCy) is illustrated in figure 14.

Ve(tiction), B (tictian)

Wr(tk)
- A 4
| Xa(ty) Xl t) _
ui(t) MOebI ?4R](_))b0t ‘ + Predictor XKh(tk+N+1)
qut. eq (5.3-5.4)
x«(0)=x0
A
SK)(LI
Dug(ty)
Optimization solver
- Trajectory Planner eq (5.5) J
w=[X,, Yy, t.] eq(2.2-2.4) Tt J(NioXy Uk 1) <
A (QKIQKNIRK) (U&“ax,uKmin )

U (tictin)

Figure 13 Control scheme of trajectory tracking NMPC; with LTV model

Ve(tictien), W(tiction)

Wr(tk)
A4
Mobile Robot + Coordinate =
u(t Xa(t) X(t ) -
ltl eq (4.1) —>(B % }—> Transformation At Predictor | X, (tions)
x(0)=x0 B eq (4.8) eq (5.3-5.4)
Ay, (tk)
‘ y SKxu
- Optimization solver
Trajectory ui(ty) Feed forward uﬁ(tk)r\ eq (5.5)
——  Planner > control ‘\Z_/‘ J(NiXig, b, ) <«
W=leYot]]eq (2.2-24) eq (4.11) - Hi(t) (g N | (QQ, R
ea(tk)T ]

Ugr(titian)

Figure 14 Control scheme of trajectory tracking NMPC, with LTV model
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5.2 Trajectory tracking by state tracking control

5.2.1 Linear state tracking control design (Kanayama controller)

The proposed predictive controller is compared to the state-of-the-art state tracking
controllers whose design can be found in (Samson & Ait-Abderrahim 1991; De Luca et al.
2001; Kanayama et al. 1990). The state tracking controller can be designed with a linear feed-

back gain as,
Uy, = —Ks (ke (k) (5.9)
where K is the time varying feedback gain matrix in the form of,

—ky (k) 0 0

K (k) = 0 —sign(v)k, (k) —k3(k)]

€ R™""x (5.10)

The controller gains k4, k, and k4 are determined by comparing (pole placement method) the
closed loop characteristic polynomial with a desired closed loop characteristic polynomial in
the form of,
(A + 2{a) (A% + 2¢ar + a?)
which has constant eigenvalues (one negative real at —2¢a and a complex pair with natural
frequency a > 0 and damping co-efficient ¢ > 0). The controller gains can be then be chosen
as,
ki(k) = k3(k) = 2¢a

a? — w,(k)?

la(l) = — "

The gain k, will go to infinity as v,.(k) — . In order to avoid this, gain scheduling can be

designed by letting a = a(k) = {/w,(k)? + bv,.(k)?, substituting,

ky(k) = ks (k) = 28\ w, (k)% + b, (k)? ; kp (k) = blv. (k)|
where the factor b > 0 can be seen as an additional degree of freedom.

Even the controller gains are chosen in such a way that the closed loop poles are at the
left half of the s-plane, while the controller is still non-linear and time varying. Therefore,
asymptotic stability of tracking error is not guaranteed. The control scheme is the same as that

in figure 12.
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5.2.2 Nonlinear state tracking control design (Samson controller)
Considering the nonlinear feedback control law (Samson & Ait-Abderrahim 1991) as,

—ky (k) 0 0
0 v (T2 ks ()

e

K. (k) = € RM* (5.11)

The controller gains k;, k, and k5 are determined by the same method as in the linear control

design.

ky (k) = k3 (k) = 203w, (k) + bv,(k)? 5 kp = b

The main difference between the linear and nonlinear state tracking controller is that, global
asymptotic stability can be proved in the case of nonlinear controller by the Lyapunov analysis.
See (Samson & Ait-Abderrahim 1991) for the proof.

5.3 Simulation results

The inputs are time parameterized reference points, which are interpolated to generate
smooth trajectory points by linear interpolation or spline interpolation by Matlab function
interpl. The linear interpolation generates sharp turns, which results in very high reference
velocities (which may not be practically unrealizable). The trajectory planner generates the
reference parameters — orientation, tangential and angular velocities. Simulation experiments,
with a continuous time model eq (4.1) for a real robot, were performed. Total simulation time
was 30s with a sampling time of 100ms. Four different controllers were tested — NMPC with
successive linear model (NMPCy), NMPC with error tracking model (NMPC), Kanayama

feedback controller (KC) and Samson feedback controller (SC).

Trajectory tracking NMPC, of the mobile robot was simulated: by using the model in
the form of eq (4.7), predicting the future states with LTV model eq (5.3-5.4), optimizing the
cost function in the form of eq (5.5), and defining the constraints in the form of eq (5.7). The
optimized control actions for horizon Ny, were calculated and the first control action was applied
to the system. Only NMPC with LTV model was considered, as the results obtained with non-
linear model, eq (4.1), were the same. NMPC: uses error based model, eq (4.12), prediction
model, eq (5.3-5.4) and constraint definition, eq (5.8). The control actions for state feedback
tracking controllers KC and SC were calculated by eq (5.10) and eq (5.11) respectively. The

input constraints were considered as,

-1m/s Svg<1m/s ; —1rad/s < wg < 1rad/s (5.12)
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Twelve different simulation experiments (S1-S12) have been performed with different
controllers, initial conditions, interpolation methods, tuning parameters and constraint
condition. A different initial condition refers to the pose of the robot, which is different from
the reference pose. Table Il shows the simulation results of trajectory tracking with different
controllers. The simulation results with parameters listed in the table are shown in figure 15-
18. Not all the figures of the simulation experiments are shown, as some of the results with
different controllers are not significantly different. The results are comparable with the sum of

squared error (SSE):

SSEyy = lxg — x> + lyg — yr|?; SSEg = |05 — 6,

Three sets of experiments were conducted — linearly interpolated trajectories, constraint
control and different initial conditions. In all the cases, NMPC: showed more SSEs when
compared to other controllers. The SSE of control responses of linearly interpolated trajectories
were almost same, even though NMPC; is outperformed by all the other controllers. The
controllers were able to generate target velocities with respect to the reference velocities. In
case of constraint control, state tracking controllers were able to track the robot closer to the
reference trajectory. Constraints in the form of eq (5.12) were considered. When the initial

conditions were different, NMPC performed better than all the other controllers.

The trajectory tracking abilities of NMCP1, KC and SC were comparable in all the
experiments without much difference in SSE’s. It can be noted that, with the same tuning
parameters, the NMPC; trajectory-tracking controller was able to track the robot closer to the
reference trajectory. This is the main advantage of NMCP> over other controllers, wherein case
of other controllers, the tuning parameters have to be tuned separately for different scenarios.
This shows that NMPC with error-based model is more suitable for trajectory tracking

irrespective of the reference trajectory scenario.
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Table Il Simulation experiments — Interpolation method, controller, tuning parameters and SSE

Control
Simulation ) ) Constraints | Interpolation Initial
] Controller Tuning parameters . Quality
Experiment Ut e = ~Ukmin Method Condition
[SSExy,SSEG]
R Q Qn
S1 0 -- Linear -- [0.0059 2.6030]
101
S2 NMPC, I I [1 1] Sof [0.2668 2.8050]
pline
S3 102 10%*1 -- [0.1-0.10] | [0.5322 89.375]
S4 -- Linear [0.0192 0.0004]
S5 NMPC> 10*1 I I [1 1] Sof [0.0343 2.3770]
pline
S6 - [0.1-0.10] | [0.1736 57.371]
b {
S7 100 - Linear [0.0014 0.0067]
S8 KC 0.7 [1 1] [0.0101 1.4151]
50 Spline
S9 -- [0.1-0.10] | [0.2837 67.770]
S10 100 -- Linear [0.5470 0.0918]
S11 SC 0.7 [1 1] [0.0108 1.4166]
50 Spline
S12 -- [0.1-0.10] | [0.3187 74.651]
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Figure 15 Simulation experiment S1: Linear interpolation, unconstraint NMPC with successive linear model-
reference trajectory, reference inputs, tracked trajectory, control actions
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Figure 16 Simulation experiment S5: Spline interpolation, constraint NMPC with error tracking model —
reference trajectory, reference inputs, tracked trajectory, control actions
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Figure 17 Simulation experiment S8: Spline interpolation, constraint Kanayama controller — reference
trajectory, reference inputs, tracked trajectory, control actions
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Figure 18 Simulation experiment S12: Spline interpolation, unconstraint Samson controller with different initial
condition — reference trajectory, reference inputs, tracked trajectory, control actions
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Figure 19 shows the initial tracking of the WMR in the case where the robot’s initial
pose is different from the reference trajectory — since in this example, the robot is oriented in
the opposite direction. NMPC; converges faster to the reference trajectory compared to all other
controllers, followed by state tracking controllers. It is also interesting to note that the NMPC1
initially drives in the opposite direction to the reference orientation and eventually converges
with high initial tracking errors.

Comparison of Robot Trajectory with different controllers
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Figure 19 Comparison of kinematic trajectory tracking controllers with different initial conditions

The significance of simulation experiments with linear interpolation is questionable.
The linear interpolation generates very high velocities (which is practically unrealizable with
most of the robots) especially in sharp corners. The tracking of linearly interpolated trajectory
by controllers shows the ability of controllers to work in different operating regions. In other
words, simulations with linear interpolation are employed to check whether, the robot is able to

track the trajectory at very high and low step changes.
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6. DYNAMICS MODELLING OF DIFFERENTIAL DRIVE
WMR

Dynamics is the study of forces and torques and their effect on motion, as opposed to
kinematics, which is the study of motion without considering the causes of motion. Dynamics
modelling is essential in the case of WMR, if an accurate control of robot is required. There are
mainly two modelling methods in literature - Lagrangian approach and Newton-Euler approach.
In the Lagrangian approach, a multibody robot is treated as a single system and the forces are
expressed in terms of energies — kinetic and potential energies. In the Newton-Euler approach,
each body/link is considered separately, a free body diagram is drawn, and balance of forces
and torques acting on each element is considered. The Lagrangian approach is best suited for
study of dynamic properties and analysis of a control scheme, whereas Newton-Euler is suitable
for implementation of the control scheme. The Newton-Euler based modelling approach is

considered in the following text.
6.1 Mathematical modelling of dynamics of WMR

The differential drive mobile robot is assumed to have two wheels connected with
permanent magnet DC motors, powered from a common voltage source and are independently
controlled. The motors are connected to the driving wheels through a gearbox with the same
gear ratio. An ideal gearbox (nonlinearities are neglected) is considered, which reduces the
linear speed and boosts the torque. The chassis is firmly supported by a castor wheel with no

influence on chassis motion (resistance force on motion is neglected).

The mathematical model of the robot, consists of three relatively independent parts: the
dynamics of the permanent magnet DC motor, chassis dynamics (dependency between
translational and rotational velocities of the chassis reference point on moments acting to
driving wheels), and kinematics (influence of motor speed to translational and rotational
velocities). A chassis reference point is the point in the robot at which kinematics of the robot
is considered; usually it is placed at the center of the axis joining the wheels. In the following
formulation, this chassis reference point can be placed anywhere in the axis joining the wheels,

depending on the center of gravity of the robot.

6.1.1 DC motor dynamics
An equivalent circuit of an ideal permanent magnet DC motor is shown in figure 20. It
consists of resistance R, inductance L and magnetic field M. The commutator is not considered.

Each motor is independently controlled by its own supply voltages U,, U, taken from a common
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voltage source U, through control signals u;, ug. The rotor generated back EMF, which is in
reverse polarity and is proportional to rotor angular velocity. The torque of motor is

proportional to the current i.

Figure 20 DC Motor Wiring

The Dynamics of the permanent magnet DC motor can be derived from balancing of

voltages (Kirchhoff’s law) and balancing of moments. From Kirchhoff’s voltage law, we can

derive,
Riy + Ry (i + i) + LS = u U — Kaw, (6.1)
RiR +Rz(l.L+iR)+L%:uRUO—K(UR (62)
where,
R motor winding resistance [2]
R, source resistance [€2]
L motor winding inductance [H]
K back EMF constant [kg.m?.s72. A™1]
U, source voltage [V]
Ug, Uy, control voltages of right and left wheels [—]
i current [4]
Wg, Wy, right and left motor angular velocities [rad.s™1]

By considering the balance of moments — moment of inertia M, rotational resistance
proportional to rotational speed (mechanical losses) M, and load torque M, caused by magnetic

field which is proportional to current.
Mg+ M, + M, = My,
Writing in terms of right and left wheel drives,

de

]?‘I'ker"'ML:KiL (63)
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dwp

]F+kTwR+MR:KiR (6.4)
where,
Ji moment of inertia of the robot [kg.m?]
k, coefficient of rotational resistance [kg.m?2.s71]
M,, Mg load torques on left and right wheels [kg.m?.s72]

6.1.2 Chassis dynamics

Chassis dynamics is defined with a vector of tangential velocity vy acting on a chassis
reference point and angular velocity wg (constant at all chassis points). The chassis reference
point B is the point of the intersection of the axis joining the wheels and center of gravity normal
projection — see figure 21. Point T is the general center of gravity — usually it is placed at the

center of the axis joining the wheels.

Figure 21 Chassis Scheme and Forces
The two forces acting on the wheels, F; and F, can be replaced with a single force Fy
and torsion torque My acing at reference point B. The chassis parameters are wheel radius r,
total mass m and moment of inertia J,. with respect to the center of gravity, located at a distance

Iy, lg, 1, as shown in figure 21.

By considering the balance of forces (forces on drive wheels) F;, Fg, inertial force F,
and resistive force F, which is proportional to tangential velocity of robot. The balance of force
influencing linear motion is,

FL+FR+F.'S‘+FO :0
M M d
%+%—kvv3—m%=0 (6.5)
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where,

m mass of robot [kg]

k., resistive coefficient against linear motion [kg.s™1]
Mg, Mgg torque on left and right drive [kg.m?.s72]

Vg tangential velocity [m.s™1]

r radius of wheels [m]

By considering balance of torques, with torque generated by drives Mg, Mgg, chassis

momentum My, torque due to Euler force My and torque due to resistive force M,,

MBL+MBR+MO+MT+ME=0

Mg, . | Mgg . d d
—%lL'i'%lR—kw(UB—]TstB—lTZm%:O (66)
where,
lr, 1L distance to right and left wheel from point B [m]
ly distance to center of gravity from point B [m]
ke resistive coefficient against rotational motion [kg.m?.s71]
Jr moment of inertia with respect to rotational axis at center of gravity
[kg.m?]
wp angular velocity [s~1]

By applying the parallel axis (Huygens—Steiner) theorem, the moment of inertia j; with respect

to the rotational axis at reference point B can be derived as,

Jp = Jr +mlz’
6.1.3 Relationship between rotational speed of the motor and chassis movement
The equations governing behavior of motors (currents and motor speeds) and the
behavior of chassis (translational and rotational movement) are only connected through torques
of motors. Let the motors be connected to the chassis through an ideal gear box with gear ratio

pe- The nonlinearities (saturation, backlash, friction, dead zone) of the gear box are neglected.

The gear box reduces the angular velocities of motors (w,, wg) to output angular
velocities (wg, wgg) With respect to the gear ratio. Similarly, the torques of motors (M, M) are
increased to output torques (Mg, MgR).

wy wpr

J— w —
Pe oR Pc

WgL =

Mg, = Mypg Mggr = Mgpg
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Let both the wheels have same radius r, and their peripheral speeds v,,v; depend on output

angular velocities of the gear box according to the following relation,

wy,
UL = r(l)GL =r—
be
WpR
Vp =TWgr =T —
be
Mg, = VL/lL MWpr= vR/lR ® K VR

vy = (vlgtvrly) / (11+1g) -
W = MWpr — MpL -7

o ””””’ L ,, l COB
IC 2Tmm— X ==-——-- 1. I 1r ?

Figure 22 Linear and Angular Velocity Recalculation

The tangential velocity vy and angular velocity wg at chassis reference point B can be
recalculated from the peripheral velocities v,, vg. Assuming both the motors have same axis of
rotation and the peripheral velocities will hence always be parallel. From the theorems of

similar triangles, depicted in figure 22, the tangential velocity and angular velocity at point B

are given by,
_ v lR+VRIL _ r
VB = = pe i) (lLwgr + lgwy) (6.7)
_ VUp _ VRr—VL, _ r _
Wp = x+1, - 1 +1R - pg(lL+lR)( Wy t wR) (68)

From the tangential and angular velocities, the position in Cartesian coordinates (xz,y,) and

orientation of the robot 85 with respect to x-axis can be calculated from the basic kinematic
nonlinear equation.
Xg = vg cosfp

Vg = Vp sinbp (6.9)
Q.B = (l)B

6.2 Combined state space model

The dynamic parts consist of four differential equations, eq (6.1-6.4) describing the be-
havior of motors, two differential equations, eq (6.5-6.6) describing the chassis dynamics and
two algebraic equations, eq (6.7-6.8) which relates tangential and angular velocities of chassis

to the peripheral speed of motors. From this, eight state variables describing the current state of
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left and right motors (currents, motor speeds and load torques) and chassis parameters (tangen-

tial and angular velocities) can be derived.

The differential equations eq (6.5-6.6) and algebraic equations eq (6.7-6.8) are rewritten

by introducing the “reduced” wheel radius r; and total moment of inertia J; as,

r 2
g = — Jg =Jr +mlr
Pc
p—GM +p—GM —kyv —mdﬁzO
r LT TROTVEB dt
ML+MR_T'GkaB_erﬁ7_f:0 (6.10)

. Pg . Pg dwp
_lLTML + lp TMR - kwa)B - UT + mlTZ)W =0

_iLML +iRMR —Tka(UB —rG]Bd;)—tB: 0 (611)
Rewriting the algebraic equations,

Vg = ﬁ(l}qwl‘ + leR) (612)

w =
B 1+

These six differential equations, eq (6.1-6.4,6.10-6.11), and two algebraic eq (6.12-6.13) con-
taining eight state variables represent a mathematical description of the dynamic behavior of
ideally differentially steered mobile robots, with losses linearly dependent on the revolutions
or speed. The control signals, u, and ug, that control the supply voltages of the motors are the

input variables.

The calculation of steady-state values for constant engine power voltages is given
below. A calculation of steady state is useful both for the checking of derived equations and for
the experimental determination of the values of the unknown parameters. The steady state in

matrix representation is,

R+R, R, K 0 0 o0 0 0 .
R, R+R, 0O K 0 O 0 0 [[u] [Uots]
K 0 k., 0 -1 0 0 0 IR Uoug
0 K 0 -k, 0 -1 0 0 wy, 0
0 0 o o0 1 1 -1k, O 1(\U4R _| 0 (6.14)
0 0 0 0 -l I 0 —rgk, ||Me 0
0 0 Lk L, o o -—=uo oo M 0
R L G Vg 0
0 o -1 1 o o o —xhlesd L0
TG i
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The eq (6.1-6.4,6.10-6.11) can be reduced to a state-space model with four state variables by
exclusion of the dependent state variables (M, My, w;, wg). The six differential equations can
be reduced to four by substituting eq (6.12-6.13) into eq (6.10-6.11), by eliminating the load
torques M, and Mg, and by substituting eq (6.1-6.4) to eq (6.10-6.11) to arrive at four differential

equations eq (6.15-6.18). Introducing the following parameters, for simplification,

o=k # B gz BT )
=
c, =kl +% Cr = ki lg +%

dL=]lL+% dR=]lR+% )

The reduced linear equations of the model consist of the following equations,

dij, _ urUp—Kwp—(R+R;)iL—R,ig

dt L (6.15)
% _ uRUO—KwR—(LR+RZ)iR—RZiL (6.16)
% = m(dR [K(i, + ir) — apw, — agwg] — br[K(=1i, + lpig) + cow, — crwg])  (6.17)
Lok = - (dLIK (i + ir) — apwy — agwg] + b [K(=1 i, + [gig) + cow, — crwg])  (6.18)

dt ~ bpdg+bgrdy

and the output equations are given by the algebraic equations eq (6.12-6.13). The dynamics of

differential drive WMR can be represented in the general state space model as,

XD = ZDxD + EDuD

b (6.19)
Yp = CpXxp
i
_ i [ _[VB
Xp = wy, Up = [UR] Yp = [(UB]
WpR
with system matrices as,
R+R, R, K .
L L L
R, R+R, . K
- L L L
4p = K(dg + bgl,) K(dg — brlg) dra;, + bgcy, drag — brcg
bydgr + brd; b, dp + brd; b dg + brd; b;dgr + brd;
K(d, —byl,) K(dg+bplg) doa, —bc diag + bycg
bydp + bpd, bodg + brd,  bidg + bpd,  bydg + bpd,
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Uo
L 0] [0 o Ir7g lL76 ]
= _| U | = _| I+l 1+ 1R
I [0 0 __'6G G
0 o0 I+l 1+ 1R
0 O

6.3 Parameter identification and estimation

Typical chassis parameters are given in Table I11 and typical motor parameters in Table
IV. The motor parameters can be found in the data sheet or can be identified by experiments,
see (Cong et al. 2010; Saab & Kaed-Bey n.d.; Vollmecke 2013). The chassis geometric
parameters can be directly measured from the robot. The other chassis parameters (moment of
inertias and coefficient of resistances) have to be identified either experimentally or
approximated with typical values. These values are chosen so that they roughly correspond to
the values of a real robot. Assuming the robot is symmetrically shaped, the center of gravity is
located at the line of symmetry and hence the chassis reference point B, is at the center of axis

joining the wheels.
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Table 111 Chassis Parameters

Notation | Value | Unit Description
I 0.080 m distance of the left wheel from point B
lp 0.080 m distance of the right wheel from point B
It 0.050 m distance of center of gravity to the axis joining the wheels
Ik 0.100 m distance of caster wheel to the axis joining the wheels
r 0.035 m radius of driving wheel
M 1.250 kg total weight of the robot
Kv 0.100 kg.s?t coefficient of the resistance against robot linear motion
It 0.550 kg.m? ir?;)ment of inertia of robot with respect to center of grav-
Ko 1.350 | kg.m%st | coefficient of the resistance against robot’s rotation
Table 1V DC Motors Parameters
Notation | Value Unit Description
R 2.000 Q motor winding resistance
L 0.015 H motor inductance
K 0.150 | kg.m?s2.A* | back EMF constant
Rz 0.012 Q source resistance
Uo 8.000 \Y source voltage
] 0.015 kg.m? éz;e;lbgz)ment of inertia of rotor and
| ooz | ket | O orana geabor
Pc 25 -- gearbox transmission ratio
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6.4 Dynamics model verification by open loop simulation

The linear state-space model, eq (6.19), is discretized with a sampling time of, Ts =
0.01s. The dynamics model output (tangential and angular velocities) are inputs into the
nonlinear kinematic part eq (6.9) to derive the position and orientation of the robot — see figure
23. The initial location of mobile robot is assumed at the origin with an orientation in the

direction of the x axis.

4 Uo, Rz, R, L R
K, k;, J
m, Jr, Ko, ke[l Irs br 1| ; P Xg(t
u ()4 Linear Dynamic — G—p{ Non linear 0
o > kinematic
del P ys(t)
Ur(t) 1+ eq(6.19) — e Mmode
(0, in() © =09 > 800
oL(t), or(t)
ML(t), Mr(t)

- J

Figure 23 Scheme of dynamics model for open loop verification

Figures 24-26 show the response of the three simulation experiments.

i.  Only translational motion (figure 24) — both the motors are powered with the same
control voltage (8V), as a result no steering (wg = 0) is occurred, robot moves in a
straight line (practically not possible because of friction, slipping, motor nonlinearities
etc.)

ii.  Only rotational motion (figure 25) — only right motor is powered (8V) as a result the
robots rotates in place.

iili.  With both translational and rotational motion (figure 26) — the motors are driven with

a rectangular wave control voltage with amplitude of 8V.
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Figure 24 Dynamics model verification — robot with only translational motion
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Figure 25 Dynamics model verification — robot with only rotational motion
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Figure 26 Dynamics model verification — robot with both translational and rotational motion
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An illustrative example of dynamic behavior when both the motors are driven by signals
with same amplitude is given in figure 27. The left motor is driven by signals with 10s time
period and 50% duty ratio, and the right motor with same duty ratio but with a time period of
20s. The saturation of different state variables which are the constraints of the real system can
be inferred from the figure. It is not possible to excite above that level. e.g., it is important to
consider these saturation levels for generating feasible trajectories for trajectory tracking
control of robot.

Control voltage, u Control voltage, up
10 10
= =
5 5 jm 5
5 5
e} o
o} o]
0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45
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E oo0s5f g o0
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Figure 27 Dynamic behavior of robot — currents and motor speeds
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7. VELOCITY TRACKING OF WMR - DYNAMICS
CONTROLLER

In chapter 6, we discussed the mathematical modelling of the dynamics of a WMR
considering the motor dynamics and chassis dynamics. A linear state space model of mobile
robot dynamics has been derived with motor currents and motor speeds as state variables, motor

control variables as manipulated variables, and linear and tangential velocities as outputs.

This chapter presents the mobile robot dynamics (velocity tracking) controller. The aim
of dynamics controller is to generate control voltages (u;, ug) to the motors for controlling the
tangential and angular velocities (vg, wg). A general block diagram of the state space controller
is shown in figure 28. The set points are the reference tangential and angular

velocities (v, , wp,). Three controllers are studied: discrete PID, Linear MPC and static
feedforward control.
The dynamics of WMR is a TITO system with four state variables (see section 6.2).

Discretizing eq (6.19) with a sampling time of T, the discrete linear state space model of

dynamics of mobile robot is,

xp(k+1)=Apxp(k) + Bpup(k)

Yo(k) = Cpxp (k) o
i, ()
in(00) u, (k) ve(h)
xp (k) = w (k) up (k) = uR(k)] yplk) = [“’B(k)]
wg (k)

where Ap, B, Cp, are discretized version of matrices in eq (6.19). The only measurable variable
is the motor speeds (w;, wg). The state variables and output have to be estimated with state

estimation.

[up ugl

[Ver W, DYNAMICS .| moBILE |[Vs WeXs Vs O]
CONTROLLER ROBOT ’
Y
liLirwr wi] A 4
STATE |

ESTIMATION | [y, wg]

Figure 28 General block diagram of dynamics velocity controller
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7.1 Discrete-time PID control

The dynamics model is a multivariable system, where direct controlling of the velocities
is not easy. The multivariable system can be decoupled in terms of motor speeds and can be
controlled easily by PID control or by a steady state gain. Tangential velocity and angular ve-

locity equations, eq (6.12-6.13) are rewritten to derive motor speeds as,

[ li7g lpre ]
[UB,r]z U, +1lz) (U +1R) [wL,r]

Wp _ TG TG WR r
"+ @+l
Z
WDrr1 o _1[VBr
[wR,r] =Z ' wB,r] (72)

Two PID controllers for controlling the reference motor speeds achieve the target velocity

tracking. The control inputs are motor control voltages as can be seen in figure 29.
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%
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wR,r Ur
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+ -

Figure 29 Block diagram of PID wheel speed controller
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The standard parallel form of a continuous time PID (Proportional-Integral-Deriva-
tive) controller is given by,

u(t) = Kpe() + K; f, e()dt + Kpé(t)
where u is the control input and e is the control error, e(t) = w(t) — y(t)

There are several forms of discrete PID controller in literature, depending on the
discretizing method. The discrete PID difference equation by Simson’s method of numerical

integration with a sampling time of T, is,
u(k) =ulk —1) + qpe(k) + gre(k — 1) + qye(k — 2) (7.3)

where,

K Kp
qO = (Kp +7TS +TS)
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7.2 Mobile robot dynamics Linear MPC (LMPC)

The formulation of LMPC is the same as that discussed in section 3.1. Considering the

discrete time dynamics model as in eq (7.1), the prediction model is,

XDpsn+1 = SDxx®Di T S Upy
Yoy = SpyxXpi T Spy Uy

where,
[ uy, (k) [ vg (k)
ug (k) wg (k)
| : H yDN |
L, (k + )| |vB(k+N)|
lug (i + M) lwg (k + M)

Decomposing into free and force responses, the free response is given by,

foT‘(N + 1) = SDxxxDO + SDxuuDN’O

(7.4)

and the forced response is,
foO(N + 1) = SDquuDN

nyo,N = SDyuAuDN

Up, qur,k
where,  up, = ' ] sUpyo = 5 yAupy =upy —uUpy
UDpsn UD fr e+
SDxx = ADI\H-1 € RMxXNx
SDxu = [ADNBD ADN_lBD BD] € RnxX(N+1)*nu
[ o]
CpAp
SDyx CDADZ € ]R(N+1)*ny><nx
CDADNJ
0 0 0 0 0
CDBD 0 0 0
Sp.. = CpApB) CpBp 0 0 € R+ myx (N1
e CpAp*B) CpApB) CpB)p 0
_CDADN_lBD CDADN_ZBD CDADN_SBD vse 0_
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Cost function

J(N xp g up ) = AxpT(N)QpyAXp(N) + 3T Qpey + bty "RpMup,
Axp(N) =xp,,(k+N+1)—xp(k+N+1)
€en =Wpy — Ypy
Aupy =upy —Upy,
quin,N < Upy < quax,N

The cost function is same as that discussed in section 3.3 with penalization on terminal

state error, control error and control effort; with weighting matrices Qp, @: Rp respectively.

The desired terminal state xj, , is derived from steady state output wy, as,

xp,,(k+N+1) = [(I—Ap) 'Bpl[Cr(I — Ap) 'Bp] 'wp(k + N + 1)

The optimal control action is the solution of a quadratic programing problem by minimizing

the criteria.

min/ = Aup"MAup + 2mT Auy, Such that 4,Auy, < b,
u

where the matrix A4, and the vector b, are the constraint matrix of control input,

UD 1nin < Upy < UD 1nax
UDmin = AuDN + uDN,O = UD max

Up ppin — uDN,O = AuDN = UD pmax — uDN,O

7.3 Static feedforward control (with steady state gain)

The standard state space model in discrete time is given by,

ka+1 = ADka +BDuDk

At steady state, xp, ., = xp,

(I —Ap)xp, = Bpup,

Xp, =W _AD)_lBDuDk

Assuming at steady state, system output yp,, is equal to set-point wp,,,

Ypj =Wp, = Cp(I = Ap) 'Bpuy,

_ -1
Upy = [Ch(I—Ap)™'Bp)] Wpy
ZSS

where Z, is the steady state gain.
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7.4 State estimation / observer

Since the only measurable variable is motor speeds, the remaining state variables
(currents) have to be estimated with state estimation. A general block diagram is depicted in
figure 30. The dynamics model is rewritten into an estimation model incorporating the
measured variable as,

x.(k+1)=A.,x.(k) + B,up(k)
Ye(k) = Cox.(k)
where x, and y, are the estimated state variables (currents and motor speeds) and outputs

(7.7)

(velocities), and the matrices A, and B,, are same as that of dynamics model eq (7.1) and,

Assuming that the system is observable, then an estimation feedback gain K can be designed

which ensures the estimated state x, will asymptotically approach the actual state x,.

The estimated state x,(k + 1) is then described as,

xXe(k+1) =Ax.(k) + Boup(k) + K[yp(k) — Cox (k)]

= (A, — KC)x, (k) + By (k) + Kyp () (7.8)

where the observer gain K, can be determined as a solution of the dual task of an infinite horizon

LQ control problem. In Matlab, by minimizing the cost function,
min/ = Yi2,[Axp" ()QeAxp (1) + ¥p (D) = ¥e(D) Re(Yp (D) = ye ()] (7.9)

where Ax, = xp (k) — x.(k) and Q. and R, are positive semi definite matrices.

PLANT

Up(K)]

OBSERVER

Figure 30 General block diagram of state observer
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7.5 Simulation results

The motor and chassis parameters are chosen as listed in Table I1-1V. Assuming the
wheel speeds are measurable (by wheel encoders), the system outputs (tangential and angular
velocities) are calculated from these values with a sampling time of 10ms. All the state variables
are estimated as in eq (7.8). The observer gain is calculated in Matlab, K
= dlgr (A7, C.7, Q.,R.) with matrices Q. and R, as identity matrices. Figure 31 shows the
simulation results of state estimation with zero initial condition for estimated state variables
and system states with constant values (both motors are powered with 8V i.e. only linear
motion). The dashed line represents system states and the bold line represents estimated state
variable. The wheel speeds are calculated from reference tangential and angular velocities by
eq (7.2).
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— w
2] — — ~
= ©
E, 0.05 g 0
0 o
>
0 3 -0.01
0 01 02 03 04 0 01 02 03 04
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- 1 _CC 1
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0 01 02 03 04 0 01 02 03 04
Motor speed, w, Motor speed, w
_ 500 — . 500 —
€ €
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i o«
2 2
0 0
0 01 02 03 04 0 01 02 03 04
Time [s] Time [s]

Figure 31 Dynamics state estimation— State variables and outputs

The reference velocities were tracked by two discrete PID control in the form of eq (7.3).
The reference wheel speeds were calculated by eq (7.2). The controller parameters of the mobile

robot dynamics control with PID controllers were K, = [0.5 0.5], K; = [4.5 4.5].

LMPC was performed by calculating the predicted state variables and outputs as in eq
(7.4), using the optimization function as in eq (7.5), the optimized control sequence for a hori-
zon length of N, was calculated, only the first control action was applied. Constraints for input
were considered with -8V < Uyu, < 8V; -8V < Uyup < 8V. The controller parameters

were Nj = 5,Q, = diag(1,1), Ry = diag(0.1,0.1),Q, = [0.10.10.001 0.001].
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The sampling time for the PID controllers was 10ms and that of LMPC was 100ms. In
the first simulation experiment, the set-points were a series of step changes in velocities. Figure
32 shows the comparison between PID and MPC control responses. There weren’t significant

differences in the control response, though MPC showed slightly better performance.

In the second simulation experiment, the reference velocities for a trajectory were gen-
erated by an open loop simulation as discussed in section 6.4. Figure 33 shows the system re-
sponses of the two control approaches. Constraints were applied to the input for MPC. Figure
34 shows the control actions, motor currents and motor speeds of MPC.
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Figure 32 PID vs LMPC - Step Response
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Figure 33 PID vs LMPC control responses (solid line — simulated, dotted line — reference)
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The main advantage of MPC over PID control is the possibility to consider constraints
(real physical constraints) when generating the required control action with respect to current
and future states. As well-known problem of MPC implementation - high computational re-
quirement, which makes it harder to work with faster systems. The designed LMPC for dynam-
ics of mobile robot with a sampling time of 200ms (much higher when compared to PID -10ms)
requires less than 4.5ms average CPU (for Intel core i5-4310M, 2.70GHz CPU) time for every
control step, which clearly shows the possibility of MPC in real application. Furthermore, the
computation time can be considerably reduced by coding into C code (automatic code genera-

tion in SIMULINK) and an offline code will help to work with real systems.
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8. TRAJECTORY TRACKING OF WMR - KINO-DYNAMICS
CONTROLLER

In section 5, we discussed trajectory tracking by kinematic controllers by assuming a
perfect velocity tracking low-level controller is present, which will generate the desired
velocities. This is followed by an assumption that the dynamics of the robot is very fast, and
the low-level controller is able to generate motor voltages to make the robot drive with required
velocities. However, in practice, this is not always the case, especially when the robot’s
dynamics is slow and there are physical saturation limits. This brings us to consider dynamics
of the robot as well. In section 6, we discussed modelling of the WMR considering motor and
chassis dynamics. Dynamics controllers were designed in section 7, considering the robot’s

parameters and constraints.

To begin with, let us consider a situation when the robot’s dynamics is slow and what
happens when we assume ‘perfect velocity tracking’ ability of low-level controller. A
feedforward controller is replaced by a low-level controller to see the effect i.e. by considering
the dynamics of the WMR. Figure 35 shows the control scheme with static feedforward control
as a low-level controller. As discussed in section 7.3, the control actions (motor voltages) by

feed forward control, eq (7.6) is given by,

Upy = Zss_lek
where Z. is the steady state gain and,

_ [uL(k) : _ [Us,r(k)

2k = {ug ()] Pk = |wp (k)

[v u)r]T

Y

(xvetd” | trasecTory | =BV 00| qnemaTic | erwsd'|  STATIC [uud" | moBiE  [Xs Vs 8sl'
> ——— FEEDFORWARD ———»|
PLANNER CONTROLLER CONTROLLER ROBOT

A

Figure 35 Block diagram of static feedforward dynamics controller

Figure 36 shows the trajectory tracking response of the mobile robot with NMPC; as
kinematic controller (parameters as in section 5, simulation experiment S4) without considering

constraints on velocities and motor voltages. As can be noted in the figure, large tracking errors
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are visible even without considering the constraints on a low level and with the same initial

conditions. This shows the importance of feedback controllers at the low level.
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Figure 36 Trajectory tracking response with static feedforward control as low-level controller without
considering constraints.

8.1 Trajectory tracking with Kino-Dynamics controller

The trajectory planner generates the reference velocities, position and orientation with
the information on time parameterized reference waypoints. The trajectory tracking is done at
two levels — kinematic control and dynamics control. A general control structure is shown in
figure 37. The high level consists of a kinematic controller with feedback of position and
orientation (overhead camera). The outputs of the kinematic controller are reference velocities
(vr B, wr,3) Which are the inputs to the low-level controller. In dynamics control, the motor and
chassis dynamics and constraints of the mobile robot are considered. The measurable variables
for the dynamics part are motor speeds (measured by encoder). The output of the dynamics
controller are motor voltages with respect to current and reference velocities. The constraints

on velocities were considered as,

—-0.05m/s <vp <0.05m/s ; —0.35rad/s < wg < 0.35rad/s (8.1)
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Figure 37 General control structure of Kino-Dynamics controller

8.1.1 Trajectory tracking with low level discrete PID controller

A feedforward controller is replaced with discrete PID controller, eq (7.3), at low level,

whose design is discussed in section 7.1.
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Figure 38 Block diagram of Kino-Dynamics controller with PID as low-level controller

The low-level PID controllers track the reference motor speeds which are calculated
from the reference velocities, eq (7.2) - see figure 38. The measured wheel speeds are fed back

to the control loop. The PID controllers are sampled at much high frequency (Sampling time

10ms) than the kinematic controller (100ms). The parameters of PID controllers are the same

as discussed in section 7. Figure 39 shows the simulation results with Kanayama Controller

(KC) as the high-level controller and PID controller as the low-level controller. Constraints

were considered for the low-level controller, =8V < Uyu, <8V ; -8V < Uyugr < 8V.
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Figure 39 KC-PID trajectory tracking with constraints — Reference vs tracked trajectory, speeds and velocities,
control voltages
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8.1.2 Trajectory tracking with low level LMPC

LMPC is considered as a low-level controller where the set points are obtained from the
output of the kinematic controller. The main advantage of Kino-Dynamics LMPC, in contrast
to other classical controllers, is the flexibility in usage of the information about future set-points.
In the case of NMPC as a kinematic controller, the velocities control inputs w;, (output of
kinematic controller, y,) are vector of velocities calculated from optimal control actions u (i),
vi={12,..,Ng}. This future set-point information can be used either as future set-points

and/or can be used to calculate the terminal state for low-level controller.

The design of LMPC is discussed in section 7.2. The dynamics model consists of
currents and motor speeds as state variables. The state variables are estimated, as discussed in
section 7.4, from the measured motor speeds. The objective function of LMPC consists of costs
to control effort, control error and terminal state error. Figure 40 shows the general block

diagram of MPC as a low-level controller.
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Figure 40 Block diagram of Kino-Dynamics controller with LMPC as low-level controller

The simulation experiment of trajectory tracking of WMR with a Samson controller, eq
(5.11) as the kinematic controller and LMPC as the low-level dynamics controller was
performed. The set-points for LMPC controller were reference velocities (v, wg ) which were
kept constant during the entire horizon. There are several options for choice of terminal state
calculation — e.g. use the reference velocity from the kinematic controller or use the reference
velocity from the trajectory planner. In the simulation experiments, reference velocity from the
trajectory planner was chosen and the reason for this choice is explained in the forthcoming

section.

The controller parameters of low level LMPC were N, =5,Q, = diag(1,1),Rp, =
diag(0.1,0.1),Qy = [0.1 0.1 0.001 0.001] and sampling time of 100ms. Velocity constraints as in

78



eq (8.1) were considered. Figure 41 shows the result of the SC-LMPC trajectory tracking

simulation experiment - reference and tracked trajectory and velocities, estimated currents,

control voltages, and the measured motor speeds. It can be noted that the performance of the

controller was better than with PID controller as a low-level controller.
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Figure 41 SC-LMPC trajectory tracking with velocity constraints — Reference vs tracked trajectory, speeds and
velocities, control voltages
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8.2 Comparative analysis of control structures

The effectiveness of the control structures were analyzed by various simulation
experiments. The high-level kinematic controllers were NMPC;, NMPC,, Kanayama
Controller and Samson Controller as discussed in section 5. The low-level kinematic controllers
were PID and LMPC as discussed in section 7. Table V shows the SSE’s of the simulation
experiments conducted with different control structures. Figures corresponding to particular
simulation experiments are also listed. The initial pose of the mobile robot and reference robot
were considered as the same (i.e. same initial condition). Comparison has also been made with
a “perfect velocity tracker” and a feed forward control. The “perfect velocity tracker” refers to
the assumption that the kinematic controller will generate the required tangential and angular
velocities, assuming that there is a perfect velocity tracking control at low level on the mobile
robot. Feedforward control refers to the condition when the kinematic controller generates the
velocities, and what happens when there isn’t a perfect velocity tracker i.e. dynamics of robot

is taken care of.
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Table V Comparison of SSE’s of trajectory tracking with constraints

. : _ _ _ Dynamics SSE
Simulation Figure Kinematic Controller )

Exp Controller [SSEx, SSEq]
Sl - -none- [1.0101 6.3563]
S2 - Feedforward [7.1278 30.854]

NMPC;
S3 . PID [2.7950 13.274]
S4 - LMPC [0.1334 0.8368]
S5 - -none- [0.1690 5.9869]
6 Fig 36 Feedforward [0.5182 16.401]
NMPC;
S7 - PID [0.2225 7.1509]
S8 Fig 42 LMPC [0.1264 0.6414]
S9 - -none- [0.0604 6.0890]
S10 - Feedforward [0.6867 21.274]
KC

s11 Fig 39 PID [0.0995 7.5049]
S12 - LMPC [0.1819 1.1997]
S13 - -none- [0.0606 6.0924]
S14 - Feedforward [0.6862 21.273]

SC

S15 - PID [0.0997 7.5084]

S16 Fig 41 LMPC [0.1819 1.1996]

2 ‘none’ refers to the assumption of perfect velocity tracking, i.e. without considering dynamics of robot
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Figure 42 NMPC,-LMPC trajectory tracking with constraints - Reference vs tracked trajectory, control voltages,
estimated currents and measured speed
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8.3 Discussion

Perfect velocity tracking: The dynamics of the robot was not considered (w/o dynamics
controller) and the controllers generated control velocities. All the control structures produced
low SSE other than with NMPC3, which produced significantly high tracking errors. The state
tracking controllers, KC and SC, were slightly better than NMPC;.

Feedforward control: Dynamics of the mobile robot, as discussed in section 6, were
considered. The motor voltages were calculated by the static feedforward gain as in eq (7.6). It
can be noted that very high tracking errors are generated when dynamics of robot is taken into
account. This shows the significance of feedback control on low level considering dynamics of
the robot. Again, all controllers other than NMPC1 generated comparatively the same tracking

errors, even though NMPC; was slightly better.

Low level PID control: The motor voltages are generated according to the reference
motor speeds and current speeds of motor. The advantage of feedback control on low level is
visible by comparing the SSE’s with that of feedforward control. In the same way as the

previous two cases, NMPC; produced low tracking errors.

Low level LMPC: The trend of tracking errors of all the three previous cases were
obvious. However, very interesting results can be noted in the case of LMPC on low level. The
SSE’s were significantly lower for all the controllers when compared with feedforward or PID
control, see figure 42. The tracking errors of NMPC: were very high, when compared with
other controllers in all the three previous cases, but the control structure NMPC1-LMPC were
able to track the robot closer to the reference trajectory than state tracking controllers. The
NMPC,-LMPC control combination was the best among all the other combination. The
advantages of MPC on the dynamics level can be clearly seen in the figure 43, when compared
to the PID control, feedforward control and perfect velocity tracker (only kinematic control).
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It is interesting to note that, the Kino-Dynamics controller performance was better than
the “perfect velocity tracker”. This is achieved by the choice of set-points on low level LMPC
controller. The set-point for the N, horizon is kept constant, where the terminal state is
considered to be the same as that of the original reference velocity. Consequently, the terminal
state penalization will force the robot to converge to the reference trajectory. By contrast, the
MPC on low level control will not only track the reference velocity from the kinematic
controller, but also will reduce the overall tracking error caused by kinematic control. This was

achieved by proper choice of MPC structure.
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9. CONCLUSION

The trajectory-tracking problem of the mobile robot is a well-researched area. However,
most of the research has concentrated on the kinematics of mobile robot, assuming an ideal
dynamics controller (“perfect velocity tracker”) is present at the lower level. This is followed
by the assumption that dynamics of the mobile robot is faster, and a dynamics controller is able
to generate the required (tangential and angular) velocities at every time instant. But, in practice

this is not an ideal solution especially when the dynamics is slower and highly non-linear.

The thesis investigates the possibilities of using MPC in trajectory tracking problem for
the mobile robot at both kinematic and dynamics level. Linear and Non-linear state space MPC
were derived by decomposing the free and forced responses. Criteria consisting of penalization
of control error, control effort and terminal state deviation were considered for calculating the
optimal control actions. The trajectory-tracking problem was studied by separating the thesis
into three parts.

Firstly, the kinematics of a non-holonomic mobile robot was considered assuming a
perfect velocity tracker is present at the lower level. The basic non-linear kinematic equations
were linearized into two LTV models based on the choice of coordinate frames. The successive
linear model and error-based model were derived, with respect to the world coordinate system
and local coordinate system of the mobile robot respectively. Non-linear MPCs were applied
considering these models to the kinematic trajectory-tracking problem, with a cost function
consisting of penalization of control error, control effort and terminal state deviation. The
responses were compared with state-of-the-art control techniques (Kanayama and Samson
controllers) and the simulation results showed that the NMPC with an error-based model was
able to track the mobile robot with comparatively less tracking error when compared with the

other three controllers.

Secondly, the mathematical model of dynamics of the mobile robot was derived and
linear MPC was applied to track the desired velocities. A linear state space model was derived
with state variables as motor speeds and currents, control inputs as motor control voltages, and
the outputs as velocities. Linear MPC and discrete PID controllers were designed and simulated
for the velocity-tracking problem. The simulation results showed that efficiency of LMPC for
dynamics control when compared to PID control. This was achieved by considering constraints,
and optimizing the criteria with weights on control effort, control error and terminal state

deviation.
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Finally, the trajectory tracking problem was solved by different Kino-Dynamics control
structures. The simulation results show the advantage of MPC on dynamics part in contrast to
the assumption of “perfect velocity tracker”. It has been noticed that, MPC on the dynamics
part can, not only generate the optimal control action for the dynamics part, but also can affect
the kinematic part and decrease the overall tracking errors. The NMPC-LMPC control structure
have several advantages for the trajectory tracking problem: it can generate optimal control
actions by considering system constraints, increase the overall stability, decrease the overall

tracking errors etc.

To sum up, the thesis proposes a simple solution for the trajectory-tracking problem by
leveraging various advantages of MPC. Though the thesis mainly concentrated on simulation
analysis, various implementation issues and suggestions are also covered to some extent. The
simulation results demonstrate the advantages of Kino-Dynamics MPC over various state-of-

the-art approaches. However, several implementation issues are open for future research.

9.1 Future directions

Although we consider that the objectives of this thesis have been accomplished, there
are plenty of improvements that could be done in order to achieve better results. Here, only the

main points are summarized.

MPC — Even though the non-linear MPC with LTV and the non-linear model proposed in the
thesis, was able to achieve the desired results, there are various designs of NMPCs available in
the literature. Explicit MPC lessens the computation burden when dealing with faster systems

when comes to real world implementation.

Kinematics — The derived kinematics models for non-holonomic robot only deals with the
trajectory-tracking problem and doesn’t consider the point stabilization problem. There are
various other models in literature (e.g. (Xie & Fierro 2008)) which consider both the motion

control problems simultaneously.

Dynamics — The dynamics model was derived without considering various other non-linearities
(e.g. motor saturation, backlash, dead zone etc.). The moment of inertia of the robot was
assumed as constant, however it varies with the load on mobile robot. For better performances,
non-linear model is more suitable and the parameters have to be identified by offline-online
methods. Furthermore, advanced state estimation methods like the Moving Horizon estimation,
Extended Kalman Filter, particle filter etc. can also be employed for model uncertainties and,

together with non-linear MPC would steer the robot through the desired direction.
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Implementation — There are several implementation issues which can be expected, especially
the problem with time delays. A Model-Based Design (MBD) is much more suited and
SIMULINK allows lot of possibilities for developing MBD, e.g. time delay simulation, real

time testing, automatic code generation, Hardware-in-the-Loop (HIL) testing etc.

Localization — For laboratory experiments, an overhead camera together with image processing
algorithms can localize the robot. As part of the thesis work, localization of mobile robot with
an overhead camera and Raspberry Pi has been developed. However, this is not included in the
thesis, as the main objective was to do simulation analysis. In case of real world

implementation, a GPS sensor with sensor fusion techniques is recommended.
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