UNIVERZITA PARDUBICE

FAKULTA CHEMICKO-TECHNOLOGICKÁ

ÚSTAV CHEMIE A TECHNOLOGIE MAKROMOLEKULÁRNÍCH LÁTEK

Studium průběhu emulzní polymerace styren-akrylátových a methylmethakrylát-akrylátových kopolymerů

DIPLOMOVÁ PRÁCE

Autor práce: Bc. Roman Válka

Vedoucí práce: Ing. Jana Machotová, Ph.D.

UNIVERSITY OF PARDUBICE

FACULTY OF CHEMICAL TECHNOLOGY

INSTITUTE OF CHEMISTRY AND TECHNOLOGY OF MACROMOLECULAR SUBSTANCES

Study of the process of emulsion polymerization of styren-acrylate and methylmethacrylate-acrylate copolymers

MASTER'S THESIS

Author: Bc. Roman Válka

Supervisor: Ing. Jana Machotová, Ph.D.

Univerzita Pardubice Fakulta chemicko-technologická Akademický rok: 2016/2017

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Roman Válka
Osobní číslo:	C15521
Studijní program:	N2808 Chemie a technologie materiálů
Studijní obor:	Technologie výroby a zpracování polymerů
Název tématu:	Studium průběhu emulzní polymerace styren-akrylátových a methylmethakrylát-akrylátových kopolymerů

Zadávající katedra: Ústav chemie a technologie makromolekulárních látek

Zásady pro vypracování:

- 1. Vypracujte literární rešerši, v níž se zaměřte zejména na emulzní polymeraci akrylátových monomerů a přenosové reakce, větvení polymerů, molekulovou hmotnost polymerů a způsoby jejího stanovení.
- 2. Připravte modelové latexy technikou semi-kontinuální emulzní polymerace. Jako výchozí monomery použijte kyselinu methakrylovou, styren, methylmethakrylát, butylakrylát a ethylakrylát.
- 3. Během syntézy průběžně monitorujte konverzi, velikost částic, teplotu skelného přechodu a molekulovou hmotnost vznikajících kopolymerů.
- 4. Porovnejte vliv obsahu a typu akrylového komonomeru v případě styren-akrylátových a methylmethakrylát-akrylátových emulzních kopolymerů zejména z hlediska vývoje molekulové hmotnosti v průběhu emulzní polymerace.

Rozsah grafických prací:

Rozsah pracovní zprávy:

Forma zpracování diplomové práce: tištěná

Seznam odborné literatury:

Vedoucí diplomové práce:

Ing. Jana Machotová, Ph.D.
Ústav chemie a technologie makromolekulárních látek
prof. Ing. Štěpán Podzimek, CSc.
Ústav chemie a technologie makromolekulárních látek

Konzultant diplomové práce:

Datum zadání diplomové práce: Termín odevzdání diplomové práce: prosince 2016
 května 2017

prof. Ing. Petr Kalenda, CSc. $d\check{e}kan$

L.S.

Ing. David Veselý, Ph.D. vedoucí katedry

V Pardubicích dne 28. února 2017

Prohlašuji:

Tuto práci jsem vypracoval samostatně. Veškeré literární prameny a informace, které jsem v práci využil, jsou uvedeny v seznamu použité literatury. Byl jsem seznámen s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorský zákon, zejména se skutečností, že Univerzita Pardubice má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Pardubice oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše. Souhlasím s prezenčním zpřístupněním své práce v Univerzitní knihovně.

V Pardubicích dne 12. 5. 2017

Bc. Roman Válka

PODĚKOVÁNÍ

Chtěl bych poděkovat vedoucí mé diplomové práce Ing. Janě Machotové, Ph.D. za odborné vedení, poskytnutí materiálů a poskytnutí cenných rad a připomínek, které se týkaly této práce. Dále bych chtěl poděkovat Prof. Ing. Štěpánu Podzimkovi, CSc., Ing. Hedvice Zgoni za měření a vyhodnocení experimentálních dat metodou A4F-MALS, a také za cenné rady. Dále Ing. Romanu Svobodovi za měření a vyhodnocení vzorků metodou DSC a všem ostatním, kteří se na tvorbě této práce podíleli.

SOUHRN

V teoretické části jsou zpracována témata, která se týkají emulzní polymerace akrylátových monomerů, přenosových reakcí akrylátů na polymer, větvení polymerů, molekulové hmotnosti a způsobů jejího stanovení pomocí metody gelové permeační chromatografie (GPC) s detektorem víceúhlového rozptylu světla (MALS) a metodou frakcionace tokem v asymetrickém tokovém poli (A4F) s MALS detektorem. V experimentální části je popsána příprava akrylátových latexů a metody jejich charakterizace: stanovení obsahu sušiny, stanovení obsahu koagulátu, měření pH, měření zdánlivé viskozity podle Brookfielda, měření velikosti částic připravených latexů metodou dynamického rozptylu světla (DLS), výpočet konverze akrylátových monomerů, stanovení molární hmotnosti emulzních kopolymerů metodou A4F-MALS, určení teploty skelného přechodu T_g metodou diferenciální skenovací kalorimetrie (DSC). Ve výsledkové a diskuzní části jsou data vyhodnocena a zpracována formou tabulek, grafů a komentářů.

KLÍČOVÁ SLOVA

Emulzní polymerace, intermolekulární přenos na polymer, intramolekulární přenos na polymer, větvení, molární hmotnost, A4F-MALS.

SUMMARY

Theoretical part is the compilation of topics which relate to the preparation of acrylic copolymers via emulsion polymerization, chain transfer to polymer, branching of polymer chains, molecular weight and methods of its determination by gel permeation chromatography (GPC) method with a multi-angle laser light scattering (MALS) detector and asymmetric flow field-flow fractionation (A4F) with MALS detector. The experimental part focuses on the preparation of acrylic latexes and methods of their characterization: solids content, coagulum content, pH, apparent viscosity with the Brookfield method, determination of particle size by dynamic light scattering method (DLS), calculation of conversion, determination of molar mass using A4F-MALS method, determination of glass transition temperature by means of differential scanning calorimetry (DSC). The results and discussion part contains the evaluation of gained data in the form of tables, graphs and comments.

KEY WORDS

Emulsion polymerization, intermolecular chain transfer to polymer, intramolecular chain transfer to polymer, branching, molar mass, A4F-MALS.

Obsah

Úvod	16
1 Teoretická část	17
1.1 Úvod do emulzní polymerace	17
1.2 Současné trendy v emulzní polymeraci akrylátů	20
1.3 Přenosové reakce během polymerace a větvení polymerů	23
1.3.1 Přenosové reakce	23
1.3.1.1 Přenosová reakce na polymer	23
1.3.1.2 Přenosové reakce na polymer během polymerace akrylátů	24
1.3.2 Větvení polymerních řetězců během polymerace akrylátů	28
1.4 Molekulová hmotnost polymerů a způsoby jejího stanovení	31
1.4.1 Molekulová hmotnost	31
1.4.2 Metody stanovení molekulové hmotnosti	36
1.4.2.1 Gelová permeační chromatografie	36
1.4.2.2 A4F – MALS	40
2 Experimentální část	42
2.1 Přehled použitých chemikálií	42
2.1.1 Monomery použité pro syntézu latexů	42
2.1.2 Ostatní chemikálie	43
2.2 Syntéza latexů	44
2.3 Hodnocení průběhu emulzní polymerace	47
2.4 Popis použitých metod	48
2.4.1 Stanovení celkového obsahu koagulátu sítovou analýzou	48
2.4.2 Stanovení obsahu sušiny	48
2.4.3 Stanovení pH	49
2.4.4 Stanovení zdánlivé viskozity podle Brookfielda	49
2.4.5 Stanovení okamžité a celkové konverze monomerů	49

2.4.6 Stanovení teploty skelného přechodu	50
2.4.7 Stanovení velikosti částic	51
2.4.8 Stanovení molekulové hmotnosti pomocí A4F-MALS	52
3 Výsledky a diskuze	53
3.1 Obsah sušiny a charakteristické vlastnosti připravených latexů	53
3.2 Studium průběhu emulzní polymerace	55
3.2.1 Vývoj konverze	55
3.2.2 Vývoj střední molární hmotnosti	60
3.2.3 Stanovení teploty skelného přechodu	74
3.2.4 Stanovení velikosti částic	77
Závěr	81
Literatura	82

Seznam tabulek

Tabulka 1:Chemické vzorce a zkratky monomerů
Tabulka 2: Charakteristické vlastnosti monomerů43
Tabulka 3: Složení emulzních kopolymerů a složení násady monomerů46
Tabulka 4: Obsah sušiny a charakteristické vlastnosti latexů54
Tabulka 5: Konverze v průběhu polymerace latexů na bázi komonomerů MMA a EA56
Tabulka 6: Konverze v průběhu polymerace latexů na bázi komonomerů MMA, BA57
Tabulka 7: Konverze v průběhu polymerace latexů na bázi komonomerů ST, EA58
Tabulka 8: Konverze v průběhu polymerace latexů na bázi komonomerů ST, BA59
Tabulka 9: Vývoj číselně střední, hmotnostně střední a z-průměru molární hmotnosti
kopolymerů MMA, EA během polymerace63
Tabulka 10:Vývoj číselně střední, hmotnostně střední a z-průměru molární hmotnosti
kopolymerů MMA, BA během polymerace64
Tabulka 11: Vývoj číselně střední, hmotnostně střední a z-průměru molární hmotnosti
kopolymerů ST, EA během polymerace65
Tabulka 12: Vývoj číselně střední, hmotnostně střední a z-průměru molární hmotnosti
kopolymerů ST, BA během polymerace
Tabulka 13: Pokles hmotnostně střední a z-průměru molární hmotnosti kopolymerů MMA,
ST a EA po dokončení polymerace67
Tabulka 14: Pokles hmotnostně střední a z-průměru molární hmotnosti kopolymerů MMA,
ST a BA po dokončení polymerace
Tabulka 15:: Teploty skelného přechodu vzorků obsahujících EA, MMA, BA a odebíraných
během polymerace
Tabulka 16: Teploty skelného přechodu vzorků obsahujících EA, ST, BA a odebíraných
během polymerace
Tabulka 17: Velikost částic vzorků obsahujících EA, MMA, BA odebíraných během
polymerace
Tabulka 18: Velikost částic vzorků obsahujících EA, MMA, BA odebíraných během
polymerace79

Seznam obrázků

Obr. 1: Přímá solubilizace nepolárních látek (a), polárně-nepolárních látek (b), polárních látek
v malých ionogenních micelách (c), (d) nepolárních látek v McBainových micelách (d),
nepolárních a polárních látek v neionogenních micelách (e)18
Obr. 2: Micelární model mechanismu emulzní polymerace19
Obr. 3: Přenos aktivního růstového centra na jinou molekulu23
Obr. 4: Strukturní vzorce EA a <i>n</i> -BA s označenými terciárními uhlíky24
Obr. 5: Schematické znázornění intramolekulárního a intermolekulárního přenosu včetně
sesítění n-PBA vlivem přenosů při polymeraci
Obr. 6: Intermolekulární přenos radikálového aktivního centra z rostoucího makroradikálu na
jinou makromolekulu během radikálové polymerace 2-EHA27
Obr. 7: Ukázka dlouhého a krátkého větvení polymeru28
Obr. 8: Rozdělení distribuční křivky (funkce) molekulových hmotností
Obr. 9: Integrální distribuce molární hmotnosti (vlevo) a diferenciální distribuce molární
hmotnosti (vpravo)
Obr. 10: Diferenciální distribuční křivka molárních hmotností se znázorněnými středními
molekulovými hmotnostmi
Obr. 11: Princip separace GPC/SEC
Obr. 12: Schématické znázornění MALS detektoru
Obr. 13: Princip zeslabení intenzity rozptýleného světla v závislosti na úhlu pozorování39
Obr. 14: Zimmův diagram pro vyhodnocení experimentálních dat40
Obr. 15: Princip separace částic metodou A4F41
Obr. 16: Aparatura pro polymeraci latexů s automatickým dávkovačem45
Obr. 17: Vývoj $\overline{M_w}$ vzorků obsahujících EA s různým obsahem nevětvícího komonomeru
MMA během polymerace
Obr. 18: Vývoj $\overline{M_z}$ vzorků obsahujících EA s různým obsahem nevětvícího komonomeru
MMA během polymerace
Obr. 19: Vývoj $\overline{M_w}$ vzorků obsahujících EA s různým obsahem nevětvícího komonomeru ST
během polymerace
Obr. 20: Vývoj $\overline{M_z}$ vzorků obsahujících EA s různým obsahem nevětvícího komonomeru ST
během polymerace

Obr. 21: Vývoj $\overline{M_w}$ vzorků obsahujících BA s různým obsahem nevětvícího komonomeru
MMA během polymerace70
Obr. 22: Vývoj $\overline{M_z}$ vzorků obsahujících BA s různým obsahem nevětvícího komonomeru ST
během polymerace
Obr. 23: Vývoj $\overline{M_w}$ vzorků obsahujících BA s různým obsahem nevětvícího komonomeru ST
během polymerace
Obr. 24: Vývoj $\overline{M_z}$ vzorků obsahujících BA s různým obsahem nevětvícího komonomeru ST
během polymerace
Obrázek 25: Závislost $\overline{M_w}$ vzorků obsahujících EA na obsahu nevětvících komonomerů
MMA nebo ST po dokončení polymerace72
Obr. 26: Závislost $\overline{M_z}$ vzorků obsahujících EA na obsahu nevětvících komonomerů MMA
nebo ST po dokončení polymerace72
Obr. 27: Závislost $\overline{M_w}$ vzorků obsahujících BA na obsahu nevětvících komonomerů MMA
nebo ST po dokončení polymerace73
Obr. 28: Závislost $\overline{M_z}$ vzorků obsahujících BA na obsahu nevětvících komonomerů MMA
nebo ST po dokončení polymerace73
Obr. 29: Zvětšení velikosti latexových částic vybraných vzorků MMA/BA 25/73, MMA/EA
25/73, ST/EA 25/73, ST/BA 25/73 během polymerace

Seznam zkratek

2-EHA	2-ethylhexylakrylát
A4F	frakcionace tokem v asymetrickém tokovém poli
BMA	butylmethakrylát
CEP	konvenční emulzní polymerace
CMC	kritická micelární koncentrace
CTA	regulátor molekulové hmotnosti
DLS	dynamický rozptyl světla
DSC	diferenciální skenovací kalorimetrie
EA	ethylakrylát
FFF	frakcionace tokem v poli
GPC	gelová permeační chromatografie
KA	kyselina akrylová
KMA	kyselina methakrylová
LIPN	latexové vzájemně prostoupené polymerní sítě
MALS	víceúhlový rozptyl světla
MMA	methylmethakrylát
\overline{M}_n	číselně střední molární hmotnost
\overline{M}_z	z-průměr molární hmotnost
\overline{M}_w	hmotnostně střední molární hmotnost
BA	butylakrylát
n-BA	<i>n</i> -butylakrylát
n-PBA	<i>n</i> -polybutylakrylát
NMR	nukleární magnetická rezonance
PCS	fotonová korelační spektroskopie
PBMA	polybutylmethakrylát
PEHA	polyethylhexylakrylát
PMMA	polymethylmethakrylát
PS	polystyren

PVA	polyvinylalkohol
QELS	kvazielastický rozptyl světla
SFEP	emulzní polymerace bez tenzidů
ST	styren
Tg	teplota skleného přechodu
TMPTA	trimethylolpropantriakrylát
UV	ultrafialové záření
VOC	těkavé organické látky

Úvod

Emulzní polymerace je velmi důležitým průmyslovým procesem pro syntézu koloidních disperzí polymerních částic neboli latexů. Většina průmyslově vyráběných latexů jsou kopolymery, které poskytují produkty s rozličnými vlastnostmi a použitím. Produkty emulzní polymerace nacházejí velké uplatnění v oblasti nátěrových hmot, a to z důvodu snahy o snížení podílu organických rozpouštědel a snížení emisí organických těkavých látek (VOC) do ovzduší. Velkému zájmu se v posledních letech těší jednosložková reaktoplastická pojiva na bázi samosíťujících latexů. Ovšem latexy nachází také uplatnění i v oblasti lepidel, aditiv do papíru, v textilním průmyslu, jako modifikátory pro plastické matrice a také tzv. drug-delivery systémy (polymerní částice schopné cíleně dopravit léčiva).^[1,2] Toto je jen výčet některých aplikací polymerních latexů, který měl ukázat důležitost těchto typů polymerů i jejich syntézy.

Problematice emulzní polymerace se věnuje celá řada autorů, kteří se zabývali vlivem různých faktorů na kinetiku polymerace a vlastnosti připravených latexů, ať už se jednalo o kopolymery či homopolymery. Jelikož je emulzní polymerací připravována celá řada materiálů s rozdílným složením a vlastnostmi, je velmi obtížné stanovit obecná pravidla, která by platila pro všechny monomery, iniciátory, emulgátory a také podmínky polymerace. Tato diplomová práce se zabývá studiem průběhu emulzní polymerace styren-akrylátových a methylmethakrylát-akrylátových kopolymerů. Při radikálové polymeraci akrylátů (esterů kyseliny akrylové) dochází k inter- a intramolekulárním přenosovým reakcím na polymer, které způsobují větvení či dokonce sesítění syntetizovaných polymerů.^[1,3] Právě větvení má veliký vliv na výsledné vlastnosti latexů, jejich molekulovou hmotnost, koloidní stabilitu vodné polymerní disperze, a proto pro polymerní průmysl syntetizující polymerace probíhají.

1 Teoretická část

1.1 Úvod do emulzní polymerace

První pokusy o emulzní polymeraci byly uskutečněny již během první světové války. Prudký rozvoj nastal ve čtyřicátých letech 20. století, kdy byl prováděn výrazný výzkum zaměřený na porozumění průběhu syntézy a vlastnosti připravených polymerních disperzí.

Emulzní polymerace se řadí mezi techniky syntézy polymerů, které se provádí v heterogenním prostředí, tzn. vzniklý polymer není rozpustný ve svém monomeru nebo v použitém rozpouštědle. Hlavními složkami, které se účastní polymerace, jsou – voda (jako disperzní systém), iniciátor (zahajuje polymeraci), tenzid (zajišťuje koloidní stabilitu systému a tvorbu micel), monomer (obsahující násobnou dvojnou vazbu).^[4] Technika emulzní polymerace se v průmyslu používá například na výrobu syntetický kaučuků, lepidel, těsnění, nátěrových hmot.^[5] Emulzní polymeraci lze provádět různými technikami, mezi které patří:

- Konvenční emulzní polymerace (CEP)^[5]
- Miniemulzní polymerace
- Mikroemulzní polymerace
- Obrácená (inverzní) emulzní polymerace
- Emulzní polymerace bez tenzidu (SFEP)

Běžná emulzní polymerace představuje specifický případ radikálové polymerace. Je to proces, kdy k polymeraci dochází ve vodném prostředí (disperzní prostředí tvoří voda) za přítomnosti povrchově aktivních látek neboli tenzidů (detergentů). K iniciaci polymerace se používají vodorozpustné iniciátory. Výsledkem emulzní polymerace je disperze koloidních částic polymeru ve vodné fázi (tzv. latex). Velikost částic polymeru, resp. jejich průměr se pohybuje v desítkách až stovkách nanometrů. Koloidní stabilita tohoto systému je ve většině případů zajišťována elektrostatickým nábojem na povrchu částic adsorbovanými anionickými povrchově aktivními látkami (tenzidy) nebo v určitých případech ochrannými koloidy. Pro zvýšení koloidní stability se také monomery polymerují s malým přídavkem organické kyseliny obsahující dvojnou vazbu. Tyto nenasycené organické kyseliny se přímo zabudují do struktury polymeru a koloidní stabilitu připraveného latexu zvyšují přítomné karboxylové funkční skupiny.^[4-6]

Jak už bylo zmíněno v předchozím odstavci, tenzidy (emulgátory) jsou povrchově aktivní látky, které se skládají z části polární a části nepolární. Takováto molekula se označuje jako amfifilní. Polární (hydrofilní) část tenzidu je ve vodě rozpustná a vyznačuje se určitým stupněm rozpustnosti. Nepolární (hydrofobní) část tenzidu je ve vodě nerozpustná. Amfifilní charakter molekul tenzidů se zejména projevuje ve vodných roztocích, ve kterých dochází k orientované adsorpci molekul na fázovém rozhraní a také k tvorbě micel. Tyto micely jsou schopny solubilizovat¹ organické kapaliny, tzn. solubilizovat monomery. Hydrofilní část molekuly tenzidu je obklopena molekulami vody a hydrofobní část je molekulami vody odpuzována (viz obrázek 1).^[4,6]

Obr. 1: Přímá solubilizace nepolárních látek (a), polárně-nepolárních látek (b), polárních látek v malých ionogenních micelách (c), (d) nepolárních látek v McBainových micelách (d), nepolárních a polárních látek v neionogenních micelách (e)^[7]

Je také důležité zmínit, že k tvorbě micel dochází při dosažení tzv. kritické micelární koncentrace (CMC), která se obvykle udává v hmotnostních procentech.^[4] Při této koncentraci povrchově aktivní látky dochází ke vzniku micel. Potřebný tenzid, nesoucí polární a nepolární skupiny, se přidává v takovém množství, aby jednak pokryl povrch kapiček monomeru, které jsou poměrně velké (10µm), ale také zůstalo dostatečné množství molekul tenzidu na vytvoření micel, jejichž velikost je podstatně menší (řádově jednotky až desítky nanometrů).^[6] Právě vzniklé micely jsou místem, kde probíhá polymerace monomerů. Obecně platí, že čím je větší koncentrace povrchově aktivní látky v polymerační směsi, tím menší bude velikost, resp. průměr polymerních částic.^[4,6] Tento fakt vyplývá ze

¹ Solubilizace: Pochod, při němž jsou do micel tenzidu včleňovány molekuly další látky (solubilizátu)

vzniku většího počtu reakčních míst vytvořených na začátku polymerace. Tvorba micel a jejich schopnost včleňování organických kapalin je základním předpokladem pro realizaci standardní emulzní radikálové polymerace.

Jak už bylo zmíněno dříve, polymerace probíhá uvnitř micel. První obecnou teorii emulzní polymerace vypracoval William D. Harkins.^[8] Podle této teorie (modelu) je polymerace zahájena uvnitř micel, které jsou nasycené monomerem. Avšak původní představa, že k iniciaci dochází průnikem radikálu iniciátoru do micely, je velmi málo pravděpodobná, poněvadž povrch micely má negativní náboj. V dnešní době se předpokládá, že k iniciaci uvnitř micely dochází povrchově aktivním oligomerním radikálem. Tento radikál vzniká polymerací monomeru ve vodné fázi. Polymerační reakcí se monomer spotřebovává a z důvodu zachování dynamické rovnováhy je doplňován monomerem z kapek difúzí vodnou fází.^[4]

Obr. 2: Micelární model mechanismu emulzní polymerace

Na obrázku 2 je znázorněn micelární model mechanismu emulzní polymerace. Jak je z obrázku patrné, v reakčním systému se nachází kapky monomeru, na nichž je adsorbován tenzid, micely, polymer - monomerní částice, polymer a povrchově aktivní oligomerní radikál. Také emulgátor je v dynamické rovnováze s vodnou fází a ostatními micelami. Tenzid je na povrch rostoucích částic dopravován z micel, ve kterých neprobíhá polymerace. Jakmile všechny micely zaniknou, neprobíhá nukleace nových částic a polymerace v další fázi probíhá pouze v rostoucích polymer-monomerních částicích, ve kterých také dochází k iniciaci.^[4-6] Podstata Harkinsonovy teorie spočívá v tom, že kapky monomeru slouží jako

zásobníky, odkud monomer difunduje do vodné fáze, ze které je pohlcován micelami a polymer – monomerními částicemi ^[8]. Tato teorie také vychází z toho, že monomery, které polymerují, jsou nerozpustné ve vodě, a tudíž k polymeraci dochází pouze uvnitř micel.

Další teorie, která popisovala emulzní radikálovou polymeraci, byla vypracována Robertem M. Fitchem a C. H. Tsaiem.^[9,10] Později byla rozšířena Ugelstadem a Hansenem.^[11] Tato teorie je založena na základě poznatků, že při polymeraci částečně vodorozpustných monomerů vznikají na počátku polymerace oligomerní volné radikály, které jsou rozpustné ve vodě a které rostou. Po dosažení kritické velikosti se tyto částice vysrážejí za vzniku primárních částic. Oligomerní radikály, které vznikají v další fázi polymerace, se účastní procesu dvojím způsobem: rostou za vzniku samostatných částic nebo jsou pohlcovány již existujícími částicemi. Čím je větší počet částic, tím vzrůstá i pravděpodobnost srážky oligomeru s částicí. V konečné fázi jsou oligomerní radikály pohlceny existujícími částicemi

Mechanismy emulzní polymerace uvedené v předchozích odstavcích se navzájem doplňují. O tom, který z mechanismů emulzní polymerace převládá, rozhoduje jednak míra rozpustnosti monomeru ve vodě, jednak koncentrace tenzidu tzn. přítomnost a koncentrace micel.

1.2 Současné trendy v emulzní polymeraci akrylátů

Homopolymery na bázi akrylátů (esterů kyseliny akrylové) mají rozličné vlastnosti, avšak v mnoha aplikacích jejich vlastnosti nejsou dostačující. Z tohoto důvodu se pro dosažení požadovaných vlastností pro danou aplikaci často používá kopolymerace různých akrylátových monomerů, a proto je větší zájem o kopolymery než o homopolymery. Technika emulzní polymerace je velmi vhodnou a často používanou technikou syntézy kopolymerů na bázi akrylátů. Důležité je také zmínit, že vlastnosti a struktura výsledných produktů jsou také závislé na způsobu provedení polymerace.

V současné době je trend modifikovat průběh emulzní polymerace, tzn. podmínky polymerace, ale také kombinovat akrylátové monomery s různými anorganickými materiály. Zajímavou možností je příprava latexových vzájemně prostoupených polymerních sítí (LIPN), které byly připraveny pomocí dvoustupňové emulzní polymerace. Haibo Yu a kol. ^[12] syntetizovali LIPN na bázi methymethakrylátu (MMA) a směsi MMA s *n*-butylakrylátem (*n*-BA) v přítomnosti zesíťovaných latexových částicích *n*-polybutylakrylátu *n*-PBA za použití γ

záření. V prvním stupni připravili zrna (částice) zesítěného *n*-PBA (k iniciaci použili peroxodisíran draselný) a ve druhém stupni přidali k zesítěnému poly(*n*-BA) MMA, směs MMA s *n*-BA, síťovadlo trimethylolpropantriakrylát (TMPTA) a vodu. Směs byla při pokojové teplotě ozařována po dobu 1 hodiny γ zářením. Během ozařování reakčních komponent byla značná část γ záření pohlcena vodou, což způsobilo vytvoření aktivních částic jako například H⁺ protony, elektrony atd. Aktivní částice difundují na povrch micel nebo latexových částic, kde způsobují vznik volných radikálů, které iniciují polymeraci ve druhé fázi emulzní polymerace. Takto připravené materiály nachází uplatnění v nátěrových hmotách, lepidlech atd.

Yuki a kol.^[13] se zabývali kopolymerací *n*-BA s MMA, avšak místo ionogenních emulgátorů použili polyvinylalkohol (PVA), který byl modifikovaný reaktivními thiolovými koncovými skupinami. Následně porovnávali vlastnosti připravených latexů s latexy, které byly připraveny s použitím ionogenního emulgátoru (popřípadě nemodifikovaného PVA). Z výsledků měření vyplynulo, že latexy připravené za použití PVA, vykazovaly Newtonské chování. Newtonská kapalina je tekutina, která při laminárním toku vykazuje lineární závislost mezi tečným napětím a rychlostním gradientem. Při použití ionogenního emulgátoru latexy naopak vykazovaly tixotropii. Při konstantním tečném napětí nebo gradientu smykové rychlosti viskozita kapaliny klesá. Ze syntetizovaných latexů následně připravily tenké vrstvy. Latexy připravené s použitím PVA měly lepší mechanické vlastnosti, avšak horší odolnost proti vodě ve srovnání s latexy, kde byl použit iontový emulgátor.

V kapitole 1.1, která se zabývá běžnou (konvenční) emulzní polymerací, je uvedeno, že důležitou složkou v reakčním systému je povrchově aktivní látka. Nevýhodou konvenční emulzní polymerace je přítomnost tenzidu ve finálním produktu, velmi často se přítomné tenzidy musí z finálního produktu odstranit. Odstranění tenzidů je velmi časově náročné a v konečném důsledku se zvyšují finanční náklady na výrobu. Navíc při odstranění tenzidu hrozí destabilizace systému a koagulace vyrobeného latexu. Filmy vytvořené z latexů (připravených konvenční emulzní polymerací) vykazují nízkou stabilitu vůči povětrnostním podmínkám a vysokou citlivost vůči vodě. Protože malé molekuly tenzidu mají tendenci po čase migrovat, povrchově aktivní látky uvolněné do životního prostředí mohou mít vážné dopady na biologické procesy.^[14] Právě z těchto důvodů není konvenční emulzní polymerace vhodná pro přípravu materiálů, které musí mít vysokou čistotu. Proto byla vyvinuta technika SFEP, v literatuře označovaná jako surfaktant-free nebo soap-less emulzní polymerace.^[14-17] Avšak nepřítomnost povrchově aktivní látky v metodě SFEP musí být nahrazena jinou složkou, která zabezpečí koloidní stabilitu. Takovou látkou může být například 2,2'-azobis(2-

methylpropionamidin) dihydrochlorid, který zároveň slouží jako iniciátor.^[14] Techniku SFEP použil Goodwin na přípravu nenabotnalých latexových částic polystyrenu, dále je hojně využívána na přípravu poly(N-izopropylakrylamidu), polystyrenových (PS) a polymethylmethakrylátových (PMMA) mikrogelových systémů.^[18]

Další významnou oblastí, ve které se využívá kopolymerace akrylátů emulzní polymerací, jsou reaktivní částice se strukturou "core–shell". Core–shell nanočástice jsou speciálním typem nanočástic, jejich jádro (core) je tvořeno nosnou částicí o určité velikosti a obalem (shell) s požadovanými vlastnostmi. Veliký zájem vzbudily funkcionalizované mikrogely, které jsou citlivé na změny prostředí. Sawai a kol.^[19] vyvinuli systém složený z elektrody, která mění pH a mikrogelu citlivého na pH. Mikrogelové částice byly syntetizovány na bázi MMA a kyseliny akrylové. Nabízí se možnost tento systém využít pro elektrooptické účely, jelikož mikrogel se změnou pH botná nebo dochází ke flokulaci, deflokulaci a smršťování.

Z důvodu ochrany životního prostředí je předmětem velkého zájmu vývoj vodou ředitelných nátěrových hmot, které se připravují technikou emulzní polymerace. Avšak vodou ředitelné nátěrové hmoty stále nemohou zcela nahradit systémy, které využívají organická rozpouštědla a ředidla, protože v některých případech mají horší vlastnosti. Velmi zajímavou oblastí jsou vodou ředitelné nátěrové hmoty na bázi akrylátů a anorganických nanočástic, které vykazují antibakteriální vlastnosti.

V poslední době jsou předmětem zvýšeného zájmu jednosložková reaktoplastická pojiva na bázi tzv. samosíťujících latexů. Mechanismus síťování je nejčastěji založen na reakci karbonylové skupiny, která je součástí polymerních latexových částic, a diaminu, rozpuštěného ve vodné fázi latexu. Jako monomer nesoucí karbonylovou skupinu může být použit diacetonakrylamid a jako diamin dihydrazid kyseliny adipové. Významnou předností tohoto tzv. keto-hydrazidového post-síťování je schopnost probíhat velmi rychle i při běžných teplotách. Reakce je kysele katalyzovaná, tudíž probíhá ve významné míře až po vytěkání alkalizačních činidel přítomných v nátěrovém systému. Současně se jedná o dehydratační reakci, jejíž rovnováha je posunována směrem k výsledným produktům vlivem ztráty vody. Díky tomu je možné připravit stabilní jednosložkový nátěrový systém, kdy síťování začíná probíhat až po aplikaci nátěrového filmu vlivem vytěkání neutralizačních činidel a odpaření velké části vody.^[20]

1.3 Přenosové reakce během polymerace a větvení polymerů

1.3.1 Přenosové reakce

Přenosové reakce jsou reakce, při kterých se přenáší radikál (respektive růstové centrum) z rostoucího řetězce na molekulu látky vhodné chemické struktury přítomné v polymeračním systému.^[6] Přenosem aktivního centra z původního radikálu na jinou molekulu, popřípadě jinou část téhož radikálu, vzniká nový typ radikálu a původní aktivní centrum zaniká. Na obrázku 3 je schematicky a zjednodušeně znázorněna přenosová reakce.

Obr. 3: Přenos aktivního růstového centra na jinou molekulu [6]

Přenosová reakce je vždy spojena s výměnou atomu, nejčastěji atomu vodíku. Radikál, který vznikl transferem a není vysoce rezonančně stabilizován, může zahájit růst dalšího řetězce, jinými slovy, pokud reaktivita přenosem vzniklého radikálu není příliš nízká, může iniciovat růst nové molekuly.^[4,6] V polymeračním systému může docházet k přenosu na iniciátor, monomer, rozpouštědlo, polymer, popřípadě na látku, která se do systému přidává záměrně kvůli regulaci molekulové hmotnosti tzv. CTA (z angl. chain transfer agent).

Přenosové reakce na polymer mohou během radikálové polymerace způsobit vznik vysoce zesíťovaného polymeru ^[6], což se projevuje na jeho reologických a mechanických vlastnostech (viskozita, modul pružnosti aj.). Následující kapitoly budou věnovány přenosovým reakcím na polymer, a to zejména přenosovým reakcím probíhajícím při radikálové polymeraci akrylátů (esterů kyseliny akrylové).

1.3.1.1 Přenosová reakce na polymer

V předchozí kapitole bylo zmíněno, že přenos růstového centra z rostoucího radikálu na jinou molekulu ovlivňuje polymerační stupeň. Rozlišují se od sebe 2 typy přenosových reakcí: intramolekulární (přenos růstového centra na jiné místo téže makromolekuly) a

intermolekulární (přenos růstového centra na jiný polymerní řetězec).^[21] Intramolekulární přenos způsobuje krátké větvení polymerního řetězce a intermolekulární přenos, mající vliv na vznik síťované struktury neboli gelu, způsobuje dlouhé větvení polymerního řetězce.^[1,6,22-24] Navázáním rostoucího radikálu na polymerní řetězec může dojít ke změně fyzikálních vlastností polymeru. Takovéto přenosy probíhají s nejvyšší pravděpodobností v místech s vysokou koncentrací polymeru.^[6,21]

Intermolekulární přenos vede k ukončení růstu jednoho řetězce, avšak na makromolekule, která slouží jako přenašeč, může začít růst postranní řetězec. Vznik a růst postranního řetězce má za následek větvení a nárůst molekulové hmotnosti (větvení polymerních řetězců během polymerace akrylátů 1.3.2). Růst postranního řetězce je ukončen terminační reakcí popřípadě dalším přenosem. ^[6,21] Při vysokém stupni větvení může, vlivem dalších přenosů a rekombinací makroradikálů, dojít až sesíťování polymeru (dojde ke vzniku gelu).

1.3.1.2 Přenosové reakce na polymer během polymerace akrylátů

Příčinou existence přenosových reakcí na polymer je v případě polyakrylátů přítomnost terciárního uhlíku v polymerním řetězci.^[1,3,22,25] Na obrázku 5 jsou uvedeny strukturní vzorce monomerů ethylakrylátu (EA) a n-butylakrylátu (*n*-BA) s vyznačeným terciárním uhlíkem.

Obr. 4: Strukturní vzorce EA a n-BA s označenými terciárními uhlíky

K přenosovým reakcím na polymer dochází například u kopolymerace MMA s *n*-BA a kyselinou akrylovou (KA) a také u kopolymerací methyl-, ethyl- a butylakrylátů. ^[3] Pomocí metody nukleární magnetické resonance (NMR) ^[21,22] lze studovat přenosové reakce a právě pomocí této metody byl popsán přenos radikálu při polymeraci akrylátů na terciární uhlík akrylátu. Plessis a kol. ^[3,26] studovali kinetiku, obsah gelu, distribuci molekulové hmotnosti a stupeň větvení *n*-polybutylakrylátu (*n*-PBA) s různým obsahem styrenu (ST), který

připravovali emulzní polymerací. Zjistili, že obsah gelu, střední realtivní molekulová hmotnost a stupeň větvení je ovlivněn obsahem ST. Z výsledků jejich práce vyplývá, že s rostoucím obsahem ST (od 0 hmot. % do 10 hmot. %) klesal obsah gelu (z 55 hmot. % téměř na 0 hmot. %) a také klesal stupeň větvení (z 14 větví na 1000 atomů uhlíků na 5 větví na 1000 atomů uhlíků). Také zjistili, že při polymeraci *n*-BA převládaly intramolekulární přenosové reakce na polymer nad intermolekulárními. Z výsledků je patrné, že na přenos je "citlivý" pouze vodík na terciárním uhlíku akrylátových jednotek nikoliv vodík na terciárním uhlíku styrenových jednotek.

Chrástová a kol.^[27,28] studovali vliv typu iniciátoru na kinetiku, molekulovou hmotnost a velikost částic vsádkovou emulzní polymerací *n*-Ba a ST v poměru *n*-BA/ST: 10/90 až 90/10 hmot. %. Používali redoxní iniciační systémy s rozdílnou rozpustností ve vodě. Zjistili, že čím bylo množství ST větší, tím menší byla výsledná molekulová hmotnost kopolymeru. Nicméně nezjistili žádnou přítomnost gelu v syntetizovaných latexech. Yang a kol. ^[27] potvrdili, že s rostoucí koncentrací ST v násadě monomerů s *n*-BA klesá molekulová hmotnost latexů (při poměru *n*-BA/ST: 10/90 až 90/10 hmot. %.).

Charmot ^[3] publikoval práci, ve které studoval homopolymer *n*-BA a BMA a zjistil, že za stejných podmínek polymerace byl obsah gelu u polybutylmethakrylátu (PBMA) prakticky nulový, zatímco u n-PBA určité množství gelu vzniklo. Charmot předpokládal, že v případě BMA nedochází k přenosu na polymer během polymerace a to z důvodu nepřítomnosti terciárních uhlíků v řetězci PBMA. Obrázek číslo 5 schematicky znázorňuje průběh intramolekulárních a intermolekulárních přenosů včetně sesíťování n-PBA při radikálové polymeraci, který je náchylný na přenosovou reakci.

Z ¹³C NMR spektra kopolymeru obsahujícího *n*-BA, MMA, KA připraveného emulzní polymerací plyne, že s rostoucím počtem opakujících se jednotek obsahujících terciární uhlík se zvyšuje četnost přenosových reakcí.^[22] Dále bylo zjištěno, že při polymeraci *n*-BA docházelo častěji k intramolekulárním přenosům poskytujícím krátké větvení ve srovnání s intermolekulárními přenosy vedoucí ke vzniku dlouhého větvení. S rostoucím počtem přenosů klesala rychlost propagace, a to z důvodu nižší reaktivity terciárních radikálů produkovaných přenosovými reakcemi.

Obr. 5: Schematické znázornění intramolekulárního a intermolekulárního přenosu včetně sesítění n-PBA vlivem přenosů při polymeraci ^[25]

Podobných výsledků jako v případě polymerace *n*-BA bylo dosaženo při polymeraci 2-ethylhexylakrylátu (2-EHA). Heatley, Lovell a Yamashita ^[23] prováděli roztokovou polymeraci 2-ethylhexylakrylátu (2-EHA) a pomocí metody NMR studovali přenosové reakce. Na obrázku číslo 6 je zobrazená intermolekulární přenosová reakce na polymer, při které dojde k odštěpení vodíkového protonu z terciárního uhlíku makromolekuly a k navázání vodíkového protonu na makroradikál. Také v tomto případě převažovaly intramolekulární přenosy a rychlost propagace s rostoucím počtem přenosů klesala.

R = 2-ethylhexyl.

Obr. 6: Intermolekulární přenos radikálového aktivního centra z rostoucího makroradikálu na jinou makromolekulu během radikálové polymerace 2-EHA^[23]

Tito poly-2-ethylhexylakrylátu autoři zjistili. že u (PEHA) docházelo k intermolekulárnímu přenosu na polymer častěji než u n-PBA (při stejné koncentraci a konverzi monomerů). Dalo by se očekávat, že zvýšená četnost přenosových reakcí při polymeraci 2-EHA je způsobena přítomností dvou terciárních uhlíků. Avšak data získaná měřeními nepotvrdila příspěvek terciárního uhlíku z 2-ethylhexylové skupiny. Jelikož rychlostní konstanty propagace obou monomerů jsou velmi podobné, možné vysvětlení rozdílu v četnosti přenosových reakcí spočívá v rychlostní konstantě přenosové reakce $k_{tr.P}$. Faktor, který by mohl mít vliv na rychlostní konstantu přenosové reakce, je velikost 2-ethylhexylové skupiny monomeru 2-EHA, která je větší než butylová skupina monomeru *n*-BA. Velikost 2-ethylhexylové skupiny monomeru 2-EHA by mohla způsobit změnu v přístupnosti terciárního uhlíku, který se nachází na polymerní kostře, což má vliv na Arrheniův předexponenciální člen (faktor). Postranní skupina 2-EHA nejspíše způsobuje zvýšení předexponenciálního faktoru, což naznačuje, že terciární uhlík na kostře je dostupnější. Dalším důležitým faktorem, který je nutné brát v potaz, jsou interakce s rozpouštědlem. Rozsah přenosů na polymer roste s rostoucí konverzí monomeru, protože v rostoucí makromolekule roste počet terciárních uhlíků schopných přenosů.^[23]

1.3.2 Větvení polymerních řetězců během polymerace akrylátů

Jak již bylo uvedeno v kapitole 1.3.1.2 během polymerace alkylakrylátů, které obsahují terciární uhlík (např. *n*-BA, EA, 2-EHA atd.), dochází k intra- a intermolekulárním přenosům na polymer, jež způsobují větvení. Charakterizovat větvení bývá složité, avšak jeho vliv na vlastnosti konečných produktů je výrazný. Jak už bylo zmíněno, intermolekulární přenosy na polymer způsobují dlouhé větvení, kde délka postranního řetězce může být srovnatelná s hlavním řetězcem a intramolekulární přenosy způsobují krátké větvení, zpravidla o délce několika atomů.^[1,6,22,29] Obrázek číslo 7 ukazuje příklad dlouhého a krátkého větvení polymeru. Celá řada vědeckých prací byla věnována studiu průběhu polymerace akrylátových monomerů, které jsou náchylné na přenosové reakce. Větvení u polymerů na bázi akrylátů vzniká většinou intramolekulárními přenosy, při kterých vznikají krátké větve, jež nepřispívají ke vzniku sesítěné struktury (gelu). ^[1,24] Gel může vznikat pouze v systémech, ve kterých probíhají intermolekulární přenosy. Dále bylo zjištěno, že při emulzní polymeraci roste stupeň větvení zvýšením koncentrace iniciátoru a doby polymerace, avšak množství gelu se nemění z výše uvedených důvodů.^[1]

Obr. 7: Ukázka dlouhého a krátkého větvení polymeru

Způsob, kterým se charakterizuje větvení, je pomocí tzv. stupně větvení, který se přibližně rovná počtu větví v molekule (stupni větvení se také říká počet větvících bodů). Základní princip charakterizace větvení je dán tím, že s rostoucím stupněm větvení klesá při dané molární hmotnosti velikost molekul v roztoku. Kromě počtu větví záleží také na jejich umístění. Pokud je větev umístěna poblíž konce molekuly, molekula se jeví jako lineární. Charakteristickým znakem nahodile větvených polymerů je vzrůstající větvení s rostoucí

molekulovou hmotností. Pravděpodobnost, že molekula obsahuje větvící jednotku, vzrůstá s rostoucím polymeračním stupněm. Větvení ovlivňuje viskozitu roztoků, která klesá s rostoucím stupněm větvení, ovlivňuje adhezní vlastnosti jako pevnost, přilnavost, odlupování. ^[3] Také rozpustnost, schopnost krystalizace, botnání s rostoucím větvením klesá. Rozvětvené makromolekuly mají na základním řetězci vázány boční substituenty, které zhoršují jejich pohyblivost, což má za následek jejich vzájemné oddálení, které je příčinou poklesu kohezních sil mezi makromolekulami. Důsledkem poklesu těchto mezimolekulárních sil je zhoršení mechanické pevnosti, modulu pružnosti, tvrdosti atd

Zimm a Stockmayer^[30] ve své práci z roku 1949 odvodili vztah (rovnice 1) pro výpočet stupně větvení *g* pomocí gyračního poloměru *R* větveného a lineárního polymeru.

$$g = \left(\frac{R_{V \check{e} t v en \acute{y} polymerR}^2}{R_{Line\acute{a}rn\acute{1} polymer}^2}\right)_M (1)$$

Roku 1959 Zimm a Kilb^[31] odvodili další vztah (rovnice 2), ve kterém se vyskytuje tzv. vnitřní viskozita lineárního a rozvětveného polymeru [η] a tzv. parametr protékatelnosti *e* (\Box 0,5 - 1,5).

$$g' = \left(\frac{[\eta]_{v \in tven \circ polymer}}{[\eta]_{Line \circ arn \circ polymer}}\right)_M = g^e$$
 (2)

Pro charakterizaci stupně větvení je nutné znát jednak velikost (gyrační poloměr) a molekulovou hmotnost polymerních řetězců.

V předchozích odstavcích byl zmíněn gyrační poloměr a vnitřní viskozita. Gyrační poloměr *R* (v některé literatuře označován *s*) je parametr, který charakterizuje velikost částice libovolného tvaru. V případě polymerních látek se používá zpravidla pro určení velikosti rozvětvených polymerů nacházejících se v roztoku nebo polymerních částic v disperzním prostředí. Jedná se o střední vzdálenost hmotných bodů, tj. segmentů řetězce, od těžiště polymerního klubka, tzn. popisuje rozložení hmoty kolem těžiště daného polymerního klubka. ^[4] Lze jej stanovit z výsledků měření rozptylu světla. ^[34, 35]

Gyrační poloměr je definován rovnicí 3, kde $(r_0^2)^{\frac{1}{2}}$ je střední kvadratická vzdálenost konců řetězce.

$$(R_0^2)^{1/2} = \frac{1}{6} (r_0^2)^{\frac{1}{2}} \quad (3)$$

Vnitřní viskozita neboli limitní viskozitní číslo $[\eta]$ reflektuje efektivní hydrodynamický objem polymerních klubek. Vnitřní viskozita je dána Mark-Houwinkvým-Sakuradovým vztahem (rovnice 4), ve které hodnoty *K* souvisí s typem polymeru a rozpouštědla, α je konstanta charakteristická pro určité uspořádání řetězce a $\overline{M_v}$ je viskozitně střední molární hmotnost polymeru.^[4]

$$[\eta] = K \times \left[\overline{M_{\nu}}\right]^{\alpha} \quad (4)$$

1.4 Molekulová hmotnost polymerů a způsoby jejího stanovení

1.4.1 Molekulová hmotnost

Molekulová hmotnost, přesněji vyjádřena jako molární hmotnost polymerů nebo relativní molekulová hmotnost², je jednou z nejdůležitějších veličin, která popisuje polymer a zároveň která odlišuje látky makromolekulární od látek nízkomolekulárních. Molekulová hmotnost nízkomolekulárních látek je jednoznačně dána součtem atomových hmotností všech atomů, jež tvoří molekulu dané látky.^[4,6] Při výstavbě makromolekul podléhá poměr počtu reakčních kroků vedoucích k prodlužování řetězců a reakcí, které prodlužování řetězce ukončují, statistickým zákonům. ^[6] Z tohoto důvodu nejsou všechny makromolekulární látce nelze připisovat molekulovou hmotnost stejným způsobem jako látce nízkomolekulární, protože polymerní látka může být tvořena různě velkým počtem konstitučních (stavebních) jednotek. ^[6] Polymer je množinou makromolekul o různém počtu stavebních jednotek. Počet stavebních jednotek (monomerních jednotek) v polymerní částici se nazývá polymeračním stupněm, který se označuje *P* a je definován rovnicí 5.

$$P = \frac{M_{polymeru}}{M_{monomeru}} \quad (5)$$

Většina makromolekulárních látek jsou polymerhomologické směsi, ve kterých jednotlivé makromolekuly mají nestejný polymerační stupeň a z toho vyplývající odlišnou molekulovou hmotnost. ^[4,6,36] Polymery jsou látkami polydisperzními, a proto se polymerační stupeň a molární hmotnost polymerních látek definují jako průměrné hodnoty polymeračního stupně a průměrné hodnoty jejich molárních hmotností. Přítomnost makromolekul o dané molekulové hmotnosti je charakterizována pomocí distribuční křivky (distribuční funkce). Distribuční funkce mohou být diskrétní (nespojité), definované pouze pro určité specifikované hodnoty náhodné proměnné, nebo spojité, definované pro libovolnou hodnotu náhodné proměnné (proměnných) ležící v daných mezích. U reálných polymerů je většina distribucí svou povahou diskrétní, avšak je výhodné považovat je za spojité nebo používat

²Molární hmotnost M je určena poměrem hmotnosti a počtu molů (látkového množství) a její rozměr je kg/mol (popřípadě g/mol). Relativní molekulová hmotnost dané částice je bezrozměrná veličina a vyjadřuje poměr střední hmotnosti částice k 1/12 hmotnosti nuklidu ¹²C.

distribuční funkce, které jsou svou povahou spojité. Rozdělení distribuční křivky (funkce) je zobrazeno na obrázku 8.

Obr. 8: Rozdělení distribuční křivky (funkce) molekulových hmotností

Integrální distribuční funkce vyjadřuje podíl makromolekul, pro které je náhodná proměnná menší nebo rovna dané hodnotě. ^[36] Diferenciální distribuční funkce vyjadřuje podíl makromolekul, pro které náhodná proměnná leží uvnitř intervalu svého oboru. Početní distribuční funkce je distribuční funkce, pro kterou je množství podílu látky s určitou hodnotou popřípadě rozsahem hodnot náhodné proměnné vyjádřeno molárním zlomkem. Hmotnostní distribuční funkce je funkce, pro kterou je množství podílu látky s určitou hodnotou nebo rozsahem hodnot náhodné proměnné vyjádřeno hmotnostním zlomkem.

Matematické vyjádření integrální distribuční funkce a diferenciální distribuční funkce je popsáno pomocí rovnic 6 - 8. Na obrázku 9 je zobrazena integrální distribuce molární hmotnosti (vlevo) a diferenciální distribuce molární hmotnosti (vpravo).

$$W(M) = \frac{dI(M)}{dM} \quad (6)$$
$$I(M) = \int_0^M W(M) dM \quad (7)$$
$$N(M) = \frac{W(M)}{M} I \int_0^\infty \frac{W(M)}{M} dM \quad (8)$$

Obr. 9: Integrální distribuce molární hmotnosti (vlevo) a diferenciální distribuce molární hmotnosti (vpravo)

Distribuční křivky poskytují podrobné informace o distribuci molekulových hmotností jednotlivých frakcí vzorků. Přesto v praxi postačuje znalost jednoho či několika málo parametrů, které charakterizují polohu a šířku distribuce. Těmito parametry jsou průměry molární hmotnosti a polymeračního stupně. ^[36] Nejpoužívanějšími průměry molekulových hmotností jsou:

- Číselný (početní) střed, který vychází z počtu makromolekul v jednotlivých frakcích
- Hmotnostní střed, který je vztažen k hmotnosti makromolekul v jednotlivých frakcích

Číselně střední molární hmotnost \overline{M}_n je definována jako poměr součtu hmotností všech molekul k počtu všech molekul podle rovnice 9.

$$\overline{M}_n = \frac{\sum_i m_i}{\sum_i N_i} = \frac{\sum_i M_i N_i}{\sum_i N_i} = \sum_i M_i x_i \quad (9)$$

Člen m_i je hmotnost frakce částic o molekulové hmotnosti M_i , x_i je molární zlomek makromolekul o molární hmotnosti M_i a N_i je počet těchto molekul. Hodnoty číselně středních molekulových hmotností jsou citlivé na přítomnost malého množství nízkomolekulárních podílů. Hodnotu \overline{M}_n lze vypočítat ze známých hmotností jednotlivých frakcí podle rovnice 10.

$$\overline{M}_n = \frac{\sum_i M_i N_i}{\sum_i N_i} = \frac{\sum_i c_i}{\sum_i c_i / M_i} = \frac{1}{\sum_i w_i / M_i} \quad (10)$$

Hmotnostně střední molární hmotnost \overline{M}_w , která je dána rovnicí 11.

$$\overline{M}_{w} = \frac{\sum_{i} M_{i} m_{i}}{\sum_{i} m_{i}} = \frac{\sum_{i} N_{i} M_{i}^{2}}{\sum_{i} N_{i} M_{i}} = \sum_{i} w_{i} M_{i} \quad (11)$$

Kde m_i je hmotnost částic o molekulové hmotnosti M_i , w_i je hmotnostní zlomek makromolekul o molární hmotnosti M_i a N_i je počet těchto molekul. Hodnoty hmotnostně středních molárních hmotností jsou citlivé na podíly s velkou molekulovou hmotností (vliv malých molekul je nepatrný).^[4,6,36]

Kromě uvedených dvou typů průměrů molekulové hmotnosti polymerů jsou známy ještě další, z nichž se v praxi používá viskozitně střední molární \overline{M}_{ν} , která se stanovuje viskozimetricky. Hodnota viskozitně střední molární hmotnosti je blízká hodnotě hmotnostního průměru molekulové hmotnosti. Hodnota \overline{M}_{ν} se vypočítá pomocí rovnice 12.^[4]

$$\overline{M}_V = \left[\sum w_i M_i^a\right]^{\frac{1}{a}} \quad (12)$$

Kde *a* je exponent Mark-Houwinkovy-Sakuradovy rovnice (rovnice 4), která je tabelovaná pro dvojice polymer-rozpouštědlo, v němž se měření provádí.

Méně běžně se používá tzv. z-průměr střední molární hmotnost (rovnice 13) nebo z+1 průměr střední molekulová hmotnost (rovnice 14).^[36]

$$\overline{M}_{z} = \frac{\sum_{i} w_{i} M_{i}^{2}}{\sum_{i} w_{i} M_{i}} = \frac{\sum_{i} N_{i} M_{i}^{3}}{\sum_{i} N_{i} M_{i}^{2}} \quad (13)$$
$$\overline{M}_{z+1} = \frac{\sum_{i} m_{i} M_{i}^{3}}{\sum_{i} m_{i} M_{i}^{2}} = \frac{\sum_{i} N_{i} M_{i}^{4}}{\sum_{i} N_{i} M_{i}^{3}} \quad (14)$$

Střední polymerační stupeň \overline{P}_n nebo \overline{P}_w se potom vypočítá pomocí rovnic 15 a 16.^[4, 6]

$$\bar{P}_n = \frac{\bar{M}_n}{M_{monomeru}} = \sum x_i P_i \quad (15)$$
$$\bar{P}_w = \frac{\bar{M}_w}{M_{monomeru}} = \sum w_i P_i \quad (16)$$

Kde x_i je molární zlomek jednotlivých frakcí s polymeračním stupněm P_i a w_i je hmotnostní zlomek jednotlivých frakcí s polymeračním stupněm P_w .

Na obrázku 11 jsou na typické diferenciální distribuční křivce molekulových hmotností znázorněny jednotlivé střední molekulové hmotnosti.

Obr. 10: Diferenciální distribuční křivka molárních hmotností se znázorněnými středními molekulovými hmotnostmi ^[36]

Pro monodisperzní systém budou hodnoty \overline{M}_n a \overline{M}_w stejné. Se zvětšující se šíří distribuční křivky molárních hmotností se zvětšuje rozdíl mezi hodnotou číselného a hmotnostního průměru. Tento poměr se označuje jako koeficient polydisperzity (index polydisperzity, disperzita), který je definován vztahem 17.^[4,6,36]

$$D = \overline{M}_w / \overline{M}_n \quad (17)$$

1.4.2 Metody stanovení molekulové hmotnosti

Z předchozí kapitoly vyplývá, že určení molekulové hmotnosti makromolekulárních látek je daleko obtížnější než v případě látek nízkomolekulárních. ^[6] V současné době existuje celá řada experimentálních metod na stanovení molekulové hmotnosti polymerních látek a distribuce molekulové hmotnosti, avšak nejpoužívanější metodou je gelová permeační chromatografie (GPC) ve spojení s detektorem víceúhlového rozptylu světla (MALS). Pro výšemolekulární polymery nebo pro polymery s větvenou strukturou se v poslední době jeví jako nadějná metoda frakcionace tokem v asymetrickém tokovém poli (A4F) ve spojení s MALS detektorem. Následující kapitoly budou věnovány právě těmto metodám.

1.4.2.1 Gelová permeační chromatografie

Gelová permeační chromatografie (GPC), označovaná také jako velikostně vylučovací chromatografie (SEC)^[37] je moderní separační instrumentální metoda. Jedná se speciální typ kolonové kapalinové chromatografie, kterou lze využít k mnoha typům separačních analýz, avšak největší uplatnění nachází při stanovení molekulových hmotností, distribuce molekulových hmotností a při analýze syntetických polymerů a biopolymerů.

Na rozdíl od ostatních typů chromatografií (např. adsorpční či rozdělovací) u GPC dochází k separaci částic na základě jejich velikosti, tzn. nedochází k energetickým interakcím mezi stacionární fází a separovanou složkou.^[32,37] Chemické vlastnosti separovaných částic určuje pouze systém, v němž separace probíhá (volba elučního činidla, volba hydrofilní či hydrofobní stacionární fáze). Separovaná směs se rozpustí a ve formě zředěného roztoku je nadávkována do chromatografické kolony, kterou protéká mobilní fáze (eluent). Chromatografická kolona je naplněna malými porézními částicemi gelu (stacionární fáze). Prostor mezi částicemi stacionární fáze i póry jsou vyplněny mobilní fází. Zředěný
roztok stanovovaného vzorku se nadávkuje na vstup do kolony a postupně se vymývá mobilní fází. Koncentrace vzorku v eluátu na výstupu z kolony se sleduje pomocí detektoru. Princip separace je možné pochopit na obrázku 11.

Obr. 11: Princip separace GPC/SEC^[38]

Z obrázku 11 je názorně vidět, že k separaci molekul s různou velikostí (hydrodynamickým objemem) dochází vlivem difuze částic do pórů náplně kolony. Menší částice pronikají hlouběji do pórů ve srovnání s většími částicemi, a proto jsou z kolony vylučovány později (mají delší retenční čas). Molekuly, jejichž velikost je větší, než je velikost pórů, jsou z chromatografické kolony vyloučeny bez zdržení (částice procházejí pouze v prostoru mezi zrny). První tedy pouštějí kolonu makromolekuly, jejichž průměr je větší než velikost pórů náplně kolony, která určuje tzv. horní exkluzní limit kolony. Velmi malé molekuly (např. zbytky iniciátoru, stabilizátor mobilní fáze, nezreagovaný monomer nebo nejnižší oligomery) opouštějí kolonu prakticky ve stejný čas jako rozpouštědlo a tento čas vymezuje tzv. dolní exkluzní limit. Účinně lze separovat pouze makromolekuly, které svou velikostí eluují mezi exkluzními limity (jejich velikost je v separační oblasti kolony). ^(32,34,37,39)

Důležitou podmínkou GPC je, aby nedocházelo k chemickým interakcím mezi částicemi chromatografické kolony a analyzovaným vzorkem. Částice chromatografické kolony jsou vyráběny například ze sesítěného polystyrenu (PS). V tomto případě se jedná o kopolymer styrenu a divinylbenzenu.^[40]

K detekci separovaných složek se používají různé detektory. Častým detektorem, který se používá v GPC, je refraktometr.^[40] Refraktometr měří změny indexu lomu eluátu

v závislosti na koncentraci rozpuštěného vzorku v rozpouštědle. V tomto uspořádání není GPC metodou absolutní. Molární hmotnost není stanovena na základě fyzikální veličiny, ale nepřímo porovnáním se standardním polymerem. Jako standardy se používají monodisperzní polymery o známé molekulové hmotnosti, avšak k dispozici je velmi omezený počet standardů (například polymethylmethakrylát, polystyren aj.). Použití kalibrační závislosti (získané z měření standardu) pro polymer s odlišným složením než daný standard vede k chybám v analýze. Využitím hydrodynamického objemu V_h a Mark-Houwinkovy-Sakuradovy rovnice je však možné přepočítat kalibrace [41], která je platná pro různé polymery. Pokud jsou pro jednotlivé eluční objemy známy hodnoty vnitřní viskozity (viz rovnice 4), lze z této kalibrace stanovit molekulovou hmotnost pro daný měřený vzorek.

V případě spojení GPC s detektorem rozptylu světla (LS) nebo více úhlového rozptylu světla (MALS) se molekulová hmotnost stanovuje přímo. Kromě stanovení molekulové hmotnosti se touto metodou může stanovit gyrační poloměr a také větvení. Podstata fungování MALS detektoru spočívá v měření úhlové závislosti intenzity rozptýleného světla, které je elasticky rozptýleno se stejnou vlnovou délkou, jako je vlnová délka primárního paprsku. Na obrázku 12 je schematicky znázorněn MALS detektor.^[34,42]

Obr. 12: Schématické znázornění MALS detektoru^[43]

TEORETICKÁ ČÁST

Světlo je rozptýleno pod různými úhly θ . Rayleighův rozptyl je definován rovnicí 18.

$$R_{\theta} = f_{MALS} \frac{[I(\theta) - I_s(\theta)]}{I_0(\theta)} \quad (18)$$

Kde $I(\theta)$ je intenzita světla rozptýleného částicí, $I_s(\theta)$ je intenzita světla rozptýleného čistým rozpouštědlem, I_0 je intenzita nerozptýleného světla a f_{MALS} je kalibrační konstanta přístroje.

Vztah mezi Raylehghovým rozptylem a molekulovou hmotností je dán rovnicí 19.

$$\frac{K_c}{R_{\theta}} = \frac{I}{M_w P(\theta)} 2A_2 C \quad (19)$$

Člen *Kc* je rozptylová konstanta pro vertikálně polarizovaný tok světla a je definována rovnicí 20.

$$K = \frac{4\pi^2 n_0^2}{N_A \lambda_0^4} \left(\frac{dn}{dc}\right)^2 \quad (20)$$

Člen n_0 je index lomu čistého rozpouštědla, N_A je Avogadrova konstanta, λ_0 vlnová délka primárního záření ve vakuu a dn/dc přírůstek indexu lomu v roztoku. $P(\theta)$ (je funkcí gyračního poloměru) ve vztahu mezi Rayleighovým rozptylem a molární hmotností (rovnice 19) je rozptylová funkce, která vyjadřuje úhlovou závislost rozptýlených světelných toků na segmentech makromolekuly. Rozptylová funkce popisuje pokles intenzity rozptýleného světla s úhlem pozorování.^[4] Důvod proč dochází k zeslabení intenzity světelného signálu, je ilustrován na obrázku 13. Světelné paprsky rozptýlené různými body téže molekuly jsou fázově posunuty a výsledná intenzita je zeslabena vzájemnou interferencí.^[4,42]

Obr. 13: Princip zeslabení intenzity rozptýleného světla v závislosti na úhlu pozorování

Důležité je také zmínit, že existuje také klasické uspořádání (tzv. batch mode) spojené s detektorem MALS. Úhlová intenzita rozptýleného světla se měří při několika koncentracích měřených vzorků. Výsledkem je Zimmův diagram (obrázek 14), ze kterého je možné odečíst \overline{M}_w , z - průměr gyračního poloměru a druhý viriální koeficient (A_2).

Obr. 14: Zimmův diagram pro vyhodnocení experimentálních dat^[44]

1.4.2.2 A4F – MALS

A4F-MALS je zkratka pro metodu frakcionace tokem v asymetrickém tokovém poli (A4F) ^[24,29,34] spojenou s detektorem víceúhlového rozptylu světla (MALS). Separační metody tokem v poli (FFF – fractionation in flow field) se mohou klasifikovat podle používaného pole na odstředivé pole v sedimentační FFF, elektrické pole v elektrické FFF, teplotní gradient v tepelné FFF a tok kapaliny v A4F.

Metoda A4F využívá separace v kanálu, který nahrazuje stacionární fázi chromatografické kolony. Horizontálním směrem přitéká mobilní fáze s laminárním prouděním, nejvyšší rychlost laminárního proudění je ve středu kanálu a směrem k okrajům se postupně snižuje. V horizontálním toku "channel-flow" se také pohybují separované částice Brownovým pohybem různými směry a rychlostmi. K separaci částic se využívá pole orientované kolmo na kanál ("cross-flow"). ^[45] Vlivem tohoto pole se částice přesouvají do různých vzdáleností od spodní stěny kanálu (tzv. akumulační stěny) a jsou odnášeny podélným tokem k detektoru na výstupu. Vlivem laminárního proudění mají jednotlivé částice odlišnou rychlost. Ve středu kanálu je rychlost roku nejvyšší, a proto nejlehčí částice opustí kolonu první. ^[46] Kromě MALS detektoru se také používá UV detektor a diferenciální refraktometr (viz GPC). Princip fungování AF4 je znázorněn na obrázku 15.

40

TEORETICKÁ ČÁST

A4F je alternativa ke GPC. Tato separační metoda má oproti GPC určité výhody. Použitím A4F lze separovat i makromolekuly s velmi vysokou molekulovou hmotností (má výrazně vyšší horní separační limit oproti GPC). Nepřítomnost stacionární fáze eliminuje zachytávání větvených makromolekul. Zároveň nedochází k degradaci střihem velkých molekul, také se výrazně sníží operační tlak.^[24,29,34,46]

Obr. 15: Princip separace částic metodou A4F^[46]

2 Experimentální část

2.1 Přehled použitých chemikálií

2.1.1 Monomery použité pro syntézu latexů

• Methylmethakrylát, ethylakrylát, kyselina methakrylová, styren, *n*-butylakrylát (vzorce, vlastnosti a výrobce jednotlivých monomerů jsou uvedeny v tabulkách 1 a 2)

Tabulka 1: Chemické vzorce a zkratky monomerů

Monomer	Zkratka	Vzorec
Methylmethakrylát	MMA	$H_{3}C$ O $H_{2}C$ O $-CH_{3}$
Ethylakrylát	EA	H ₂ C CH ₃
Kyselina methakrylová	KMA	H ₃ C OH
Styren	ST	CH2
<i>n</i> -Butylakrylát	BA	H ₂ C , CH ₃

Monomer	M [g/ mol]	Hustota (při 20 °C) [g/ ml]	Bod varu [°C]	CAS registrační číslo	Výrobce
MMA	100,1	0,943	101	80-62-6	Sigma Aldrich
EA	100,1	0,921	100	140-88-6	Sigma Aldrich
KMA	86,1	1,015	161	79-41-4	Sigma Aldrich
ST	104,1	0,904	145	100-42-6	Sigma Aldrich
BA	128,1	0,900	147	141-32-2	Sigma Aldrich

Tabulka 2: Charakteristické vlastnosti monomerů

2.1.2 Ostatní chemikálie

- **Emulgátor** Disponil FES 993:
 - anionaktivní tenzid, sodná sůl polyglykolethersulfátu mastné kyseliny
 - hustota při 20 °C: 1,1 g/cm³
 - pH: 7 8,5
 - obsah netěkavých složek: 30,5 %
 - výrobce: BASF
- Iniciátor peroxodisíran amonný:
 - vzorec: (NH₄)₂S₂O₈
 - molární hmotnost: 228,2 g/mol
 - čistota: p.a.
 - výrobce: Lach-Ner, s.r.o.

- Inhibitor polymerace hydrochinon
 - vzorec:

- molární hmotnost: 110,11 g/ mol
- čistota: ≥ 99,5 %
- výrobce: Sigma Aldrich
- Mobilní fáze pro A4F-MALS a rozpouštědlo tetrahydrofuran
 - vzorec:

- molární hmotnost: 72,11
- čistota: ≥ 99,5 %
- výrobce: Lach-Ner s.r.o

2.2 Syntéza latexů

Latexy byly připraveny semikontinuální emulzní polymerací níže popsaným postupem. Syntéza byla prováděna v aparatuře uvedené na obrázku 16. Do polymeračního reaktoru bylo předloženo 105 g deionizované vody a 0,38 g emulgátoru Disponil FES 993. Poté bylo zapnuto míchadlo a přívod inertního plynu (N_2) a reaktor byl vyhřát na teplotu 85 °C.

Do Erlenmeyerovy baňky bylo předloženo 225 g deionizované vody, 0,75 g iniciátoru $(NH_4)_2S_2O_8$, 11,25 g emulgátoru Disponil FES 993 a 150 g monomerů ve složení a množství, které je uvedeno v tabulkách 3. Mícháním byla vytvořena monomerní emulze.

V dalších 10 ml destilované vody bylo rozpuštěno 0,38 g iniciátoru (NH₄)₂S₂O₈. Po ustálení teploty v reakční nádobě na 85 °C byl tento roztok iniciátoru přidán do polymeračního reaktoru. Po přidání iniciátoru do polymeračního reaktoru bylo okamžitě spuštěno přikapávání monomerní emulze, které bylo prováděno pomocí automatického dávkovacího zařízení Razel Scientific A-99 MZ (Razel Scientific Instrument Inc, USA) zajišťujícího konstantní rychlost příkapu monomerní emulze (Xg/ min). Za stálého míchání reakční směsi byla doba dávkování monomerní emulze 180 minut.

Po skončení přikapávání monomerní emulze byla teplota reakční směsi udržována na 85 °C po dobu 120 minut. Po uplynutí této doby byl vzniklý latex za neustálého míchání ochlazen v reakční nádobě pod inertní atmosférou na teplotu 25 °C. Následně byl vychlazený latex přelit a uskladněn do označené polyethylenové láhve. U připraveného latexu byl stanoven obsah koagulátu, sušina, pH a viskozitu podle Brookfielda.

Obr. 16: Aparatura pro polymeraci latexů s automatickým dávkovačem

Vzorek	MMA/ ST/ EA/ BA/ KMA					
VZOICK	[mol. %]	[hmot. %]	[g]			
EA 98	0,0/ 0,0/ 98,0/ 0,0/ 2,0	0,0/ 0,0/ 98,3/ 0,0/ 1,7	0,0/ 0,0/ 147,4/ 0,0/ 2,6			
BA 98	0,0/ 0,0/ 0,0/ 98,0/ 2,0	0,0/0,0/0,0/98,6/1,4	0,0/ 0,0/ 0,0 147,9/ 2,1			
MMA 98	98,0/ 0,0/ 0,0/ 0,0/ 2,0	98,3/ 0,0/ 0,0/ 0,0/ 1,7	147,4/ 0,0/ 0,0/ 0,0/ 2,6			
ST 98	0,0/ 98,0/ 0,0/ 0,0/ 2,0	0,0/ 98,3/ 0,0/ 0,0/ 1,7	0,0/ 147,5/ 0,0/ 0,0/ 2,5			
MMA/EA 5/93	5,0/ 0,0/ 93/ 0,0/ 2,0	5,0/ 0,0/ 93,3/ 0,0/ 1,7	7,2/0,0/139,9/0,0/2,9			
MMA/EA 10/88	10,0/ 0,0/ 88/ 0,0/ 2,0	10,0/ 0,0/ 88,3/ 0,0/ 1,7	15,0/ 0,0/ 132,4/ 0,0/ 2,6			
MMA/EA 25/73	25,0/ 0,0/ 73,0/ 0,0/ 2,0	25,1/0,0/73,2/0,0/1,7	37,6/0,0/109,8/0,0/2,6			
MMA/EA 50/48	50,0/ 0,0/ 48/ 0,0/ 2,0	50,1/ 0,0 48,2/ 0,0/ 1,7	75,2/ 0,0/ 72,2/ 0,0/ 2,6			
MMA/EA 75/23	75,0/ 0,0/ 23/ 0,0/ 2,0	75,2/ 0,0/ 23,1/ 0,0 1,7	112,8/ 0,0/ 34,6/0,0/ 2,6			
MMA/ BA 5/93	5,0/ 0,0/ 0,0/ 93,0/ 2,0	4,0/ 0,0/ 0,0/ 94,7/ 1,3	6,0/ 0,0/ 0,0/ 142,0/ 2,0			
MMA/BA 10/88	10,0/ 0,0/ 0,0/ 88,0/ 2,0	8,0/0,0/0,0/90,6/1,4	12,1/ 0,0/ 0,0/ 135,9/ 2,0			
MMA/BA 25/73	25,0/ 0,0/ 0,0/ 73,0/ 2,0	20,9/ 0,0/ 0,0/ 77,8/ 1,4	31,2/ 0,0/ 0,0/ 116,7/ 2,1			
MMA/BA 50/48	50,0/ 0,0/ 0,0/ 48,0/ 2,0	44,2/ 0,0/ 0,0/ 54,3/ 1,5	66,3/ 0,0/ 0,0/ 81,5/ 2,2			
MMA/BA 75/23	75,0/ 0,0/ 0,0/ 23,0/ 2,0	70,6/ 0,0/ 0,0/ 27,7/ 1,7	105,9/ 0,0/ 0,0/ 41,6/ 2,5			
ST/EA 5/93	0,0/ 5,0/ 93,0/ 0,0/ 2,0	0,0/ 5,2/ 93,1/ 0,0/ 1,7	0,0/ 7,8/ 139,6/ 0,0/ 2,6			
ST/EA 10/88	0,0/ 10,0/ 88,0/ 0,0/ 2,0	0,0/ 10,4/ 87,9/ 0,0/ 1,7	0,0/ 15,6/ 131,8/ 0,0/ 2,6			
ST/EA 25/73	0,0/ 25,0/ 73,0/ 0,0/ 2,0	0,0/ 25,8/ 72,5/ 0,0/ 1,7	0,0/ 38,7/ 108,7/ 0,0/ 2,6			
ST/EA 50/48	0,0/ 50,0/ 48,0/ 0,0/ 2,0	0,0/ 51,1/ 47,2/ 0,0/ 1,7	0,0/ 76,7/ 70,8/ 0,0/ 2,5			
ST/EA 75/23	0,0/ 75,0/ 23,0/ 0,0/ 2,0	0,0/ 75,9/ 22,4/ 0,0/ 1,7	0,0/ 113,9/ 33,6/ 0,0/ 2,5			
ST/BA 5/93	0,0/ 5,0/ 0,0/ 93,0/ 2,0	0,0/4,1/0,0/94,5/1,4	0,0/ 6,2/ 0,0/ 141,8/ 2,0			
ST/BA 10/88	0,0/ 10,0/ 0,0/ 88,0/ 2,0	0,0/ 21,5/ 0,0/ 90,3/ 1,4	0,0/ 12,5/ 0,0 135,4 2,1			
ST/BA 25/73	0,0/ 25,0/ 0,0/ 73,0/ 2,0	0,0/ 21,5/ 0,0/ 77,1/ 1,4	0,0/ 32,2/ 0,0 115,7/ 2,1			
ST/BA 50/48	0,0/ 50,0/ 0,0/ 48,0/ 2,0	0,0/ 45,2/ 0,0/ 53,4/ 1,4	0,0/ 67,7/ 0,0/ 80,0/ 2,3			
ST/BA 75/23	0,0/75,0/0,0/23,0/2,0	0,0/71,5/0,0/26,9/1,6	0,0/ 107,2/ 0,0/ 40,5/ 2,3			

2.3 Hodnocení průběhu emulzní polymerace

Pro studium průběhu emulzní polymerace byly odebírány v určených časových intervalech plastovým kapátkem vzorky latexu o přibližné hmotnosti 1 g. V každém sledovaném okamžiku polymerace byly odebrány vzorky pro stanovení sušiny, okamžité konverze, celkové konverze, velikosti latexových částic, teploty skelného přechodu a střední molární hmotnosti vznikajících emulzních kopolymerů. Během přikapávání monomerní emulze do polymeračního reaktoru (celková doba dávkování byla 180 minut) byly odebírány vzorky v intervalech 30, 60, 120 a 180 minut od zahájení přikapávání řízeného automatickým dávkovačem. Po ukončení příkapu monomerní emulze byly během dopolymerace odebrány vzorky v intervalech 240 a 300 minut od zahájení dávkování. Odebrané vzorky byly okamžitě zváženy na analytických vahách a inhibovány pomocí 1 kapky ethanolického roztoku hydrochinonu o koncentraci 5mg/ml.

Pomocí metody A4F-MALS byla u všech odebraných vzorků stanovena distribuce středních molárních hmotností, pomocí metody dynamického rozptylu světla (DLS) byla stanovena průměrná velikost částic a diferenciální skenovací kalorimetrií (DSC) byla stanovena teplota skelného přechodu T_g .

2.4 Popis použitých metod

2.4.1 Stanovení celkového obsahu koagulátu sítovou analýzou

Celkovým obsahem koagulátu se podle normy ČSN 64 9008 rozumí hmotnostní podíl sušiny dispergovaných částic zachycených na sítě o délce strany ok 0,046 mm. Metoda slouží ke kvantitativnímu stanovení obsahu koagulátu v disperzích. Při stanovení celkového obsahu koagulátu se disperze postupně filtruje sadou sít o daných velikostech ok. Při stanovení obsahu koagulátu se filtruje sítem, jehož velikost ok určuje norma jakosti. Při stanovení obsahu hrubých nečistot se filtruje sítem o délce strany ok 1 mm. Celkový obsah koagulátu se stanoví podle vzorce 21.

$$w_{koagul\acute{a}t}(\%) = \frac{m_{koagul\acute{a}tu}}{m_{koagul\acute{a}tu} + \left(m_{emulze} \times \frac{su\check{s}ina\ (v\ \%)}{100}\right)} \times 100 \quad (21)$$

2.4.2 Stanovení obsahu sušiny

Stanovit obsah sušiny znamená stanovit obsah netěkavých podílů v daném množství disperze dle normy ČSN EN ISO 3251 (67 3031). Do Petriho misky bylo naváženo na analytických vahách 1 ± 0,2 g vzorku. Miska byla vložena do sušárny na dobu 60 minut při teplotě 105 °C. Po 60 minutách byla miska vytažena ze sušárny a vložena do exsikátoru. Po vychladnutí na laboratorní teplotu byly vzorky zváženy na analytických vahách a byla vypočítaná sušina v [%] dle vztahu 22. Měření bylo provedeno třikrát a výsledná hodnota byla vypočítána jako aritmetický průměr.

$$x = \frac{\left(m_{po \ vysušeni} - m_{Petriho \ misky}\right)}{\left(m_{p \check{r}ed \ vysušeni} - m_{Petriho \ misky}\right)} \times 100$$
(22)

EXPERIMENTÁLNÍ ČÁST

2.4.3 Stanovení pH

Podle normy ISO 1148 bylo stanoveno pH polymerních disperzí. Měření pH bylo prováděno pomocí pH metru Mettler-Toledo FiveEasy FE20 (Mettler-Toledo Group, Švýcarsko). Před měřením byla provedena kalibrace použitím pufrů o pH 4 a 7. Čistá elektroda byla po opláchnutí destilovanou vodou a osušení vložena do kádinky s řádně promíchaným vzorkem o laboratorní teplotě (25 °C). Celkově byla provedena tři měření pro každou polymerní disperzi a výsledné pH se vypočítalo jako aritmetický průměr.

2.4.4 Stanovení zdánlivé viskozity podle Brookfielda

Tato metoda byla provedena podle normy ČSN ISO 2555, která se používá pro nenewtonské kapaliny. K měření byl používán rotační viskozimetr Brookfield LVDV-E (Brookfield Engineering Laboratories, Inc.) vybavený sadou čtyř vřeten LV1 – 4. Principem metody je, že se ve zkoušeném vzorku konstantní rychlostí otáčí vřeteno válcovitého tvaru, které je připojené na kalibrovanou pružinu. Vzniklé smykové síly dané viskozitou kapaliny jsou měřeny deflexí (zkroucením) pružiny.

Zkušební vzorek byl vytemperován na 23 °C. Všechna měření byla prováděna při konstantní rychlosti rotace vřetena 100 ot/min. Vždy byl volen takový typ vřetena, aby měření vykazovalo hodnoty kroutícího momentu v rozsahu 10 - 100 %. Hodnota zdánlivé viskozity (cP = mPa.s) byla odečítána z displeje přístroje po uplynutí doby 30 s od zahájení otáčení vřetena. Byla prováděna tři po sobě následující stanovení a jako výsledná hodnota byl brán aritmetický průměr všech tří měření.

2.4.5 Stanovení okamžité a celkové konverze monomerů

Vzorek odebraný z reaktoru během polymerace byl okamžitě zvážen na analytických vahách a inhibován ethanolickým roztokem hydrochinonu. Poté byl vzorek umístěn do sušárny a vysušen postupem popsaným v kapitole 2.4.2 Po vychladnutí v exsikátoru byly vzorky zváženy na analytických vahách a byla vypočítaná okamžitá a celková konverze v [%] dle vztahů 23 a 24. Měření okamžité a celkové konverze byla prováděna třikrát a výsledné hodnoty byly vypočítány jako aritmetický průměr.

49

$$X_i = \frac{m_{polymeru}}{m_{nadávkovaných monomerů}} \times 100$$
(23)

$$X_0 = \frac{m_{polymeru}}{m_{násada monomerů}^3} \times 100 \quad (24)$$

2.4.6 Stanovení teploty skelného přechodu

Teplota skelného přechodu (T_g) byla stanovena metodou diferenciální skenovací kalorimetrie (DSC) pomocí přístrojů Pyris 1DSC Instrument (Perkin-Elmer Inc., USA) a Mettler Toledo DSC 12E (Mettler-Toledo Inc., USA). Diferenciální skenovací kalorimetrie nebo také kompenzační dynamická kalorimetrie patří mezi metody termické analýzy. Je založena na sledování změn chemických a fyzikálních vlastností látek při ohřevu a chlazení. Pojem diferenciální, někdy také diferenční, znamená to, že teplota vzorku, která je měřená, se porovnává s teplotou srovnávací (referentní) látky. Během procesu měření nesmí u srovnávací látky docházet k žádným chemickým ani fyzikálním přeměnám. Metoda je založená na udržování stejné teploty ve vzorku i srovnávací látce, konkrétně v měření energie (elektrického příkonu), která je dodávána buď do vzorku (v případě endotermního děje probíhajícího v měřené látce) nebo do srovnávací látky (v případě exotermního děje probíhajícího v měřené látce), aby byl udržen nulový rozdíl teplot. ^[50]

Vzorky, u kterých se předpokládala nízká T_g , byly měřeny na Katedře fyzikální chemie Univerzity Pardubice. Měření probíhalo v rozsahu teplot -100 °C do 110 °C s rychlostí ohřevu 10 °C/ min (první ohřev). Následovalo chlazení na teplotu -100 °C (rychlostí chlazení 10 °C/ min) a poté znovu následoval ohřev na teplotu 150 °C s rychlostí ohřevu 10 °C/ min. T_g byla u všech měřených vzorků vyhodnocena z druhé křivky ohřevu.

Vzorky s předpokládanou vysokou T_g byly měřeny ve Společné laboratoři chemie pevných látek Ústavu makromolekulární chemie AV ČR a Univerzity Pardubice. Měření probíhalo v rozsahu teplot 35 °C až 110 °C s rychlostí ohřevu 10 °C/ min (první ohřev). Následovalo chlazení na 35 °C a poté následoval ohřev na 170 °C s rychlostí ohřevu 10 °C/ min. T_g byla u všech vzorků vyhodnocena z druhé křivky ohřevu.

³ Hmotnost násady monomerů se rovná 150 g

EXPERIMENTÁLNÍ ČÁST

2.4.7 Stanovení velikosti částic

Velikost vznikajících polymerních částic byla stanovena metodou dynamického rozptylu světla (DLS). DLS, rovněž také nazývaný jako fotonová korelační spektroskopie (PCS) nebo také kvazielastický rozptyl světla (QELS)^[47], je metoda pro měření velikosti částic a distribuce velikostí molekul v submikronové oblasti (u nejnovějších systémů do velikosti menší než 1 nm). Podstatou metody je měření fluktuací intenzity rozptýleného světla z laserového zdroje světla. Tyto fluktuace jsou způsobeny interferenčním zeslabováním (destruktivní interference) či zesilováním (konstruktivní interference) světla rozptýleného na molekulách (částicích) disperzní fáze, které se pohybuje rychleji, tím rychleji se intenzita rozptýleného světla mění. Velikost částic se stanovuje měřením rychlosti difuze částic v kapalině (rychlost difuze závisí na viskozitě kapaliny, velikosti částic a na teplotě). Menší částice se pohybuje rychleji, zatímco větší částice se pohybuje pomaleji (větší částice generují signály, které fluktuují pomaleji než v případě menších částic). Vztah mezi rychlostí částice a její velikostí v důsledku Brownova pohybu je definovaný Stokes-Einsteinovou rovnicí.

Jak už bylo zmíněno v předchozím odstavci, intenzita rozptýleného světla fluktuuje v důsledku Brownova pohybu molekul nebo částic. Časová závislost těchto fluktuací je charakterizována autokorelační funkcí, která je dána vzorcem 25.^[35,49,51]

$$G(\tau) = \lim_{T \to \Box} \left(\frac{1}{T}\right) \int_{t_0}^{t_0 + T} I(t)I(t - \tau)dt \quad (25)$$

Kde G je autokorelační funkce, I(t) intenzita světla v čase t, τ časový posuv a T je čas. Autokorelační funkce charakterizuje rychlost změn intenzity rozptýleného světla. Pomocí autokorelační funkce se měří stupeň podobnosti mezi dvěma signály po určité době. S narůstajícím časovým intervalem se korelace signálů snižuje, až se dosáhne nulové korelace, tzn. mezi naměřenými signály neexistuje žádná podobnost. Čím rychleji se molekuly pohybují, tím rychleji se korelace přiblíží k nule.

Pro kulovité částice lze říct, že jejich velikost odpovídá jejich průměru (poloměru). Velikost částic nekulového tvaru se definuje pomocí ekvivalentních průměrů (poloměrů),

⁴ Brownův pohyb je pohyb částic způsobený náhodnými kolizemi částic v roztoku s molekulami rozpouštědla

průměru ekvivalentních koulí. Dle definice pak průměr (poloměr) měřený metodou DLS je průměr hypotetické kulovité částice, která difunduje stejnou rychlostí jako zkoumaná částice.

Měření vzorků probíhalo na přístroji Brookhaven 90 Plus Particle Size Analyzer (Brookhaven Instruments Corporation, USA) při teplotě 23 °C. Koncentrace vodných polymerních disperzí byla 0,05 hm. %. Průměrná velikost částic byla zjišťována z unimodální analýzy.

2.4.8 Stanovení molekulové hmotnosti pomocí A4F-MALS

Stanovení proběhlo ve společnosti Synpo, a.s., Pardubice. Měření probíhalo na přístroji A4F systém Eclipse 3+ (Wyatt Technology Corporation, USA) s detektorem MALS, fotometrem HELEOS (Wyatt Technology Corporation, USA) a modulem pro dynamický rozptyl světla a diferenciálním refraktometrem 2410 (Waters Corporation, USA). Vzorky latexů byly rozpuštěny v tetrahydrofuranu (THF) za vzniku roztoku o koncentraci 2,5 mg/ml. Objem vzorku vstříknutý do kanálu byl 100 µl. Kanál byl vybaven spacerem o šířce 350 µm a 10 kDa membránou z regenerované celulosy (Wyatt Technology Corporation, USA). Mobilní fází byl THF. U latexů byly stanoveny střední molární hmotnosti \overline{M}_n , \overline{M}_w , \overline{M}_z . Princip metody je uveden v teoretické části (viz. kapitola 1.4.2.2).

3 Výsledky a diskuze

3.1 Obsah sušiny a charakteristické vlastnosti připravených latexů

Z tabulky 7 je patrné, že obsah sušiny všech připravených latexů se pohybuje v rozmezí 30,1 % - 32,5 %. Rozdíly v obsahu sušiny vodných disperzí emulzních kopolymerů lišících se typem a zastoupením jednotlivých monomerů nejsou výrazné, pohybují se v řádech desetin až jednotek procent. Z toho vyplývá, že složení emulzních kopolymerů nemá vliv na obsah sušiny latexů.

Všechny připravené latexy jsou silně kyselé bez ohledu na složení emulzních kopolymerů. Hodnoty pH latexů měřené při teplotě 23 °C se pohybují v rozmezí 1,99 – 2,17. Kyselá povaha vodných disperzí je způsobena přítomností sulfátových funkčních skupin pocházejících z iniciátoru peroxodisíranu amonného, ale také přítomností kyselých karboxylových funkčních skupin kyseliny methakrylové, která je zabudována do polymerních řetězců kopolymerů. Z údajů v tabulce 7 rovněž vyplývá, že se jednotlivé latexy při polymeraci téměř nesráží. Obsah koagulátu u všech připravených latexů se pohybuje řádově v desetinách procent.

Zdánlivá viskozita dle Brookfielda se pohybuje v rozmezí od 3,01 mPa.s (MMA/BA 75/23) do 4,5 mPa.s (ST/BA 10/88). Hodnoty pro jednotlivé latexy se od sebe liší v řádu desetin až jednotek mPa.s. V latexové řadě není žádný vzorek, jehož viskozita by se výrazně odchylovala, tudíž lze konstatovat, že složení emulzních kopolymerů patrně nemělo na viskozitu latexu výrazný vliv.

Jelikož všechny studované disperze nevykazovaly významné rozdíly v základních charakteristických vlastnostech (viskozita, pH, sušina a obsah koagulátu), mohou být tyto faktory vyloučeny jako zdroj případných rozdílů, nejasností a omylů vznikajících při studiu průběhu emulzní polymerace těchto kopolymerů.

53

Latex	Sušina [%]	Obsah koagulátu [%]	Zdánlivá viskozita [mPa.s]	рН
EA 98	31,5	0,01	3,63	1,99
BA 98	30,5	0,14	3,93	2,01
MMA 98	31,4	0,37	3,24	2,07
ST 98	31,6	0,13	3,66	2,10
MMA/EA 5/93	32,2	0,11	3,57	2,02
MMA/EA 10/88	32,1	0,05	3,86	2,01
MMA/EA 25/73	32,4	0,16	3,75	2,02
MMA/EA 50/48	32,5	0,14	3,42	2,04
MMA/EA 75/23	32,1	0,62	3,12	2,09
MMA/BA 5/93	30,3	0,09	3,48	2,03
MMA/BA 10/88	30,0	0,10	3,72	2,11
MMA/BA 25/73	30,1	0,25	3,48	2,06
MMA/BA 50/48	30,4	0,14	3,18	2,07
MMA/BA 75/23	30,1	0,03	3,01	2,05
ST/EA 5/93	30,2	0,34	3,87	2,01
ST/EA 10/88	30,4	0,26	3,98	2,00
ST/EA 25/73	30,8	0,11	3,26	2,12
ST/EA 50/48	30,8	0,09	3,12	2,11
ST/EA 75/23	30,1	0,07	3,60	2,05
ST/BA 5/93	30,9	0,30	2,94	2,06
ST/BA 10/88	30,9	0,19	4,26	2,09
ST/BA 25/73	31,7	0,20	4,50	2,17
ST/BA 50/48	31,2	0,05	4,32	2,12
ST/BA 75/23	31,1	0,01	3,84	2,08

Tabulka 4: Obsah sušiny a charakteristické vlastnosti latexů

3.2 Studium průběhu emulzní polymerace

3.2.1 Vývoj konverze

V tabulkách 5-8 jsou uvedeny hodnoty okamžitých a celkových konverzí kopolymerů na bázi MMA/ST/EA/BA/KMA. Je patrné, že okamžitá konverze polymerních vzorků odebraných po 30 minutách od zahájení příkapu automatickým dávkovačem je nižší než 90 %. Také je patrné, že okamžitá konverze téměř u všech odebraných vzorků během polymerace mírně rostla. Nejvyšší okamžitá konverze byla stanovena u vzorku ST/BA 25/73 odebraného po čtyřech hodinách od zahájení příkapu. Celková konverze přirozeně vzrůstá s množstvím přikapaných monomerů. Po 30 minutách od zahájení příkapu emulze monomerů MMA/ST/EA/BA/KMA v různém molárním složení se hodnoty celkové konverze nacházejí mezi 12 – 20 %, po 60 minutách v rozmezí 25,6 – 31,5 %, po 120 minutách 54,1 - 65,6 % a po 180 minutách 94,3 – 97,7 %. Po dokončení příkapu emulze monomerů MMA/ST/EA/BA/KMA, tj. po 180 minutách, je celková konverze totožná s okamžitou konverzí. Hodnoty konverzí komonomerů u odebraných vzorků po 180 minutách se zvyšovaly jen mírně. Je vidět, že konverze monomerů nepřesáhla 98 %.

Plessis a kol. ^[3] uváděli, že v případě emulzní polymerace ST a BA byl sledován s rostoucí koncentrací styrenu v emulzním kopolymeru pokles konverze z důvodu snížení rychlosti propagace. V tomto případě však nebyl pozorován žádný vliv obsahu jednotlivých monomerů v emulzních kopolymerech na vývoj okamžité i celkové konverze. Konverze všech studovaných kopolymerních vzorků vzrůstala bez významných rozdílů.

	Čas	Okamžitá	Celková
Konverze	odběru	konverze	konverze
	[min]	[%]	[%]
	30	89,9	17,6
	60	93,4	30,2
EA 98	120	95,7	61,8
Liiyo	180	95,0	95,0
	240	95,1	95,1
	300	96,3	96,3
	30	88,7	19,1
	60	93,0	31,0
MMA/FA 5/03	120	94,6	67,6
MINIA/LA 5/95	180	96,0	96,0
	240	95,9	95,9
	300	96,2	96,2
	30	83,8	18,1
	60	94,4	29,1
MMA/FA 10/88	120	94,3	64,1
WIWIA/LA 10/00	180	95,2	95,2
	240	95,1	95,1
	300	96,0	96,0
	30	83,0	16,0
	60	94,0	28,9
MMA/EA 25/73	120	96,1	64,6
	180	94,5	94,5
	240	95,7	95,7
	300	95,9	95,9
	30	83,4	18,0
	60	94,1	27,5
MMA/EA 50/48	120	95,9	65,3
	180	96,8	96,8
	240	95,7	95,7
	300	96,4	96,4
	30	86,1	19,7
	60	94,7	29,6
MMA/EA 75/23	120	95,8	65,5
	180	95,9	95,9
	240	95,8	95,8
	300	96,2	96,2
	30	83,5	18,1
	60	95,1	29,1
MMA 98	120	94,7	62,9
	180	95,0	95,0
	240	96,3	96,3
	300	95,3	95,3

Tabulka 5: Konverze v průběhu polymerace latexů na bázi komonomerů MMA a EA

	Čas	Okamžitá	Celková
Konverze	odběru	konverze	konverze
	[min]	[%]	[%]
		88,4	14,4
	60	94,9	27,2
BA 98	120	95,2	62,1
D IT 70	180	94,3	94,3
	240	96,6	96,6
	300	96,9	96,9
	30	85,2	14,4
	60	96,5	28,8
MMA/BA 5/03	120	96,6	65,4
WIWIA/DA 3/33	180	95,3	95,3
	240	95,6	95,6
	300	97,0	97,0
	30	86,0	14,9
	60	94,1	31,5
MMA/BA 10/88	120	93,0	62,2
WIWIA/DA 10/00	180	95,6	95,6
	240	96,2	96,2
	300	95,1	95,1
	30	85,1	14,5
	60	95,1	30,0
MMA/BA 25/73	120	95,6	58,9
WIWIA/DA 25/75	180	96,0	96,0
	240	94,8	94,8
	300	97,4	97,4
	30	87,5	14,6
	60	93,4	30,4
MMA/BA 50/48	120	95,2	63,0
MINIA/DA 30/40	180	95,8	95,8
	240	96,5	96,5
	300	96,1	96,1
	30	85,8	13,9
	60	95,6	27,2
MMA/RA 75/23	120	96,7	58,6
	180	96,2	96,2
	240	97,1	97,1
	300	96,7	96,7
	30	87,7	12,4
	60	95,7	27,8
MMA 98	120	94,9	63,6
	180	96,8	96,8
	240	95,5	95,5
	300	96,9	96,9

Tabulka 6: Konverze v průběhu polymerace latexů na bázi komonomerů MMA, BA

Konverze	Čas odběru	Okamžitá konverze	Celková Konverze
	[min]	[%]	[%]
	30	86,4	14,6
	60	95,1	31,2
EA 09	120	96,1	58,1
EA 98	180	95,2	95,2
	240	96,1	96,1
	300	97,0	97,0
	30	86,3	14,7
	60	95,5	31,3
ST/E & 5/02	120	96,8	62,6
51/EA 5/95	180	95,1	95,1
	240	95,5	95,5
	300	95,5	95,5
	30	88,8	14,0
	60	94,9	25,9
ST/EA 10/99	120	95,3	57,8
51/LA 10/00	180	95,5	95,5
	240	95,8	95,8
	300	96,2	96,2
	30	87,1	13,1
	60	95,9	25,6
ST/FA 25/73	120	94,9	57,6
51/EA 25/75	180	95,0	95,0
	240	97,4	97,4
	300	96,4	96,4
	30	87,4	11,5
	60	94,9	29,1
ST/EA 50/48	120	96,4	57,8
01/11/00/10	180	95,4	95,4
	240	95,1	95,1
	300	95,8	95,8
	30	86,3	13,0
	60	94,9	28,2
ST/EA 75/23	120	95,0	57,8
	180	95,6	95,6
	240	95,6	95,6
	300	95,7	95,7
	30	88,9	14,0
	60	93,5	31,1
ST 98	120	94,7	60,9
	180	95,4	95,4
	240	97,3	97,3
	300	96,4	96,4

Tabulka 7: Konverze v průběhu polymerace latexů na bázi komonomerů ST, EA

	Čas	Okamžitá	Celková
Konverze	odběru	Konverze	konverze
	[min]	[%]	[%]
	30	88,1	15,2
	60	97,4	25,9
BA 98	120	96,1	60,8
	180	97,7	97,7
	240	97,8	97,8
	300	98,6	98,6
	30	89,1	14,3
	60	94,6	26,6
ST/BA 5/93	120	95,4	54,1
	180	95,6	95,6
	240	95,6	95,6
	300	96,1	96,1
	30	87,0	14,1
	60	96,9	27,1
ST/BA 10/88	120	95,5	54,1
	180	96,5	96,5
	240	96,6	96,6
	300	96,7	96,7
	30	86,4	12,6
	60	96,8	28,8
ST/BA 25/73	120	94,5	60,8
	180	95,4	95,4
	240	97,6	97,6
	300	96,5	96,5
	30	85,8	12,8
	60	95,2	28,3
ST/BA 50/48	120	95,8	60,0
~ _ /	180	96,4	96,4
	240	96,8	96,8
	300	96,1	96,1
	30	85,2	13,9
	60	96,0	29,2
ST/BA 75/23	120	95,3	60,6
	180	95,5	95,5
	240	96,3	96,3
	300	96,6	96,6
	30	88,9	14,0
	60	93,5	31,1
ST 98	120	96,7	60,9
51 70	180	94,4	94,4
	240	97.3	97.3
	300	96.4	96.4

Tabulka 8: Konverze v průběhu polymerace latexů na bázi komonomerů ST, BA

3.2.2 Vývoj střední molární hmotnosti

Jelikož hlavním předmětem této práce bylo studium vývoje molární hmotnosti styrenakrylátových a methylmethakrylát-akrylátových kopolymerů, pozornost byla zaměřena zejména na vliv podílu ST a MMA jako nevětvících komomomerů z hlediska molekulové hmotnosti vznikajících a finálních kopolymerů EA nebo BA. V tabulkách 9–12 jsou uvedeny hodnoty průměrů molární hmotnosti vzorků kopolymerů obsahujících MMA/ST/EA/ BA/KMA v různém molárním složení. Z výsledků je patrné, že u všech vzorků odebíraných během příkapu emulze komonomerů dochází k postupnému růstu hodnot \overline{M}_w a \overline{M}_z . Po dokončení příkapu dochází u všech odebraných vzorků k mírnému snížení hodnot \overline{M}_w a \overline{M}_z . Pro lepší přehled je na obrázcích 17 – 24 je zobrazen vývoj \overline{M}_w a \overline{M}_z během polymerace. Jak je z obrázků patrné, hmotnostně střední molární hmotnost a z-průměr molární hmotnosti emulzních polymerů se mírně snižují po dokončení dávkování komonomerů do reaktoru a to nejzřetelněji u latexů ST/BA 5/93, ST/BA 10/83, ST/BA 75/23, MMA/EA 5/93, MMA/EA10/83 a EA 98. U ostatních latexů také dochází ke snížení hmotnostně střední molární hmotnosti po dokončení dávkování komonomerů, avšak snížení \overline{M}_w a \overline{M}_z je méně výrazné.

Možným vysvětlením poklesu hodnot \overline{M}_w a \overline{M}_z je, že v poslední fázi polymerace vznikají polymerní řetězce s molární hmotností o jeden nebo dva řády nižší než je molární hmotnost polymerních řetězců vzniklých po dokončení příkapu emulze komonomerů. Z tohoto důvodu klesají hodnoty \overline{M}_w a \overline{M}_z . Pokles může být způsoben tím, že při dopolymeraci (240–300 minut) je v latexových částicích výrazně nižší poměr koncentrace monomeru ku iniciátoru, nebo se jedná o efekt snížené pohyblivosti monomeru ve zbotnalé latexové polymerní částici popřípadě o kombinaci obou efektů, jejichž výsledkem je vznik kratších polymerních řetězců, které se podílely na poklesu průměrů \overline{M}_w a \overline{M}_z .

Z výsledků uvedených v tabulce 9 je patrné, že u vzorku obsahujícího 98 mol. % EA jsou hodnoty \overline{M}_w a \overline{M}_z nejvyšší z celé řady. Postupným zvyšováním podílu MMA v násadě komonomerů dochází ke snížení hodnot \overline{M}_w a \overline{M}_z . Podíl MMA 25 a 50 mol. % v kopolymeru snižuje hodnoty \overline{M}_w a \overline{M}_z více než o polovinu oproti vzorku obsahujícímu 98 mol. % EA. Latex tvořený pouze MMA má výsledné hodnoty \overline{M}_w a \overline{M}_z nejnižší z celé řady. V tabulce je také uveden vývoj \overline{M}_n během polymerace. Z naměřených hodnot \overline{M}_n nelze vyčíst žádný vzrůstající či klesající trend, hodnoty \overline{M}_n jsou víceméně konstantní. V případě vzorků obsahujících MMA a BA (tabulka 10) také dochází ke snižování hodnot \overline{M}_w a \overline{M}_z s rostoucím podílem MMA. Nejvyšší hodnoty \overline{M}_w a \overline{M}_z jsou u vzorku obsahujícího 98 mol. % BA a nejnižší hodnoty \overline{M}_w a \overline{M}_z jsou u vzorku obsahujícího 98 mol. % MMA. Z naměřených hodnot \overline{M}_n také nelze vyčíst žádný vzrůstající či klesající trend, hodnoty \overline{M}_n jsou víceméně konstantní.

Je důležité upozornit na skutečnost, že hodnoty \overline{M}_w a \overline{M}_z u vzorků obsahujících pouze EA a BA jsou velmi vysoké, což je z důvodu intermolekulárních přenosových reakcí, jak bude podrobněji uvedeno v dalším textu. Při porovnání vzorků obsahujících 98 mol. % EA a 98 mol. % BA odebraných v určených intervalech polymerace je vidět výrazný rozdíl v hodnotách \overline{M}_w a \overline{M}_z . Tak například, hodnoty \overline{M}_w a \overline{M}_z vzorku odebraného ve 30. minutě (od zahájení příkapu emulze komonomerů) obsahujícího 98 mol %. BA jsou cca pětkrát respektive čtyřikrát vyšší než v případě vzorků obsahujících 98 mol. % EA a odebraných ve stejný čas. Zvyšování průměrné molární hmotnosti s rostoucím podílem EA a BA v kopolymeru lze vysvětlit existencí intermolekulárních přenosových reakcí, které vedou ke vzniku výšemolekulární větvené polymerní struktury. To vypovídá o vyšší četnosti intermolekulárních přenosových reakcí na polymer a možným vysvětlením tohoto jevu je velikost butylové skupiny monomeru BA. Díky větší velikosti butylové skupiny (oproti ethylové skupině obsažené v EA) dochází k oddálení polymerních řetězců a tudíž i zvýšení přístupnosti terciárního uhlíku na polymerní kostře, který je citlivý na přenosové reakce.

Hodnoty \overline{M}_w , \overline{M}_z a \overline{M}_n vzorků obsahujících ST a EA v různém molárním poměru jsou uvedeny v tabulce 11. Z hodnot je také patrné, že s rostoucím podílem nevětvícího komonomeru ST dochází ke snižování hodnot \overline{M}_w a \overline{M}_z . Nejvyšší hodnoty \overline{M}_w a \overline{M}_z vykazují vzorky obsahující 98 mol. % EA a nejnižší hodnoty \overline{M}_w a \overline{M}_z vykazují vzorky obsahující 98 mol. % ST. U vzorků obsahujících 5 mol. % ST došlo k nevýraznějšímu snížení hodnot \overline{M}_w a \overline{M}_z . Další zvyšování podílu ST vůči EA již vedlo k mírnému poklesu hodnot \overline{M}_w a \overline{M}_z . Hodnoty \overline{M}_n jsou víceméně konstantní.

V případě vzorků obsahujících ST a BA v různém molárním poměru, jsou hodnoty \overline{M}_w , \overline{M}_z a \overline{M}_n uvedeny v tabulce 12. Také v tomto případě nejvyšší hodnoty \overline{M}_w a \overline{M}_z vykazují vzorky obsahující 98 mol. % BA a nejnižší hodnoty vykazují vzorky obsahující 98 mol. % ST. Již 5 mol. % podíl ST v emulzi komonomerů prudce snižuje hodnoty \overline{M}_w a \overline{M}_z kopolymerů.

Tabulky 13 a 14 se zabývají srovnáním poklesu hmotnostně střední a z-průměru molární hmotnosti všech vzorků kopolymerů odebraných po 300 minutách polymerace. Porovnáním hodnot \overline{M}_w a \overline{M}_z vzorků, které obsahují 98 mol. % EA nebo 98 mol. % BA,

s hodnotami \overline{M}_w a \overline{M}_z vzorků obsahujících 93 mol. % EA nebo 93 mol. % BA a 5 mol. % nevětvícího komonomeru ST je vidět prakticky stejný vliv obsahu ST na průměry molárních hmotností vzorků obsahujících EA nebo BA. Například u vzorku ST/BA 5/93 došlo k výraznému snížení hodnot \overline{M}_w a \overline{M}_z ve srovnání se vzorkem BA 98. Obdobně tomu bylo i v případě v případě vzorku ST/EA 5/93. Tomuto jevu se věnují i Plessis a kol. ^[3], kteří zaznamenali podobné chování v případě emulzní polymerace Ba a ST. Tento jev autoři vysvětlují stérickou objemností styrenových jednotek navázaných na polymerní řetězec, které znepřístupňují terciární uhlík, který je centrem přenosových reakcí, čímž je zabráněno přenosovým reakcím na polymer. V případě kopolymerace EA nebo BA s MMA byl zaznamenán postupný pokles hodnot \overline{M}_w a \overline{M}_z emulzních kopolymerů.

Na obrázcích 25 – 28 je zobrazen účinek podílu MMA nebo ST na \overline{M}_w a \overline{M}_z odebraných vzorků methylmethakrylát-akrylátových a styren-akrylátových kopolymerů po dokončení polymerace. Je vidět, že podíl ST 5 mol. % velmi výrazně snižuje hodnoty \overline{M}_w a \overline{M}_z u obou typů akrylátových kopolymerů. U vzorku obsahujícího pouze podíl EA 98 mol. % je hodnota \overline{M}_w 268.10⁵ g.mol⁻¹ a \overline{M}_z 822.10⁵ g.mol⁻¹, zatímco hodnota \overline{M}_w vzorku s podílem ST 5 mol. % je 533.10³ g.mol⁻¹ a \overline{M}_z 475,7.10⁵ g.mol⁻¹. V případě vzorku obsahujícího pouze podíl BA 98 mol. % je hodnota \overline{M}_w 151,525.10⁶ g.mol⁻¹ a \overline{M}_z 341,307.10⁶ g.mol⁻¹. Hodnota \overline{M}_w vzorku obsahujícího podíl ST 5 mol. % je 281,9.10⁴ g.mol⁻¹ a \overline{M}_z 163,56.10⁵ g.mol⁻¹. V případě rostoucího přídavku MMA je pokles průměrů \overline{M}_w a \overline{M}_z u obou typů akrylátových kopolymerů postupný, výraznější pokles \overline{M}_w a \overline{M}_z byl zaznamenán až při podílu MMA 25 -50 mol. %.

Tabulka 9: Vývoj číselně střední, hmotnostně střední a z-průměru molární hmotnosti kopolymerů MMA, EA během polymerace

Vzorek	Čas odběru [min]	$\overline{M_n}$ [g.mol ⁻¹ . 10 ³]	$\overline{M_{w}}$ [g.mol ⁻¹ . 10 ³]	$\overline{M_z}$ [g.mol ⁻¹ . 10 ³]
	30	110	1 120	4 080
	60	97	2 620	11 590
	120	97	14 390	47 780
EA 98	180	68	33 300	92 550
	240	80	27 130	85 480
	300	103	26 800	82 200
	30	76	910	3 640
	60	84	2 410	9 470
MMA/EA 5/02	120	110	14 780	48 820
MINIA/LA 5/95	180	98	28 370	79 880
	240	88	27 040	70 640
	300	100	22 470	66 480
	30	93	790	2 810
	60	100	2 180	8 860
MMA/FA 10/88	120	105	12 320	33 900
WIWIA/LA 10/00	180	110	26 070	76 840
	240	89	25 320	69 940
	300	93	20 470	62 730
	30	97	670	2 280
	60	102	1 140	4 260
MMA/FA 25/73	120	110	5 280	20 350
WIWIA/ LA 23/73	180	102	14 660	43 030
	240	99	12 290	39 290
	300	101	10 250	35 260
	30	93	430	1 100
	60	104	910	2 450
MMA/EA 50/48	120	103	3 510	17 920
	180	113	11 650	44 520
	240	112	10 740	42 100
	300	112	8 910	36 560
	30	90	249	472
	60	81	239	517
MMA/EA 75/23	120	76	262	662
1411411(1111-10)20	180	82	301	763
	240	71	113	167
	300	71	120	165
	30	92	112	164
	60	83	123	185
MMA 98	120	76	137	212
	180	70	157	254
	240	71	113	185
	300	71	112	165

Tabulka 10:Vývoj číselně střední, hmotnostně střední a z-průměru molární hmotnosti kopolymerů MMA, BA během polymerace

Vzorek	Čas odběru [min]	$\overline{M_n}$ [g.mol ⁻¹ . 10 ³]	$\overline{M_{w}}$ [g.mol ⁻¹ . 10 ³]	$\overline{M_z}$ [g.mol ⁻¹ . 10 ³]
	30	132	6 035	18 625
	60	143	26 748	66 077
D A 09	120	122	76 318	169 437
BA 98	180	160	149 025	323 777
	240	144	160 205	356 170
	300	148	151 525	341 307
	30	121	3 485	10 702
	60	119	20 153	35 110
	120	129	55 447	131 405
MMA/BA 5/93	180	129	120 643	262 693
	240	130	117 148	255 310
	300	138	110 773	250 352
	30	161	2 565	8 668
	60	129	14 776	29 786
	120	127	49 865	107 484
MIMA/BA 10/88	180	135	97 504	254 469
	240	134	82 393	241 399
	300	157	80 589	198 146
	30	130	1 577	6 638
	60	137	3 520	15 573
	120	120	22 702	75 681
MMA/BA 25/73	180	119	90 629	194 877
	240	117	82 626	167 335
	300	101	79 628	155 802
	30	120	596	2 669
	60	131	1 016	3 709
MMA/DA 50/49	120	130	4 806	24 036
WIWIA/DA JU/40	180	66	33 624	104 233
	240	155	31 202	98 907
	300	150	24 367	86 072
	30	125	348	711
	60	107	413	1 002
MMA/RA 75/23	120	108	503	1 784
WIWIA/DA 75/25	180	108	739	2 935
	240	100	734	2 915
	300	96	724	2 761
	30	92	112	164
	60	83	123	185
MM A 08	120	76	137	212
IVIIVIA 90	180	70	157	254
	240	71	113	185
	300	71	112	165

Tabulka 11: Vývoj číselně střední, hmotnostně střední a z-průměru molární hmotnosti kopolymerů ST, EA během polymerace

Vzorek	Čas odběru [min]	$\overline{M_n}$ [g.mol ⁻¹⁻ . 10 ³]	$\overline{M_{w}}$ [g.mol ⁻¹ . 10 ³]	$\overline{M_z}$ [g.mol ⁻¹ . 10 ³]
	30	110	1 120	4 080
	60	97	2 620	11 590
EA 09	120	97	14 390	47 780
EA 90	180	68	33 300	92 550
	240	80	27 130	85 480
	300	103	26 800	82 200
	30	108	362	817
	60	119	483	1 319
ST/EA 5/02	120	118	785	3 019
51/EA 5/95	180	111	1 103	4 992
	240	104	696	4 842
	300	102	533	4 757
	30	81	237	504
	60	83	272	639
ST/FA 10/88	120	89	409	1 228
51/LA 10/00	180	88	506	1 774
	240	85	499	1 743
	300	85	483	1 632
	30	84	224	414
	60	57	219	436
ST/FA 25/73	120	70	272	612
51/EA 23/73	180	89	341	934
	240	82	330	882
	300	72	318	812
	30	160	290	536
	60	122	318	673
ST/FA 50/48	120	144	416	747
51/LA 30/40	180	133	459	895
	240	59	390	869
	300	99	381	853
	30	112	228	352
	60	105	269	463
ST/FA 75/23	120	99	315	640
517111 75725	180	101	382	949
	240	95	371	940
	300	94	363	928
	30	117	250	392
	60	114	284	494
ST 98	120	105	289	554
5170	180	107	308	662
	240	96	301	655
	300	94	300	649

Tabulka 12: Vývoj číselně střední, hmotnostně střední a z-průměru molární hmotnosti kopolymerů ST, BA během polymerace

Vzorek	Čas odběru [min]	$\overline{M_n}$ [g.mol ⁻¹ . 10 ³]	$\overline{M_w}$ [g.mol ⁻¹ . 10 ³]	$\overline{M_z}$ [g.mol ⁻¹ . 10 ³]
	30	132	6 035	18 625
BA 98	60	143	26 748	66 077
	120	122	76 318	169 437
	180	160	149 025	323 777
	240	144	160 205	356 170
	300	148	151 525	341 307
	30	116	592	2 473
	60	113	663	2 651
ST/BA 5/93	120	115	1 268	6 978
~	180	116	2 890	20 289
	240	105	2 819	19 970
	300	102	2 485	16 356
	30	136	499	1 423
	60	133	646	2 557
ST/BA 10/88	120	131	928	3 772
	180	123	1 814	10 070
	240	118	1 627	8 603
	300	121	1 307	6 754
ST/BA 25/73	30	125	293	527
	60	123	369	714
	120	123	449	1 130
	180	119	553	1 745
	240	114	546	1 661
	300	106	507	1 444
	30	112	251	381
	60	111	246	410
ST/BA 50/48	120	117	292	540
	180	112	317	592
	240	94	300	586
	300	97	296	500
ST/BA 75/23	30	109	230	399
	60	108	243	398
	120	117	242	540
	180	112	348	723
	240	101	346	718
	300	100	343	713
	30	117	250	392
ST 98	60	114	284	494
	120	105	289	554
	180	107	308	662
	240	96	301	655
	300	94	300	649

Vzorek	Pokles $\overline{M_w}$ [%]	Pokles $\overline{M_z}$ [%]	Vzorek	Pokles $\overline{M_w}$ [%]	Pokles $\overline{M_z}$ [%]
EA 98	0,0	0,0	EA 98	0,0	0,0
MMA/EA 5/93	16,2	19,1	ST/EA 5/93	98,0	94,2
MMA/EA 10/88	23,6	23,7	ST/EA 10/88	98,2	98,0
MMA/EA 25/73	61,8	57,1	ST/EA 25/73	98,8	99,0
MMA/EA 50/48	61,8	57,1	ST/EA 50/48	98,6	99,0
MMA/EA 75/23	99,6	99,8	ST/EA 75/23	98,6	98,9

Tabulka 13: Pokles hmotnostně střední a z-průměru molární hmotnosti kopolymerů MMA, ST a EA po dokončení polymerace

Tabulka 14: Pokles hmotnostně střední a z-průměru molární hmotnosti kopolymerů MMA, ST a BA po dokončení polymerace

Vzorek	Pokles $\overline{M_w}$ [%]	Pokles $\overline{M_z}$ [%]	Vzorek	Pokles $\overline{M_w}$ [%]	Pokles $\overline{M_z}$ [%]
BA 98	0,0	0,0	BA 98	0,0	0,0
MMA/BA 5/93	26,9	26,6	ST/BA 5/93	98,3	95,2
MMA/BA 10/88	46,8	41,9	ST/BA 10/88	99,1	98,0
MMA/BA 25/73	47,4	54,35	ST/BA 25/73	99,6	99,5
MMA/BA 50/48	83,9	74,8	ST/BA 50/48	99,8	99,8
MMA/BA 75/23	99,5	99,2	ST/BA 75/23	99,7	99,7

Obr. 17: Vývoj \overline{M}_w vzorků obsahujících EA s různým obsahem nevětvícího komonomeru MMA během polymerace

Obr. 18: Vývoj \overline{M}_z vzorků obsahujících EA s různým obsahem nevětvícího komonomeru MMA během polymerace

Obr. 19: Vývoj \overline{M}_w vzorků obsahujících EA s různým obsahem nevětvícího komonomeru ST během polymerace

Obr. 21: Vývoj $\overline{M_w}$ vzorků obsahujících BA s různým obsahem nevětvícího komonomeru MMA během polymerace

Obr. 22: Vývoj $\overline{M_z}$ vzorků obsahujících BA s různým obsahem nevětvícího komonomeru ST během polymerace

Obr. 23: Vývoj $\overline{M_w}$ vzorků obsahujících BA s různým obsahem nevětvícího komonomeru ST během polymerace

Obr. 24: Vývoj $\overline{M_z}$ vzorků obsahujících BA s různým obsahem nevětvícího komonomeru ST během polymerace

Obrázek 25: Závislost $\overline{M_w}$ vzorků obsahujících EA na obsahu nevětvících komonomerů MMA nebo ST po dokončení polymerace

Obr. 26: Závislost $\overline{M_z}$ vzorků obsahujících EA na obsahu nevětvících komonomerů MMA nebo ST po dokončení polymerace

Obr. 27: Závislost $\overline{M_w}$ vzorků obsahujících BA na obsahu nevětvících komonomerů MMA nebo ST po dokončení polymerace

Obr. 28: Závislost $\overline{M_z}$ vzorků obsahujících BA na obsahu nevětvících komonomerů MMA nebo ST po dokončení polymerace

3.2.3 Stanovení teploty skelného přechodu

U odebraných a vysušených vzorků byla metodou DSC stanovena teplota skelného přechodu, která byla vyhodnocena z druhé křivky ohřevu. Výsledky měření jsou uvedeny v tabulkách 13 a 14. Ukázalo se, že hodnoty teplot skelného přechodu se ve vzorcích stejného složení během doby polymerace výrazně neliší (až na několik výjimek). Odchylky v hodnotách teploty skelného přechodu u některých vzorků mohou být způsobeny nedostatečným odstraněním vody, která zkreslila měření.

Při porovnání vzorků lišících se chemickou povahou polymerních řetězců z hlediska výchozích komonomerů je vidět výrazný rozdíl v teplotách skelného přechodu. Vzorky obsahující stavební jednotky BA vykazují výrazně nižší T_g než vzorky tvořené monomerními jednotkami EA. Při stejném podílu nevětvících komonomerů (MMA a ST) v obou typech akrylátových kopolymerů byl zaznamenán menší pokles teploty skelného přechodu v případě kopolymerů se ST. Výraznější vliv podílu ST na snížení teploty skelného přechodu vzorků je pravděpodobně způsoben tím, že homopolymer PS má rovněž nižší T_g než homopolymer polymethylmethakrylát (PMMA).

Vzorek	Čas odběru [min]	<i>Tg</i> [°C]	Vzorek	Čas odběru [min]	Tg [°C]
EA 98	30	-10,9		30	-40,3
	60	-11,2	BA 98	60	-43,2
	120	-11,4		120	-46,8
	180	-14,2		180	-43,5
	240	-10,9		240	-41,7
	300	-12,0		300	-41,9
	30	-7,7		30	-46,3
	60	-7,0		60	-40,2
MMA/EA 5/02	120	-8,1	MANTA /D A 5/02	120	-42,8
MINIA/EA 5/95	180	-7,4	NINIA/BA 5/95	180	-43,5
	240	-9,1		240	-42,7
	300	-8,5		300	-41,9
	30	-4,6		30	-35,2
	60	-5,3		60	-37,1
MN/A/EA 10/99	120	-3,6	MMA/DA 10/92	120	-35,3
WIWIA/EA 10/00	180	-6,2	IVIIVIA/DA IU/03	180	-30,4
	240	-4,7		240	-36,8
	300	-4,4		300	-34,2
	30	8,3	MMA/BA 25/73	30	-19,6
MMA/EA 25/73	60	7,6		60	-23,3
	120	7,8		120	-22,5
	180	7,5		180	-20,1
	240	8,3		240	-22,9
	300	7,4		300	-22,5
	30	31,6	MMA/BA 50/48	30	4,2
	60	32,9		60	6,5
MMA/FA 50/48	120	31,0		120	5,2
MININ LA 50/40	180	33,1		180	6,8
	240	30,0		240	6,7
	300	32,7		300	11,8
	30	66,4	MMA/BA 75/23	30	52,5
	60	68,2		60	45,3
MMA/EA 75/23	120	68,0		120	46,5
MINIA/EA 15/25	180	65,5		180	46,0
	240	67,9		240	48,3
	300	68,3		300	46,9
	30	100,3		30	125,6
	60	105,1		60	124,8
MMA 98	120	104,7		120	124,6
	180	105,3		180	128,1
	240	104,9		240	124,8
	300	105,2		300	127,0

Tabulka 15:: Teploty skelného přechodu vzorků obsahujících EA, MMA, BA a odebíraných během polymerace

Vzorek	Čas odběru [min]	<i>Tg</i> [°C]	Vzorek	Čas odběru [min]	<i>Tg</i> [°C]
EA 98	30	-13,7	BA 98	30	-41,5
	60	-14,1		60	-44,2
	120	-11,9		120	-36,2
	180	-13,1		180	-43,5
	240	-18,9		240	-42,7
	300	-13,8		300	-42,7
	30	-5,8		30	-30,6
	60	-5,7		60	-33,9
ST/E & 5/02	120	-4,9	ST/DA 5/03	120	-32,3
51/LA 5/95	180	-5,6	51/DA 5/95	180	-32,9
	240	-9,1		240	-23,7
	300	-5,9		300	-33,9
	30	-1,3		30	-32,2
	60	-0,5		60	-36,7
ST/E & 10/99	120	-0,5	ST/DA 10/92	120	-32,2
51/LA 10/00	180	-0,8	51/DA 10/05	180	-31,5
	240	-0,6		240	-32,1
	300	2,8		300	-33,5
	30	23,8	ST/BA 25/73	30	-13,0
ST/EA 25/73	60	17,9		60	-6,6
	120	17,6		120	-7,2
	180	18,1		180	-6,2
	240	18,5		240	-5,3
	300	19,3		300	-6,8
	30	41,9	ST/BA 50/48	30	17,3
	60	42,4		60	18,2
ST/FA 50/48	120	49,1		120	19,1
51/EA 30/40	180	43,6		180	25,3
	240	41,8		240	17,3
	300	43,3		300	18,2
	30	66,7	ST/BA 75/23	30	103,5
	60	65,3		60	104,3
ST/EA 75/23	120	72,9		120	103,9
51/EA 75/25	180	65,9		180	104,8
	240	64,1		240	109,4
	300	66,0		300	105,0
	30	102,1	ST 98	30	54,4
	60	103,5		60	59,3
ST 98	120	103,6		120	54,2
51 70	180	111,4		180	54,8
	240	103,7		240	53,9
	300	104,1		300	52,6

Tabulka 16: Teploty skelného přechodu vzorků obsahujících EA, ST, BA a odebíraných během polymerace

VÝSLEDKY A DISKUZE

3.2.4 Stanovení velikosti částic

Hodnoty velikosti částic měřené metodou DLS u odebíraných vzorků během polymerace jsou uvedeny v talkách 15 a 16. Z výsledků je patrné, že během polymerace docházelo ke zvyšování velikosti latexových částic. Největší nárůst velikosti polymerních částic byl zaznamenán během fáze dávkování komonomerů. Ve fázi dopolymerace (vzorky odebírané po 240 a 300 minutách) byl nárůst velikosti částic již malý. Z výsledků také plyne, že velikost polymerních částic není závislá na složení kopolymerů. Velikost polymerních částic v průběhu polymerace pohybuje v rozmezí 44,2 - 137,1 nm. Na obrázku 31 je graficky znázorněno zvětšení velikosti latexových částic vybraných vzorků MMA/BA 25/73, MMA/EA 25/73, ST/BA 25/73 během polymerace.

Vzorek	Čas odběru [min]	Velikost [nm]	Vzorek	Čas odběru [min]	Velikost [nm]
EA 98	30	56,8	BA 98	30	64,3
	60	68,9		60	77,8
	120	87,9		120	91,2
	180	101,4		180	101,3
	240	111,8		240	123,9
	300	114,7		300	104,3
	30	53,6		30	59,6
	60	71,5		60	74,9
MMA/EA 5/02	120	86,9	MMA /DA 5/03	120	86,1
MINIA/LA 5/95	180	99,5	WINIA/DA 5/95	180	78,4
	240	63,9		240	104,3
	300	111,4		300	105,1
	30	44,2		30	56,4
	60	56,9		60	75,9
MMA/EA 10/88	120	74,5	MMA/RA 10/83	120	89,3
WIWIA/LA 10/00	180	91,5	WIWIA/DA 10/05	180	97,9
	240	79,9		240	103,6
	300	81,2		300	104,7
	30	47,3		30	66,6
MMA/EA 25/73	60	59,9		60	75,8
	120	78,6	MMA/BA 25/73	120	98,4
	180	93,3		180	109,3
	240	102,6		240	109,9
	300	108,7		300	111,3
	30	52,8	MMA/BA 50/48	30	55,2
	60	70,1		60	77,9
MMA/FA 50/48	120	87,1		120	64,0
MIMA/EA 50/40	180	99,9		180	103,2
	240	103,1		240	105,8
	300	105,1		300	103,1
	30	62,1	MMA/BA 75/23	30	55,3
	60	81,0		60	64,2
MMA/EA 75/23	120	98,5		120	79,4
WIWIA/EA 75/25	180	115,2		180	97,5
	240	120,3		240	99,8
	300	121,8		300	100,1
	30	53,2	MMA 98	30	58,9
	60	69,7		60	67,8
MMA 98	120	84,3		120	93,3
	180	96,8		180	58,7
	240	113,9		240	99,9
	300	105,6		300	101,1

Tabulka 17: Velikost částic vzorků obsahujících EA, MMA, BA odebíraných během polymerace

Vzorek	Čas odběru [min]	Velikost [nm]	Vzorek	Čas odběru [min]	Velikost [nm]
EA 98	30	50,6		30	50,6
	60	66,2	_	60	66,2
	120	83,7	BA 98	120	83,7
	180	92,5		180	92,5
	240	119,2		240	120,3
	300	95,2		300	95,2
	30	47,2		30	47,2
	60	58,8		60	58,8
	120	75,1		120	75,1
51/EA 5/93	180	82,9	S1/BA 5/93	180	82,9
	240	87,2		240	87,2
	300	86,7		300	86,7
	30	43,1		30	43,1
	60	53,3		60	53,3
CT/EA 10/00	120	99,4	ST/DA 10/92	120	70,4
51/EA 10/88	180	77,9	51/BA 10/85	180	77,9
	240	81,8		240	81,8
	300	85,8		300	85,8
	30	62,2		30	65,3
	60	71,9		60	78,9
ST/EA 25/73	120	82,8	ST/BA 25/73	120	88,1
	180	87,1		180	90,8
	240	98,2		240	98,2
	300	99,2		300	110,2
	30	56,8	ST/BA 50/48	30	56,8
	60	68,8		60	68,8
ST/E & 50/48	120	86,9		120	86,9
51/LA 50/40	180	96,4		180	96,4
	240	117,9		240	97,9
	300	100,1		300	103,1
	30	61,3	ST/BA 75/23	30	61,3
	60	76,8		60	76,8
ST/FA 75/23	120	100,1		120	100,1
	180	113,5		180	113,5
	240	116,1		240	116,1
	300	109,3		300	88,3
	30	86,7	ST 98	30	56,7
	60	77,7		60	77,7
ST 98	120	94,7		120	94,7
5170	180	107,9		180	137,1
	240	111,4		240	111,4
	300	112,8		300	112,8

Tabulka 18: Velikost částic vzorků obsahujících EA, MMA, BA odebíraných během polymerace

ZÁVĚR

Obr. 29: Zvětšení velikosti latexových částic vybraných vzorků MMA/BA 25/73, MMA/EA 25/73, ST/EA 25/73, ST/BA 25/73 během polymerace

Závěr

Úkolem této práce bylo studium průběhu emulzní polymerace styren-akrylátových a methylmethakrylát-akrylátových kopolymerů. Celkově bylo připraveno 28 latexů, které se skládaly z ethylakrylátu, methylmethakrylátu, n-butylakrylátu, styrenu a kyseliny methakrylové v různém molárním podílu. Během polymerace byly z reaktoru odebírány vzorky v určených časových intervalech. Tyto vzorky byly použity k výpočtu aktuální a celkové konverze násady monomerů a ke stanovení středních molárních hmotností metodou A4F-MALS.

Okamžitá konverze po 30 minutách od zahájení příkapu emulze komonomerů byla přibližně 90 %, v průběhu polymerace mírně rostla a na konci polymerace dosahovala hodnot kolem 98 %. Celková konverze komonomerů rostla s množstvím přikapávaných komonomerů

Metodou A4F-MALS byl určen vývoj středních molárních hmotností vzorků odebraných v určených intervalech během polymerace. Stanoveny byly hodnoty $\overline{M_w}$, $\overline{M_z}$ a $\overline{M_n}$. Ze získaných dat se prokázal se vliv intramolekulárních přenosů během polymerace komonomerů s vysokým podílem ethylakrylátu a butylakrylátu, tedy látek obsahující terciární uhlík. Tyto přenosové reakce zapříčinily větvení makromolekul vedoucí k dosažení vysokých molárních hmotností. Dále se ukázal vliv styrenu a methylmethakrylátu na četnost vzniku přenosových reakcí a tudíž na hodnoty $\overline{M_w}$, $\overline{M_z}$ a $\overline{M_n}$. Ukázalo se, že už podíl 5 mol. % St v násadě komonomerů v podstatě zastavuje přenosové reakce vedoucí k větvení polymerních řetězců а k nárůstu molární hmotnosti produktů. Podobného účinku v případě methylmethakrylátu kopolymerů bylo dosaženo až při podílu methylmethakrylátu 25-50 mol. %.

V průběhu syntézy každého kopolymeru byla dále stanovena teplota skelného přechodu metodou DSC. Bylo zjištěno, že po celou dobu polymerace se hodnota teploty skelného přechodu ve vznikajícím polymerním vzorku prakticky nemění. Zároveň byla v průběhu polymerace stanovena metodou DLS u všech kopolymerních vodných disperzí velikost latexových částic. Ukázalo se, že v průběhu syntézy docházelo u všech vzorků k postupnému nárůstu velikosti částic, kdy nejvýraznější nárůst velikosti byl zaznamenán ve fázi příkapu monomerní emulze.

Literatura

- ASUA, J.M., Emulsion polymerization: from fundamental mechanisms to process developments. *Journal of Polymer Science Part A: Polymer Chemistry*, 2004, 42(5), p. 1025-1041.
- [2] KIM, S.W., R.V. PETERSEN, and J. FEIJEN. Polymeric drug delivery systems. *Drug Design*, 2016, 10, p. 193-250.
- [3] PLESSIS, C., et al., Kinetics and polymer microstructure of the seeded semibatch emulsion copolymerization of n-butyl acrylate and styrene. *Macromolecules*, 2001, 34(15), p. 5147-5157.
- [4] ŠŇUPÁREK, J., Makromolekulární chemie: úvod do chemie a technologie polymerů.Vyd.3.Pardubice: Univerzita Pardubice, 2014. 187 s. ISBN 978-80-7395-761-2
- [5] CHERN, C.-S., Introduction, in Principles and Applications of Emulsion Polymerization. *John Wiley & Sons, Inc.* 2008, p. 1-22.
- [6] PROKOPOVÁ, I., Makromolekulární chemie. 2. vyd., přeprac. Praha: Vydavatelství VŠCHT, 2007, 207 s. ISBN 978-80-7080-662-3.
- [7] BARTOVSKÁ, L. and M. ŠIŠKOVÁ, *Fyzikální chemie povrchů a koloidních soustav*.
 Praha: VŠCHT Praha, 2005. ISBN 80-7080-579-X.
- [8] HARKINS W.D., General theory of mechanism of emulsion polymerization. II. Journal of Polymer Science, 1950, 5(2), p. 217-251.
- [9] FITCH R.M., et al., Kinetics of particle nucleation and growth in the emulsion polymerization of acrylic monomers. *Die Angewandte makromolekulare Chemie*. 1984, 123(1), p. 261-283.
- [10] FITCH, R.M. and C. TSAI, Homogeneous nucleation of polymer colloids, IV: the role of soluble oligomeric radicals, in Polymer Colloids. *Springer*, 1971, p. 103-116.
- [11] HANSEN, F. and J. UGELSTAD. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. *Journal of Polymer Science: Polymer Chemistry Edition.* 1978, 16(8), p. 1953-1979.
- [12] YU H., et al., Synthesis and characterization of poly (n-butyl acrylate)-poly (methyl methacrylate) latex interpenetrating polymer networks by radiation-induced seeded emulsion polymerization. *Radiation Physics and Chemistry*. 2007, 76(11), p. 1746-1750.

- [13] YUKI, K., et al., Physical properties of acrylic copolymer emulsions using poly (vinyl alcohol) as a protective colloid in comparison with those using surfactants. Polymer international. 2000, 49(12), p. 1629-1635.
- [14] DOBIE, C.G. and K.V. BOODHOO. Surfactant-free emulsion polymerisation of methyl methacrylate and methyl acrylate using intensified processing methods. *Chemical Engineering and Processing: Process Intensification*. 2010, 49(9),p. 901-911.
- [15] EGEN M. and R. ZENTEL. Surfactant- Free Emulsion Polymerization of Various Methacrylates: Towards Monodisperse Colloids for Polymer Opals. *Macromolecular chemistry and physics*. 2004, 205(11), p. 1479-1488.
- [16] FEENEY, P.J., D.H. NAPPER, and R.G. GILBERT. Surfactant-free emulsion polymerizations: predictions of the coagulative nucleation theory. *Macromolecules*. 1987, 20(11), p. 2922-2930.
- [17] YEOLE, N., D. HUNDIWALE and T. JANA. Synthesis of core-shell polystyrene nanoparticles by surfactant free emulsion polymerization using macro-RAFT agent. *Journal of colloid and interface science*. 2011, 354(2), p. 506-510.
- [18] SAUNDERS B.R. and B. VINCENT. Microgel particles as model colloids: theory, properties and applications. *Advances in colloid and interface science*. 1999, 80(1), p. 1-25.
- [19] SAWAI, T., et al., Electrical control of the volume of pH-sensitive micro-gels. *Journal of electroanalytical chemistry and interfacial electrochemistry*. 1991, 297(2), p. 399-407.
- [20] MACHOTOVA, J., et al., Effect of molar mass on film-forming properties of selfcrosslinking latexes based on structured acrylic microgels. *Progress in Organic Coatings*. 2016, 92, p. 23-28.
- [21] MOGHADAM, N., et al., Theoretical study of intermolecular chain transfer to polymer reactions of alkyl acrylates. *Industrial & Engineering Chemistry Research*. 2015, 54(16), p. 4148-4165.
- [22] AHMAD, N.M., F. HEATLEY, and P.A. LOVELL. Chain transfer to polymer in freeradical solution polymerization of n-butyl acrylate studied by NMR spectroscopy. *Macromolecules*. 1998, 31(9), p. 2822-2827.
- [23] HEATLEY, F., P.A. LOVELL, and T. YAMASHITA. Chain transfer to polymer in free-radical solution polymerization of 2-ethylhexyl acrylate studied by NMR spectroscopy. *Macromolecules*. 2001, 34(22), p. 7636-7641.

LITERATURA

- [24] PODZMEK, S., et al., Characterization of molecular structure of acrylic copolymers prepared via emulsion polymerization using A4F- MALS technique. *Journal of Applied Polymer Science*. 2014, 131(21).
- [25] BALLARD, N., M. AGUIRRE and J.M. ASUA. Effect of nanoconfinement on kinetics and microstructure of poly (butyl acrylate) synthesized by microemulsion polymerization. *Chemical Engineering Journal*. 2016, 304, p. 667-678.
- [26] PLESIS, C., et al., Seeded semibatch emulsion polymerization of n-butyl acrylate. Kinetics and structural properties. *Macromolecules*. 2000, 33(14), p. 5041-5047.
- [27] CHRÁSTOVÁ, V., J. BARTUŠ, and P. ZARRAS. Influnce of Initiator Type on the Latex Particles Size in Emulsion Copolymerization of Styrene With Butyl Acrylate. *Journal of Macromolecular Science, Part A: Pure and Applied Chemistry*. 1996, 33(1), p. 13-22.
- [28] CHRÁSTOVÁ, V., P. CITOVICKÝ, and J. BARTIŠ. The influence of initiator type on emulsion copolymerization of styrene with butyl acrylate. *Journal of Macromolecular Science—Pure and Applied Chemistry*. 1994, 31(7), p. 835-846.
- [29] PODZIMEK, S., et al., Application of A4F-MALS for the Characterization of Polymers Prepared by Emulsion Polymerization: Comparison of the Molecular Structure of Styrene-Acrylate and Methyl Methacrylate-Acrylate Copolymers. *Polymer-Plastics Technology and Engineering*. 2016, 55(13), p. 1365-1372.
- [30] ZIMM, B.H. and W.H. STOCKMAYER. The dimensions of chain molecules containing branches and rings. *The Journal of Chemical Physics*. 1949, 17(12), p. 1301-1314.
- [31] ZIMM B.H. and R.W. KILB. Dynamics of branched polymer molecules in dilute solution. *Journal of Polymer Science*. 1959, 37(131), p. 19-42.
- [32] BARTH, H.G. and J.W. MAYS. Modern methods of polymer characterization. *John Wiley & Sons.* 1991, Vol. 113.
- [33] STIEGEL A., et al., Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. *John Wiley & Sons*. 2009.
- [34] PODZIMEK, S., Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation: powerful tools for the characterization of polymers, proteins and nanoparticles. *John Wiley & Sons.* 2011.
- [35] ARZENŠEK, D., Dynamic light scattering and application to proteins in solutions. in Seminar. *Department of Physics, University of Ljubljana*. 2010.

- [36] MEISSNER, B. and B. ZILVAR. *Fyzika polymerů: struktura a vlastnosti polymerních materiálů*. Praha: STNL Praha, 1987, p. 306.
- [37] MORI, S. and H.G. BARTH. Size exclusion chromatography. *Springer Science & Business Media*. 2013.
- [38] SHOWA DENKO AMERICA. Size Exclusion Columns: Theory of SEC mode [online]. [2017] [cit. 2017-3-4]. Dostupné z: http://shodexhplc.com/lessons/lesson-4sec-column/.
- [39] OUANO, A., Gel- permeation chromatography. VII. Molecular weight detection of GPC effluents. *Journal of Polymer Science Part A- 1: Polymer Chemistry*. 1972, 10(7), p. 2169-2180.
- [40] STOJASPAL, R., Aplikace gelové permeační chromatografie pro charakterizaci biopolymerů [Online].Zlín, 2007 [2017-4-23].52 s.Dostupné z: http://digilib.k.utb.cz/bitstream/handle/10563/4305/stojaspal_2007_bp.pdf?sequence=
 1. Bakalářská práce. Univerzita Tomáše Bati, Fakulta technologická. Vedoucí práce Ing. Věra Kašpárková, CSc.
- [41] GRUBISIC Z., P. REMPP, and H. BENOIT. A universal calibration for gel permeation chromatography. *Journal of Polymer Science Part B: Polymer Letters*. 1967, 5(9), p. 753-759.
- [42] PODZIMEK, S., The use of GPC coupled with a multiangle laser light scattering photometer for the characterization of polymers. On the determination of molecular weight, size and branching. *Journal of applied polymer science*. 1994, 54(1), p. 91-103.
- [43] POSTONOVA GmbH. *Multi-Angle Light Scattering Detector* [Online]. 2017 [cit. 2017-6-4]. Dostupné z: http://www.postnova.com/pn3621-overview.html.
- [44] PLASHCHINA, I., et al., Structural studies of the solutions of anionic polysaccharides. IV. Study of pectin solutions by light-scattering. *Carbohydrate polymers*. 1985, 5(3), p. 159-179.
- [45] BENDIXEN, N., et al., Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. *Journal of Chromatography*. 2014, 1334, p. 92-100.
- [46] WYATT TECHNOLOGY CORPORATION. Understanding Flow Field-Flow Fractionation [Online]. 2017 [2017-3-3]. Dostupné z: http://www.wyatt.com/library/theory/flow-field-flow-fractionation-theory.html.

85

- [47] WYATT TECHNOLOGY CORPORATION. Understanding Dynamic Light Scattering [Online]. 2017 [2017-5-4]. Dostupné z: http://www.wyatt.com/library/theory/dynamic-light-scattering-theory.html.
- [48] MALVERN INSTRUMENT Ltd. Dynamic Light Scattering (DLS) [Online]. 2017 [2017-4-23]. Dostupné z: http://www.malvern.com/en/products/technology/dynamiclight-scattering/default.aspx.
- [49] ŠEVČÍKOVÁ P., et al., Dynamický rozptyl světla v analýze koloidních systémů. Chemické listy. 2014, 108, p. 479-482.
- [50] ŠULCOVÁ, P., L. BENEŠ. *Experimentální metody v anorganické technologii*. Vyd.2.
 Pardubice: Univerzita Pardubice. 2008. 256 s. ISBN 978-80-7395-058-3.
- [51] MALVERN INSTRUMENT Ltd. Dynamic Light Scattering (DLS) [Online]. 2017 [2017-3-21]. Dostupné z: http://www.malvern.com/en/products/technology/dynamiclight-scattering/default.aspx.

Údaje pro databázi knihovny

Název práce	Studium průběhu emulzní polymerace styren-akrylátovýcha methylmethakrylát-akrylátových kopolymerů
Autor práce	Bc. Roman Válka
Obor	Technologie výroby a zpracování polymerů
Rok obhajoby	2017
Vedoucí práce	Ing. Jana Machotová, Ph.D.
Odborný konzultant	Prof. Ing. Štěpán Podzimek, CSc
Anotace	V teoretické části jsou zpracována témata, která se týkají emulzní polymerace akrylátových monomerů, přenosových reakcí akrylátů na polymer, větvení polymerů, molekulové hmotnosti a způsoby jejího stanovení pomocí metody gelové permeační chromatografie (GPC) s detektorem víceúhlového rozptylu světla (MALS) a metodou frakcionace tokem v asymetrickém tokovém poli (A4F) s MALS detektorem. V experimentální části je popsána příprava sady akrylátových latexů a metody jejich charakterizace: stanovení obsahu sušiny, stanovení obsahu koagulátu, měření pH, měření zdánlivé viskozity podle Brookfielda, měření velikosti částic připravených latexů metodou dynamického rozptylu světla (DLS), výpočet konverze akrylátových monomerů, vyhodnocení experimentálních dat získaných metodou A4F- MALS, určení teploty skelného přechodu Tg metodou diferenciální skenovací kalorimetrie (DSC). Ve výsledkové a diskuzní části jsou data vyhodnocena a zpracována z experimentální části formou tabulek, grafů a komentářů.
Klíčová slova	intramolekulární přenos na polymer, větvení, molární hmotnost, A4F-MALS.