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Abgtract: - In this paper we focused on the daily log returhs o
investment in the Prague stock exchange index, rieléx.
Considering an investment trust that takes a ,pa$siv
investment strategy and invests its assets in aifak stock-
market index - the PX Index. We analysed data fdamuary
1st, 1995 to February 20th, 2014. A popular modelstock
market returns is that the log investment returesradependent
and identically distributed (i.i.d.) normal randaariables. We
focused on the daily log returns and analysed t$teilaution of
these returns. By means of the well-known Jarque-Bstawe
reject the i.i.d. normal hypothesis of daily loguras. We
emphasize this by looking at the data using grabhic
techniques, such as histogram and Q-Q plot. Wesearthat the
data has fatter left and right-hand tails than th@rmal
distribution. Conclusions of our basic analysis tat the daily
log returns are leptokurtic and heavy tailed. They not i.i.d.
and volatility varies over time. Also we can sawttlextreme
daily log returns appear in clusters.

Further we investigated a simple model which inocospes
stochastic volatility. We analysed volatility-stamdised

residuals using a GARCH approach. We can see that

standardised residuals do not show any clustenggbfand low
volatility.

Plotted standardised residuals also show that thezemore
exceedances of the lower threshold than the uppktheat they
are larger.

International banking regulations require bankpay specific
attention to the probability of large losses oveors periods of
time.

We were focusing on the tails of the standardissidual. We
fitted tail data separately using a Pareto distitiou Estimated
parameters of the Pareto distributions show us ttiatPareto
distribution gives a generally better fit over tiafls thant and
non-centrat distribution.
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. INTRODUCTION

Consider an investment trust that takes a “passive”
investment strategy and invests its assets in aifigue
stock-market index e.g. PX Index.
The PX Index is the official index of major stocksat
trade on the Prague Stock Exchange. The index was
calculated for the first time on March 20, 2006 whe
replaced the PX 50 and PX-D indices. The index took
over the historical values of the PX50. The stgrtiay of
PX 50 was April 5, 1994 and its opening value wasd
at 1 000 points. [5]
At this time the index included 50 companies on the
Prague Stock Exchange.

Figure 1. shows the development of the PX Index
from its starting day in 1994 to February 20, 208¢dm
the middle of 1994 to about 2004 we can see sontgthi
that looks like business cycles. Business cycleshisf
type might exist but the cycles are all of diffaremngths,
the timing of the peaks and the lows are diffictdt
predict. The PX Index reaches its top on October 29
2007 with 1936 points. As result of financial csisi
reached 700 points on October 27, 2008 losing almos
50% of its value in two months. [6]
Since data in the year 1994 are irregular, we decid
analyse data from January 1, 1995 to February@D4 .2
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Fig. 1: PX Index (in CZK) from 5. 4. 1994 to 20. 2.
2014. Source: www.pse.cz [6]

What is the distribution of the percentage retuno (
dividends) over specified period of time?

Suppose that we use one day as our unit of time. Th
typical approach is to model the log investmentnret
from time t —1 to timet: which we will denote byd(t) .

That is, 1 CZK invested at time—1 will be worth e%®

CZK at timet.



A popular model for stock market returns is tichfl) ,
d(), ... are independent and identically distributed

(i.i.d.) normal, N(u,0?) , random variables.

Some questions arise.
* Is the assumption of normality appropriate?
* Isthe i.i.d. assumption appropriate?

In this paper we are going to focus on the dailg lo
returns (Figure 2.) and analyse the distributiorthefse
returns.
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Fig. 2: Percentage daily return on the PX Index (4787
observations). Source: Own calculation

Il. PROBLEM FORMULATION

In this section we will establish certain styliséatts
about this returngl(t) series.

Firstly we will assume that returns are i.i.d.. Shiplies
the assumption that volatility is constant.

Our first aspect is to analyse if thd(t) are i.i.d.

N(u,0?) . We will fit the normal distribution to the data
and then conduct a variety of test to see if thigleh is
appropriate. Suppose that we havebservationsd(l) ,

d@), ..., d(T). We can go straight ahead and estimate

4 and o using the standard maximum likelihood
estimates:
1 T
a==> d(t), (1)
T t=1
2 1 2
G2 === (dt) - @)*. (2)
T-1%=

We have 4787 observations in our dataset and vk fin
that [ =0.0001247978 per trading day (or

@A+ )*?-1=0.03194677 per annum)and & =

0.01400127 per trading day (a¥ [4/252=0.2222633
per annum).

The normality we can verify by the coefficients of
skewness\/B and kurtosisk. The normal distribution
has skewness 0 and kurtosis 3.

! There are approximately 252 trading days per year.

The PX Index daily returns data has a skewnesséﬁ)f:

- 0.44 and a kurtosis df = 14.687. These empirical
coefficients look quite different from 0 and 3
respectively, but are they significantly different?

We can answer this question by means of the JadBgua-
test.

The Jarque-Bera test gives a test for normalityt tha
focuses on both the skewness and kurtosis. Spalbjfic

if the data are i.i.d.N(x,0?) then the Jarque-Bera
statistic withn observations

_n 1. a2
Tn_6[€b+4(k 3)) 3)

should have, approximately, a Chi-squared distidiout
with 2 degree of freedom.
More precisely, if the null hypothesis is true,ritbeT,

is said to be asymptoticalI))(Z2 .

For PX Index daily returns data € 4787) the Jarque-
Bera statistic is equal to 27398.43, which is esaagly
large. Thep-value is effectively 0 and we reject the i.i.d.
normal hypothesis.

The R language contains a function called jbtest which
performs the Jarque-Bera test. So we just type the
command:

> jbtest(d) # Jarque-Bera test of the
daily returns #

Skewness = -0.4403515
Kurtosis = 14.68711
Jarque-Bera = 27398.43
p-value = ©

We can easily carry out a chi-squared test on ata.d
This can be done by the following commandRrin

> chi2test.normal(d)

Chi-squared statistic is 564.431 with 97
degrees of freedom.

The p-value for this is 0.

The chi-squared statistic works out at 564.431 @ith
degrees of freedom. Thgvalue for this is 0: that is,
there is very strong evidence to reject the assiompuif
normality

The data is clearly non-normal from these analygés.
add to this by looking at the data using graphical
techniques, such as histogram and Q-Q plot

We have plotted in Figure 3. the histogram of thdyd
log returns on the PX Index. We have also drawthén

density function for theN(/,67) distribution. We

can easily see from this that the data exhibit a
narrower peak than thebest-fitting normal
distribution. Less obviously, but certainly a featu
of the data is, that it has a fatter left and rigand
tails than thebest-fitting normal distribution. In
other words we are looking at #&eptokurtic
distribution.
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Fig. 3: Histogram of the percentage daily returns on the
PX Index. Source: Own calculation
The solid line shows the density function of the

N(f,J?) distribution.

A Q-Q plot is a dot plot that plots the ordered pkam
against the corresponding quantiles of the distidiou
that we are considering to model the data. Suppiuee

we have observations;, X,,..., X, . Let
>Zl < )Zz <...< )Zn be the ordered value of
i-05, .
X1, X,,..., X, . Now let g, = fori=212..,n
n

be theoretical probabilities that are uniformlyest over
the range 0 to 1.
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Fig 4: Q-Q plot of daily returns on the PX Index.
Source: Own calculations
Let Y, =®7'(q;) be the corresponding theoretical

quantile of the standard Normal distribution.
If the data were genuinely normally distributedrthge

would expect to see the 4787 points much more in a

straight line. The fact that Figure 4. actually ibxis an
inverted “S” shape means that the data has fataledt
right-hand tails. The downturn in the plot at th&-hand
end means that the left-hand tail is fatter thanrtarmal
distribution: in other words we should expect ratmere
large losses over time than we would predict ushey
Normal distribution. This inverted “S” shape thenef
points to the data being leptokurtic. We can usestape
of the Q-Q plot to guide our next choice of digtition.

The formal hypothesis tests and the less-formal
graphical/diagnostic tests clearly indicate thate th
assumption that returns are normally distributechas
valid.

Additionally Figure 2. also suggests that the dadyg
returns are not i.i.d.. Instead, it looks like therre clear
clusters of high and low volatility. The PX Indeggl

returns have clusters of high volatility (e.g. i008) and
low volatility (e.g. 2013).
Conclusions of our basis analysis are:
1) Log returns are leptokurtic and heavy tailed.
2) Log returns are noti.i.d.
3) Volatility appears to vary over time.
4) Extreme log returns appear in clusters.

I1l. PROBLEM SOLUTION

In Figure 5. we investigate the evidence for nad-ilog
returns in a more systematic way. Here we lookhat t
autocorrelation function.
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Fig. 5: Left: Sample autocorrelation function for PX
Index daily log returns.

Right: Sample autocorrelation function for squafed
Index daily log returns.

Horizontal dashed lines give the 95% confidencerirztl.
Source: Own calculation

In the left-hand plot we have plotted the sample
autocorrelation function for the daily log returdgt) for

t=12...,n. The values of theo(K) (

p(K) =cor(d(t),d(t +K)), wherek is referred to athe

lag are all fairly close to zero (except, a small but
significant positive correlation at lag 1). Thisitial
observation is consistent with log returns being.ibut,

of course, it does not imply that log returns aicd.i

The fact that the ACF is close to zero implies thatigh
log return one day does not give us any informadibout
the expected log return the next day.

In right-hand plot we have plotted the sample
autocorrelation function for the squares of theydkig
returns d(t) for t=12...,n. This plot is very
different. There is a moderate, but nevertheleghli

significant, correlation between the(t)? on different

days. It tells us that ifl(t)? was high ordayt (that is, a
large positive or negative log return) then itikely that
d(t +1) will also be above average. The left-hand plot

tells us, though, that we cannot be precise in aay
about the sign ofd(t +1) or its conditional expected

value. The significant autocorrelations @h(t)? imply

that the market goes through phases of high and low
volatility. The fact that the autocorrelation function
decline very slowly means, that these phases rfda
some time.



We now propose a simple model which incorporates Our next plot, Figure 7, shows the autocorrelation

stochastic volatility of the form:

d(t)=pu+o(t) [Z(1), 4
where y is constant,o(t) is some stochastic volatility
process and Z(), Z(2),... are iid. volatility-
standardised residuals.

An important observation about the equation (4)hest
the value ofo(t) must be known at timé —1 based on
information available up to and including tinbe-1. It is
usually assumed thaVar[Z(t)]:l which means that

o(t)? =Var[d(t)|Dt_1] where [, ; represents the
market information available up to and includingei

t—1. In other wordsg(t) is the conditional standard
deviation of d(t) given the market information up to

t —1. Usually we also assume thE{Z(t)] =0.

Now define the variance process to be
v(t) =o(t)®
and propose the simple model
v(t+1) = O0U(t) + (1- 6) [{d(t) — @) =

6 V(t) + (L- 6) T(t) (Z(t)?
It is straightforward to show that this implies tha

t-1

v(t)=(@-6) DD _(d(t—k) - ©)* +6' (). In fact,
k=0

this process we have defined fdt) (equation (5)) is a

special case of what is called a GARCH(1,1) timgese

process.

Now that we have estimated the volatility procgsswe

can calculate the volatility-standardised residuals

®)

50y 2 40~ &
20)== 5 ©)

which we can now analyse.

In Figure 6. we have plotted the volatility-stardiaed
residuals. As a reminder, in the upper plot (FigQre
there are clear clusters of large gains and lcsséother
clusters of small gains and losses. The Figurehéws
the standardised residuals, and we see nothinchef t
clustering. We can conclude that the standardisaies
passed our first visual diagnostic test.
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Fig. 6: Volatility-standardised residuals.
Source: Own calculation

functions for 2(t) and ﬁ(t)z. The right-hand plot for

ﬁ(t)2 shows a dramatic improvement over Figure 5.
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Fig. 7: Left: Sample autocorrelation function for the
volatility-standardised residuals.

Right: Sample autocorrelation function for squared
volatility-standardised residuals.

Source: Own calculation

The model (equation (5)) for stochastic volatilitging
exponential weighting is a special case of a GARCH
process. A GARCH process (Generalized Auto-
Regressive Conditionally Heteroscedastic) is defias
follows:

o Let X(t)=d(t) — 4.

o Let Z(1),Z(2),... be a sequences of i.i.d. random
variables with mean 0 and variance 1.

+ For integers p,g=1, the GARCHp,q) model is

governed by the equations
X(t) = o(t) [ Z(t), (7

o) =y + Y @ X (E-1) + S B, - )7
-1 =1

(8)

where a, >0, a; 20 for i=12...,p and ;20
for j=12...,Q.

fp=qg=1a,=0, a,=1-8 and B, =6 then we
have our original model (equation (5)).

The GARCH(1,1) is perhaps the most widely usedllof a
the GARCH models, being relatively simple as weall a
providing a statistically good model for stochastic
volatility.
We can note the following whep=q = 1:

* From equation (8), it follows that

o(t)’ =a, +(a, [Z(t-D* +B) D(t-1*.  (9)
« If Eflog(a, (Z(t-1)%+5,)]<0 then the
model forX(t) is strictly stationary.
o If a; + ,81 <1 then the model forX(t) is
covariance with
9
1-a, -5
Estimation of parameters is dealt with in McNeitey
and Embrechts [2].

stationary, unconditional

varianceVar[ X(t)] =



Suppose that we wish to fit the GARCH(1,1) modeieO
approach to parameter estimation is to use maximum
likelihood. We have a set of observations

{d t:t=12..., n} , with parameter vector
0=(a,,a,,6,,00),4).

Construction of the likelihood function proceeds as
follows:

+ Let h(z ¢) be the density function of the i.i.d.

Z(t). Recall that HZ(t)]=0 and
VaiZ(t)] =1, so the parameter vectop
defined the remaining parameters of the

distribution. For example, fardistribution, gis
simply the number of degrees of freedom. For
the non-central distributionghas two elements:
the number of degrees of freedom and the non-
centrality parameter.

. WO-p has densityh(z, ¢) .
oe@
e Fort=2,3,..n
Let z(t_l)zw_
o(t-1
- Define
T,(1) = ay + (@, (Z(t -1 + B) Bt -1
- d(t) - gconditonal on o, and
d@,d(?),...,d(t—2) has the same density as
d(t) - u on g,(t): that is,
knowledge of og,(t) is sufficient. Thus,
- has density(z, ¢) .
oy(t)

The observations are obviously not independentwso
need to build up the likelihood sequentially.

conditional

Thus,
L(6,¢;d) =

f (1)|%(1»E|‘J fd®)o,®,dQ,...,d(t-1)=

n —
oo™ '}
-1 T4 (1) g,(t)
Full maximum likelihood (MLE) is implemented by
simultaneously maximizind-(6, ¢; d) over all elements

of fandg@

As an alternative to full MLE we will take an

approximate 2-stage procedure which generally dediv

good results and indeed makes the process of findin

good distribution for theZ(t) easier. This procedure is

calledquasi maximum likelihood (QML).

e Stage 1: Assume that tizt) are i.i.d.N(0,1), so

that @ is empty. Maximize the likelihood

L(6,¢;d), over all elements of.

(10)

This stage outputs not just the quasi maximumikilesld
estimate for@ but it also outputs a set of standardised

residualsZ o, ya (2),...,2(n) :

+ Stage 2: Analyse thé(t) and determine what is

the best distribution for them.

We know that the distribution of the daily log nets
d(t), when treated as being a sequence of i.i.d. rando
variables, exhibited fatter tails than the normal
distribution. These apparent fat tails can be chusea
combination of two features:

e stochastic volatility;

e afat-tailed distribution foE(t).
Note that the inclusion of stochastic volatility ams that
the observed distribution of thdft) will have fatter tails
than the underlying i.i.dZ(t).

Under QML the estimated GARCH(1,1) parameters are
(usingR commands):

> resl<-fit.garchll.normal(d)

14561.43 # maximum likelihood #

> resil$par # The vector of parameters #
sigma(1) alphao alphal
betal mu
1.253475e-02 3.464359e-06
8.552684e-01 5.963464e-04

1.303942e-01

This results in an unconditional standard deviatiog

a, + B, =0.9856626<1) for d(t) equals to
9%  _(0155445 per trading day or 24.67%
1_(a1+[ﬁ)

per annum (252 trading days).

Standardised residual€(t) are plotted in Figure 8.,
where we cannot see any obvious clusters of high an
low volatility. The horizontal dashed lines giveeti%
and 99% quantiles of standard normal. There seerhe t
more exceedances of the lower threshold than tperup
and these seem to be larger.

Standardised residuals
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Fig. 8: Daily standardised residual<(t), for the
stochastic volatility model. Source: Own calculatio

We now proceed onto an analysis of th@g) on the
assumption that they are i.i.d..

First we are looking at the possibility th&t) are
normally distributed. Two graphical diagnostics are
provided in Figure 9.
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Fig. 9: Left: Empirical histogram of th&(t) (bars) with a
fitted Normal overlaid (solid line). Right: Q-Q plaf
standard normal quantiles vs. empirical quantisirce:
Own calculation

Theoretical Quantiles

We can compare the histogram of #{§ (left-hand plot)
with Figure 3., and conclude that tE&) appear to be
closer to a normal distribution than the origidé). The
kurtosis of thed(t) is 14.687 reducing to 4.862 for the
Z(t). However, the histogram still provides evidenicatt
the data have a narrower peak and (by inferen¢terfa
tails than the standard normal.

The Q-Q plot (right-hand plot) leads us to a simila
conclusion, that the Normal distribution is bettban
before, but that it still does a bad job in modwjlithe
tails of the data. Specifically both tails in thata are
fatter than the Normal, especially the left-handl fBhe
Q-Q plot also shows some skewness in the data, and,
indeed, the coefficient of skewness-i6.27, suggesting a
long left-hand tail.

These graphical diagnostics can be backed up byafor
hypothesis tests.

> jbtest(zQ) # zQ is the vector of
standardized residuals Z(t)
Skewness = -0.2725932
Kurtosis = 4.862287
Jarque-Bera = 751.0284
p-value = @

> chi2test.normal(ZQ)

Chi-squared statistic is 181.686 with 97
degrees of freedom.

The p-value for this is 4.221595e-07.

The Jarque-Bera test results in rejection of thel.i.
normal hypothesis. The Chi-squared test compares th
number of observations in 100 bands, each with
probability 0.01 undeH,. The test statistic of 181.686 is
not disastrously high, but it is big enough to fesua
very lowp-value, so agaihl, is rejected.

The well-known alternative distribution on the réaé to
the normal is thé distribution.

Suppose that

Z andY are independent random variables,
Z~N(0,1) has a standard normal distribution,

Y~ sz has a standard chi-squared distribution

with v degrees of freedom,

The random variablX is defined asX = ——,

Y

1%
then the random variabl¢ has a standartdistribution

with v degrees of freedom, and its probability density
function equals

F(; (v +1)j

WD’(;VJ

2 2
1+ 7.
v

By the method of moments we can estimate parameters
of the t distribution by matching specified moments of
the distribution to the sample moments. Our mosi¢hat

the volatility standardised residualg(t), are given by

Z(t) =m+s[X(t), where theX(t) are i.i.d. standard

random variables withvy degrees of freedom. From the
moments of the standatdistribution we can infer that

f(x)=

E[zt)]=m, (11)
Var[z(t)] = s E-Ivli—z (for v > 2) (12)
Kurtosis[Z ()] = % (forv >4). (13)

Thus we use the sample mean, variance and kutmmsis
estimatem, sandv.

We have the following statistics:

E[z(t)] = - 0.0300086Var [Z(t)]= 0.999772,
k=4.862287.

Matching these three moments we get:

V =7.221846,5 = 0.850145m =- 0.0300086.

Under maximum likelihood the estimatedistribution
parameters are (usifgycommand mle.t):

> mle.t(ZQ)

mu = -0.01648076
sigma = 0.8535201
nu = 7.442079

log-likelihood = -6696.788
[1] -0.01648076 ©0.85352007 7.44207945

The summary Table 1. contains the log-likelihood fo
three methods we have investigated.

It is clear that the distribution fits much better than the
normal. Additionally, we can see that the method of
moments produces a worse fit using log-likelihosdaa
measure.

Previously, in the Jarque-Bera test, we saw that th
empirical coefficient of skewness is0. 2725932, so it
makes sense to investigate some skewed, fat tailed
distributions. There are many such distributions to
choose. The one we will investigate is called tloa-
central t distribution (NCT).



Suppose that
+ D ORis some constant
e ZandY are independent random variables,
e Z~N(0,1) has a standard normal distribution,

* Y~ )(V2 has a standard chi-squared distribution
with v degrees of freedom,

e« The random variable X is defined as
Z+D
X = ,
Y
1%
then the random variableX has a non-centralt

distribution with v degrees of freedom and non-centrality
parameterD.

The NCT distribution is now fitted to the volatlit
standardised residuals (usiRgcommand mle.nct):

> pv3<-mle.nct(ZQ)

mu = 0.2815168
sigma = 0.8533425
nu = 7.637477
ncp = -0.3267568

log-likelihood = -6692.568

Maximum likelihood estimates for the parameter
estimates of the normal amndlistributions are repeated in
the Table 2. along with those for the non-certtral

The normal distribution is a special case ofttiaich in

shows up in fatter left-hand tails, and this methias thet
and NCT are better.

Empirical vs. Fitted CDF of Z(t)

Normal Z(t)
,,,,,,,,,,,, t
B - NCT
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Fig. 11: Normal,t and NCT distributions fitted to QML
Z(t). Source:Own Processing
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Fig. 12: Detail of Figure 11. Source: Own Processing

To avoid problems with the tails a good compronmsi®
use the above mentioned distributions within thenma

turn is a special case of the NCT, so we can see an hody of the data (say between 5% and 95% quantites)

increase each time in the log-likelihood.

IV. HTTING EXTREME VALUES

International banking regulations require bankspty
specific attention to the probability of large lessover
short periods of time (typically 1 or 10 tradingydh
More generally we may wish to pay specific attemtio
the possibility of large gains or losses for geheisk
management purposeés.

We focus here on analysis of the tails of Zf® resulting
from the QML estimation used in fitting a GARCH(]L,1
model to the daily log returns data.

In Figures 11. to 13. we take tA&) output by the QML
approach, plot the empirical CDF for the data and
compare this with the fitted CDF’s for normahnd NCT
distributions.

In Figures 12. and 13. we have zoomed in on theaBélo
1% left and right hand tails of the cumulative dizition.

The left-hand plots give us information about the
probability of large losses and the right-hand plabout
the probability of large gains on the index.

In general, thet and NCT look rather better than the
normal. The NCT generally seems better thantthmut

by a smaller margin. Skewness in the empirical data

2 Large gains in a stock-market index can cause$ssg. for banks
that have sold call options on that index.

to fit each tail data separately using a standard
distribution. We will refer to this as thebrid approach.

[4]

Above the 95% quantile and below the 5% quantile we
will fit a Pareto distribution to the excess retover the
95% quantile and below the 5% quantile, respegtivel
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Fig. 13: Detail of Figure 11. Source: Own Processing

Random variableX has a Pareto distribution [3] with
parameterd > 0 anda > 0 if it has the pdf
a
f(x)=

for x> 0. (14)

a,
(A + X)a+1 !
Its cumulative function is



(15)

F(X)=1—(Lj , for x> 0.
A+X

Now suppose that we haveobservations in total. The
95% quantile will be denoted hy Further suppose that
there arem observations out of the that exceedy, and
that these take the valueg, X,,..., X,.

Now fit a Pareto distribution using the method of
moments or maximum likelihood to the excess returns

Y, =X —(, returning the parameter estimatés and

A1
For X>( the cumulative distribution function is then:
A a
A
F(x)=1- 0050 ———
A+(x-0q)
For the data below the 5% quantile we will follow

- < . o
similarly, but for X<Q the cumulative distribution
~ G

A
function is F (x) = 005 ———
A+(q-x)
Figure 14. shows results for fitting a Pareto disttion to

the lower 5% and 1% of the data, and to the uppér 5
and 1% of the data.

(16)

Estimated values fot anda are given in Table 3. For the
lower 1% we saw that the estimated valuera$ 19.84,
while the upper 1% tail hag = 155.55. This means that
the left-hand tail is fatter, contrasting with dataely
thin right-hand tail. This means that the right-thaail of
the data we can smoothly fit by NCT distribution.

Lower 5%tail

Upper 5%tail
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Fig. 14: Upper and lower tail characteristics of the
empirical and fitted CDF’s. Source: Own Processing

V. CONCLUSION

For our analysis we proposed a model which incaigsr
stochastic volatility. One of the most used modeldaily

return series is the GARCH model. Under QML we
estimated GARCH(1,1) parameters and obtained
standardised residuals. Standardised residuals ato n
show any clusters of high and low volatility. Weoko
them as i.i.d.

The GARCH(1,1) model is the first and foremost adelo
for short-term risk assessment. Longer-term prixdist
will be less reliable.

Analysis of the standardised residuals showed it
non-centralt distribution (NCT) fits them much better
than thet distribution or the normal distribution.

After all we analysed the tails of the standardised
residuals. Above 95% quantile and below the 5% tjlgan
we used Pareto distribution for fitting.

We can see that Pareto distribution provides a rgépe
better fit over the tails thart and non-centralt
distribution.

We conclude this paper by looking at Q-Q plots hdf t
tails of the data versus the theoretical Paretwildigion.
These are plotted in Figure 15. for both the 5% &a%d
tails. In all cases the Q-Q plot looks reasonabigdr
suggesting that the Pareto is an appropriate chioice
modelling excess gains and losses.

QQ-Pareto: bottom 5% QQ-Pareto: top 95%

Sample quantiles
Sample quantiles

T T T T T T T T T T T T T
0 1 2 3 4 5 00 05 10 15 20 25 30

Theoretical quantiles Theoretical quantiles

QQ-Pareto: bottom 1% QQ-Pareto: top 1%

Sample quantiles
2
L

Sample quantiles

00 05 10 15 20 25 30
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Fig. 15: Q-Q plot for the excess losses and gains for the
1%, 5%, 95% and 99% quantiles versus theoreticat®a
guantiles. Source: Own Processing

Theoretical quantiles
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Estimate m S v log-likelihood
Normal: MLE —0.0300086 0.999886 00 -6791.914
t: Method of moments - 0.0300086 0.850145 7.221846 - 6706.331
t: MLE —0.0164807 0.853520 7.442079 —6696.788

Table 1: Log-likelihood of normal anddistribution. Source Own calculation

Estimate m S v NCP log-likelihood

Normal: MLE —0.0300086 0.999886 00 -6791.914
t: MLE —0.0164807 0.853520 7.442079 —6696.788
NCT: MLE 0.2815168 0.8533425 7.637477 | -0.3267 - 6692.568

Table 2: Log-likelihood of normalt distribution and non-centrabistribution. Source: Own calculation

Volatility-standardised residuals, Z(t)
Tail Quantile cut-off A a
5% worst losses —1.631937 8.140316 12.95973
1% worst losses — 2.673547 14.88173 19.84448
5% top gains 1.511473 81.37704 153.8542
1% top gains 2.319732 90.08061 155.5489

Table 3: Estimated values fot anda for the Pareto tail distributions. Source: Owrcodation



