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Abstract: The modulus optimum (MO) criterion can be used for analytical design of the PID 

controller for linear systems with dominant dead time. However, although the method usually 

gives fast and non-oscillating closed-loop responses, in the case of large dead time the 

stability margin gets reduced and even non-stable behavior can be observed. In this case a 

correction of the settings is needed to preserve the stability margin. We describe and compare 

two methods of design of the PID controller based on the MO criterion that for the stable first-

order systems with dead time preserve the stability margin, trying to keep maximum of the 

performance of the original MO settings.   
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1. Introduction  

The PID controller is a basic control instrument, which has been used in a majority of control 

applications in industry [1]. Although this structure of a controller has been widely utilized 

since the first half of 20th century, the problem of designing the PID controller by means of 

its three tuning parameters is still alive and topical. This fact is documented by the number of 

scientific papers on this problem, which appeared in the last decades. This is true even in the 

case of control of linear time-invariant systems, because the requirements on the closed-loop 

stability and robustness create complicated constraints for the design objective [2].  
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This paper is focused on the problem of tuning the PID controller for the systems with 

transfer function in Laplace transform  

 

 
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sKF s e
Ts




       (1) 

 

where K  is the system gain, 0T   is the time constant and 0   the dead-time parameter.    

is considered sufficiently large with respect to T , so the dead-time dynamics is important for 

the plant behavior. This simple plant is often being used for approximate modeling of 

processes with non-oscillating high-order dynamics and allows simple experimental 

identification from the step response, which can be in most cases easily measured. Simple 

methods based on coincidence in one or more points and more complex methods suitable for 

noisy data are described e.g. in [1] and [3].  

For tuning the PID controller based on the model (1) many approaches exist, see e.g. 

[1] for a description of the most important methods. A comprehensive survey of known 

formulas is available in [4]. Early methods were derived from empirical requirements on the 

step response, such as one-quarter decay ratio [5], [6], step-response overshoot [7] or from 

integral criterions in time domain with approximation of the dead-time dynamics [8]. These 

methods, however, usually work well only for a rather limited range of the ratio / T  . 

The design based on the well-known modulus optimum (MO) criterion [9], [1], [10], 

[14] is one of the approaches that allow working even with long   with respect to T . This 

design criterion requires that the closed loop frequency response modulus is as flat as possible 

in the range of low frequencies, i.e.  
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where ( )L i  denotes the open-loop frequency response, i.e. the product of the responses of 

the plant and the controller, and mk  is as high as possible. The MO-based design is most 

natural for the reference tracking control tasks, where the closed-loop system is to be able to 

respond quickly to changes of the reference input, or equivalently to efficiently reject the 
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disturbances influencing directly the plant output or the measurement noise. In this case it 

usually produces fast non-oscillating responses [10], [14].  

The PID controller can be for the plant (1) designed in a simplified way if the factor 

 1Ts   in (1) is compensated by the controller zero. Then only the two remaining control 

loop parameters are to be determined with respect to the MO criterion. This approach, utilized 

in [13], has several important advantages: it preserves a sufficient stability margin, gives 

simple tuning rules and it enables to propose a compensation of the settings in the cases when 

the disturbance influences the plant input. The resulting MO-based tuning rules  

 

 3
4c

TK
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 , sIT T , 
3sdT 

        (3) 

 

where the PID controller is considered in the serial form  
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offer fast and well damped responses even for large / T  , unlike most other tuning methods. 

For the parallel PID controller  
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the settings corresponding to (3) can be rewritten as   

 

 1 31
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In this paper the design of the PID controller for the plant (1) is considered in full 

form, where all the three controller parameters are determined with respect to the MO 

criterion and no pole/zero compensation is used. In comparison with the simplified approach 

mentioned above it can be assumed that the performance is enhanced in the sense that the 
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closed-loop magnitude response is more flat in the origin, which means that the bandwidth is 

increased. On the other hand, we show that if the ratio / T  is sufficiently large, even non-

stable closed loop can be obtained in this way. Therefore, a modification of the settings is 

needed to preserve the stability margin. This problem has been treated already in [12], where 

a simple correction of the MO settings was proposed.  

In [11] the problem of the MO design is analyzed for the more general plant  
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where 1 2 ... 0nT T T     and 0  . It was observed that the MO-optimal controller 

parameters are positive and the corresponding open-loop Nyquist plot for the plants (7) lies in 

the half-plane  | Re 0.5z z    if   is not too large. This property ensures a large stability 

margin and good robustness of the MO settings, although in the cases of long dead time a 

correction of the MO settings is needed. The correction of the settings proposed in [11] is 

designed to preserve maximum of the performance, which in a certain sense corresponds to 

the flatness of the closed-loop magnitude response for low frequencies. However, the 

algorithm of this correction is iterative, although the computation is simple and very efficient.  

Based on the results in [11], in this paper we propose a modification of the MO-based 

PID controller settings for the FOPDT plant (1), which guarantee stability and the stability 

margin specified above for any 0   and are fully explicit, i.e. can be obtained without any 

iterative computations.  

2. The MO tuning of PID controller  

If we rewrite the transfer function (7) as  
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the corresponding MO-optimal PID controller (5) settings for the system (7) are in [11] 

obtained in the form    
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where the parameters , 1,...,1ir i    are obtained as the solution to the following system of 

linear equations: 
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where   

 

  / j
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For the plant (1) 1 /a T   and 2 3 ... 0a a    in (10), so we obtain    
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where /T  , which can be rewritten as follows:   
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The solution to (13) can be expressed in the explicit form:   

 

         4 3 2
0

1 180 240 135 42 7r
D

                     (14) 

    4 3 2
1

1 60 60 27 7 1r
D

                            (15) 

    3 2
1

15 12 12 5 1r
D

                                        (16) 

where 

    3 216 15 15 6 1D       .                               (17) 

 

Note that the settings exist for any 0  . The actual PID controller parameters are obtained 

by substitution into (9).  

Fig. 1 shows the open-loop Nyquist plots for the plants (1), for three values of T  and 

1  . Fig. 2 shows the corresponding closed-loop step responses. In the simulations there is 

considered the 1st-order low-pass filter with time constant 0.02fT  s by the derivative term 

of the controller (not considered at the controller design stage). This means, the actual PID 

controller transfer function is  

 

1( ) 1
0.02 1

d
c

I

T sR s K
T s s

 
    

.      (18) 

 

The same modification of the controller, corresponding to a real situation, was used for 

obtaining the other simulated results in this paper as well (Figures 4 and 6).    

It can be seen from Fig. 1 that the optimal open-loop Nyquist plot is flat and curving 

towards the origin for low frequencies. Note that the performance gets enhanced with 

decreasing T  in the sense that the closed-loop magnitude response is more flat in the origin. 

On the other hand, for sufficiently low T  the open-loop magnitude increases for higher 

frequencies, which has ill effect on the stability margin, although it is true that this 

phenomenon can be observed only for rather large values of / T . In the time domain this 

problem corresponds to undesirable oscillations in the step response.     



Original source: Archives of Control Sciences, Vol. 26, no. 1, 2016, pp. 5-17.  

DOI  10.1515/acsc-2016-0001 

 

 7 

 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 
Fig. 1. The MO-optimal open-loop Nyquist plots for plants (1) where 1s   and  1T s  

(solid line), 0.2T s  (dashed line) and 0.05T s  (dotted line).  
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Fig. 2. The MO-optimal step responses for plants (1) where 1s   and 1T s  (solid line), 

0.2T s  (dashed line) and 0.05T s  (dotted line).  
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3. The correction of the MO settings 

3.1. The simplified approach 

If we use (9), the open-loop transfer function can be written as  

 

    0 1 1

0 0

0 1 1

1 11 1
1 1

1 .
1

s s
c d

I

s

r r rK KR s F s K T s e s e
T s Ts K r s r Ts

er r r s
s Ts

 









 





  
             

      

 (19) 

 

If we put   , the open-loop frequency response, corresponding to (19), can be written in 

the form  
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
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where /T   and   has the meaning of dimensionless frequency. Note that regardless the 

used transformation of the frequency the Nyquist plots preserve their shape. In [11] it is 

shown that MO optimality for the more general class of plants (7) implies that  

 

 1 2Re 0L    for 0  .     (21) 

 

This fact can be also seen in Fig. 1. Moreover, it was shown in [11] that the parameters kr  are 

positive. Consequently, the open-loop Nyquist plot comes out from the point  0.5,   and 

it tends towards the right half-plane. It can be also seen in Fig. 1 that for the plant (1) 

 Re L   is always increasing for u  , where u  is the frequency when  L     . 

Therefore       

 

   | Re 0.5L z z          (22) 
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holds if   0.5L    for all u  . In this case the closed-loop system is stable by the 

Nyquist criterion. However, if / T  is sufficiently large, this condition is not fulfilled. In such 

cases  L   is increasing for †  , where †  is some frequency larger than u .  

Since from (20) it follows that  
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2lim lim
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  
 


         (23) 

 

it is possible to conclude that the correction of the settings is needed if 1 / 0.5r   . This 

observation has been used in [12], where the modified MO settings was proposed in the 

simple form  

 

 *
1 1min ,0.5r r        (24) 

 

where *
1r  denotes the MO-optimal value of 1r  obtained by solving (13). The remaining 

coefficients 0 1,r r  are obtained by solving the system of the first two equations in (13) for 

fixed 1r :  
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where 
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   2
1 3 1 2 1 3 1 6 6 2D               .   (27) 

 

The value of  , where just 1 / 0.5r   , can be obtained by substitution into (15). The only 

real positive solution is 0.1613d  , which means that the correction of the settings is applied 

in the cases of 6.2T  , which will indeed occur rarely in practice.  

An advantage of this approach is its simplicity. On the other hand, the requirement that 

  0.5L    for u  , which ensures (22), does not always give responses favourable from 

practical point of view. It can be seen in Fig. 4 that the obtained responses can be rather 

oscillatory, unlike the responses when 1 / 0.5r   , which are usually well damped. This 

problem is caused by the open-loop resonance – note in Fig. 3 that even after the correction 

the magnitude response is not monotonic. This also means that the correction of the settings 

may be meaningful even for lower values of / T .  
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Fig. 3. The open-loop Nyquist plots corresponding to the MO-optimal settings with simplified 

correction, where 1s   and 1T s  (solid line), 0.2T s  (dashed line) and 0.05T s  (dotted 

line).  
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Fig. 4. The step responses corresponding to the MO-optimal settings with simplified 

correction for plants (1), where 1s   and 1T s  (solid line), 0.2T s  (dashed line) and 

0.05T s  (dotted line).  
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3.2. The enhanced method  

In [11] the correction of the MO settings for the class of systems (7) was proposed to keep 

 L   monotonic. The decreasing trend of  L   ensures (22) for u   and is natural with 

respect to practical requirements of well-damped closed-loop response. For the systems (7) 

the correction is unfortunately more complex and requires an iterative computation. However, 

we show that in the special case (1) it can be obtained in a simplified way. We can write the 

open-loop magnitude response as  
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
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where   
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It can be seen that it must be 2
0 1 12 0r r r   and consequently also 0   in the MO 

configuration, because otherwise the rate of decrease of 2( )L   for 0   would be larger 

than for the I-controller with 0 1 0r r  , which would mean that the settings 0 1 0r r   was 

MO-optimal. The second term in (28) is always decreasing, while the first term in (28) is 

increasing if 2   and decreasing if 2  . Note that if 1 0r  , the magnitude response is 

always decreasing, because in this case  

 

 
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.   (30) 

It is desirable to keep   as large as possible to ensure maximal possible bandwidth. This 

suggests the following modification of the MO settings:  



Original source: Archives of Control Sciences, Vol. 26, no. 1, 2016, pp. 5-17.  

DOI  10.1515/acsc-2016-0001 

 

 13 

 

- If 2  , put 2   and determine the corresponding 1r . The parameters 0 1,r r  are 

obtained using (26). In the other cases the MO settings (14)-(16) are left unchanged. 

 

The remaining problem is the determination of 1r  for 2  . If we define 1
1r  , from 

equations (26) and (27) we can obtain    

 

 1
2 1

1
0.5r c cr     ,  20

3 1
1

0.5r c cr       (31) 

where        

 

1

2
2

2 3
3

1
1
2
1 1
6 2

c

c

c



 

  

 

  

   

      (32) 

 

and  

 
1

1 2
1 2 3

1
3c c c  


       

 
.    (33) 

 

Substituting into (29) yields 

 

         21 2 2
3 1 2 10.5 2c c c c              (34) 

 

which for given 1 d   is a quadratic equation for obtaining  , which can be rearranged as 

follows:   

 

   2 2 2 2 2 2 4
3 1 3 2 1 10.25 2 0c c c c c c d            .   (35) 

 

The solution to (35) is obtained in the form  
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   

 

22 2 2 2 2 2 2 4
2 1 3 2 1 3 3 1 1

2 2
3

2 2 2 2 2 2 2 2
2 1 3 2 1 3 1 2 3 3 2 1 3 2 1 3 3

2 2
3 3

2

0.5

2 2
.

0.5 0.5

c c c c c c c c c d

c

c c c c c c c c c c d c c c c c c c d
c c

      




  
 

     
 

        
 

 (36) 

 

Further, we can write  

  

   
2

1 20 1
0 1

1 1
2 2r r r rr r    


        

  
.    (37) 

 

Since 1   for   ,  1   in (34) must be increasing in all the interval  2 ,  , 

where 2
2 1 02 / 0r r   , and it is the only interval where  1 0   , because 0  . This 

means, for any given 1 0Md    , where M  denotes the value of   corresponding to the 

MO-optimal settings, the equation (35) must have just one real positive solution. Moreover, 

due to increasing trend of  1  , to larger d  there must correspond a larger value of  . 

Consequently, we can consider only ‘ ’ in place of ‘ ’ in (36).  

 

The correction is to be applied only if min  , where min  is such that  

   2 2
0 1 1 1 min/ 2 /r r r r  

  .     (38) 

 

Substituting (14)-(17) into (38) gives min  as the real solution to the equation  

 
25 4 3 2 5 4 3 2

4 3 2 4 3 2

180 240 135 42 7 12 12 530 1
60 60 27 7 1 60 60 27 7 1
        
       

       
          

. (39) 

 

The equation (39) can be easily rearranged into an algebraic equation, which has only one 

positive real solution min 0.2915  . Therefore, if min  , the value of 1r  is obtained from  
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 

2
3

1 22 2
2 1 3 2 1 3 3

0.5

2 /

cr
c c c c c c c



 


   
    (40) 

 

where kc  and   are given by (32) and (33). The remaining parameters 0 1,r r  then can be 

computed from (26), or using the expressions (31).    

Fig. 5 shows the Nyquist plots corresponding to the same plants like in Fig. 1, but 

using this type of correction of the MO settings. Fig. 6 shows the corresponding step 

responses, which are more damped for low   than the responses in Fig. 4.  

  

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 
Fig. 5. The open-loop Nyquist plots corresponding to the MO-optimal settings with enhanced 

correction, where 1s   and 1T s  (solid line), 0.2T s  (dashed line) and 0.05T s  (dotted 

line).  
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Fig. 6. The step responses corresponding to the MO-optimal settings with enhanced correction 

for plants (1), where 1s   and 1T s  (solid line), 0.2T s  (dashed line) and 0.05T s  

(dotted line).  

 

It is clear from Fig. 6 that the final settings are only slightly dependent on T  and are 

similar to the settings for 0T   (represented approximately by the case 0.05T s  in Fig.6). 

The fastest response with overshoot of about 10%  was obtained for 0.3T  , for lower 

values of /T   the response gets a bit slower due to the correction.  

It can be easily seen from (40) or directly from (28) that for 0T   the proposed 

correction produces the settings such that 1 0r  , which means that the corresponding 

controller is of type PI. Therefore, the closed-loop behavior for the proposed settings will be 

similar to the behavior in the case of the serial-type PID controller (4) where sdT T  is 

chosen to compensate the process lag and the remaining parameters cK  and sIT  are designed 

with respect to the MO criterion. The corresponding settings then are given by the simple 

tuning formulas (6) proposed in [13]. Therefore, it seems that for practical purposes the 

settings (14)-(17) with the enhanced correction can be replaced by the simple design rules (6). 

This also shows a rather surprising fact that that although these rules were developed only as 

sub-optimal with respect to the MO criterion, they produce settings very close to the optimal 

settings if the stability margin requirements are included into the design objective.         

[ ]t s  
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Conclusions 

The modulus optimum design criterion enables to design the PID controller for the FOPDT 

plant (1) analytically for any value of dead time 0  . For larger / T , however, the stability 

margin gets reduced and even non-stable closed-loop behavior can be obtained. This problem 

can be resolved be a suitable modification of the settings, which keeps the open-loop Nyquist 

plot in the half-plane  | Re 0.5z z   . After this correction a sufficient stability margin and 

good robustness of the settings are guaranteed. We presented two methods of the correction, 

which try to preserve maximum of the performance of the original MO settings. For practical 

purposes especially the correction based on the requirement of monotonic open-loop 

magnitude seems to be advantageous. It was shown that for the FOPDT plant (1) this 

correction can be obtained in fully explicit form, which does not use any iterative 

computations, unlike the more general case (7), discussed in [11]. It was observed that the 

resulting settings with the correction give responses similar to the simple sub-optimal tuning 

rules (6) proposed in [13], which could be preferable for practical purposes.    
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