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Abstract—Catastrophe modelling and simulations are risk 

management tools using computer technology to help insurers, 

reinsurers and risk managers better assess the potential losses caused 

by natural and man-made catastrophes. This article aims to present 

methods for modelling and simulation of extreme insured losses 

using quantile function based on data caused the world natural 

catastrophes in time period 1970-2014, published in Swiss Re Sigma 

No2/2015. Our interest focuses particularly on the extreme 

observations in the upper tail of loss distributions. We have shown 

that it is possible to simulate the losses in upper tail of distribution 

without simulating the central values. This advantage will be used for 

simulation a few values of the highest insured losses in the world's 

natural catastrophes in the future.  

 

Keywords—Extreme claims, quantile function, Pareto 

distribution, simulation, Weibull distribution.  

I. INTRODUCTION 

he occurrences of catastrophic events are becoming more 

frequent (Fig.1) and also grow indemnity of insurance and 

reinsurance companies at these events (Fig.2).  

 

 
Fig.1 Number of catastrophic events, 1970-2014 

Source: SwissRe economic Research&Consulting and Cat Perils 

The enormous impact of catastrophic events on our society 

is deep and long. Not only we need to investigate the causes of 

such events and develop plans to protect against them, but also 
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we will have to resolve the resulting huge financial losses. 

 

  
Fig.2 Natural catastrophes insured vs uninsured losses, 

         1975–2014, in 2014 USD billions 

Source: SwissRe economic Research&Consulting and Cat Perils 

 

From these facts it follows the need of knowledge the 

probability models for prediction of consequences of 

catastrophe events and thus select the best options to cover 

risks and correct setting premiums or reinsurance. 

The modelling process evolved in the late 1980s as 

companies become increasingly aware of their exposure to 

catastrophic risks. After Hurricane Andrew in 1992 and 

Northridge earthquake in 1994, the use of catastrophe models 

took of as companies sought to more accurately analyze, write 

and price for natural catastrophe risk. 

Developments of the financial consequences of disasters 

have a major impact on the global insurance market and 

forcing the insurance and reinsurance companies to seek for 

new approaches and ways to cover these risks. Are the valid 

concerns that the capacity of the world's insurance and 

reinsurance markets in the future will not be sufficient to cover 

these risks. 

In the modelling of extreme losses statistical methods are 

commonly used for inference from historical data. Different 

approaches had been proposed for certain circumstances, for 

example Block Maxima Models and Excess over Threshold 

Method [5], [6]. In this article we will present method for 

modelling and simulation based quantile function [2], [4], [9], 

[12], [13], [14].    
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II. LOSS DISTRIBUTIONS  

A. Selected probability models 

The conditions under which claims are performed allow us 

to consider the claim amounts arising from natural 

catastrophes to be samples from specific heavy-tailed 

probability distributions. Such distributions are positively 

skewed and very often they have high probabilities in the 

upper tails. So they are described as long tailed or heavy tailed 

distributions [1], [3], [7], [8], [11], [17].    . 

The distributions used in this article include 2-parametric 

Pareto [10], [14] and 3-parametric Weibull [8], [15], which are 

particularly appropriate for modelling of insured losses in 

natural catastrophes. These distributions are used as 

appropriate models in case when we need to obtain well-fitted 

upper tail. The simple form their quantile functions allow to 

simulate the biggest catastrophic losses. 

Pareto Distribution (2-parameter) 

The Pareto cumulative distribution function of the losses Xa 

that exceed known threshold a is [10], [12], [15]: 

 

( ) 1 ,

b

a

a
F x p x a

x

 
    

 
           (1) 

 

Probability density function (PDF) ) is in the form 
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The quantile function QF we can derive by inverting this 

CDF in the form 
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Weibull Distribution (3-parameter) 

The cumulative distribution function is given by [8], [15] 
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with parameters: shape 0,   scale 0,  threshold θ. 

Probability density function (PDF) is in the form 
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For 0 1p   quantile function as the inverse distribution 

function is  
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B. Distribution Fitting  

The Maximum Likelihood (ML) method [3], [12] is the 

most often used to estimate the parameters of the selected 

probability distributions. This method can be applied in a wide 

variety of situations and the parameters obtained by ML 

generally have very good properties compared to estimates 

obtained by other methods (e. g. method of moments, method 

of quantile). In this article procedure Distribution Fitting in 

Statgraphics Centurion XV package will be used to obtain the 

maximum likelihood estimators. 

Kolmogorov-Smirnov test (K-S test) was chosen from seven 

different goodness-of-fit tests, which offers the Distribution 

Fitting procedure. 

Kolmogorov-Smirnov test (K-S test) compares the empirical 

cumulative distribution function of the data to the fitted 

cumulative distribution function. The test statistic is given by 

formula  
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The empirical CDF  xF
n

 is expressed as follows: 
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where data are sorted from smallest to largest in sequence 
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n
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C. Simulation Using Quantile Function 

The Quantile Function, QF, denoted by   ,Q p  expresses 

the p-quantile px  as a function of  p:   ,px Q p the value of 

x for which    .p pp P X x F x    

The definitions of the QF and the CDF can by written for 

any pairs of values  ,x p  as  x Q p  and  .p F x  These 

functions are simple inverses of each other, provided that they 

are both continuous increasing functions. Thus, we can also 

write    1 ,Q p F x  and    1F x Q p  [2], [13]. 

We denoted a set of ordered sampling data of losses by  
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The corresponding random variables are being denoted by  
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Thus  n
X  for example is the random variable representing 

the largest observation of the sample of n. The n random 

variables are referred as the n order statistics. These statistics 

play a major role in modelling with quantile function  .Q p  

Consider first the distribution of the largest observations on 

 n
X with distribution function denoted as      

.
n n

F x p  The 

probability 



 

 

        n n n
F x p P X x    

is also probability that all n independent observations on  X are 

less than or equal to this value x, which for each one is p. By 

the multiplication law of probability  
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Inverting  F x  to get the quantile function we have 
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So the quantile function of the largest observation is thus 

found from the original quantile function by very simple 

calculation. 

For the general r-th order statistic  r
X  calculation becomes 

more difficult. The probability that the r-th larges observations 

is less than some value z is equal 

        r r r
p F z P X z    

This is also probability that at least r of the n independent 

observations is less or equal to z. The probability of s 

observations being less than or equal to z is ,sp  where 

 zFp   is given by the binomial expression [2] 
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If it can be inverted, then we can write 
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From the last two expressions we get  
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BETAINV   is a standard function in packages such 

as Excel. Thus, the quantiles of the order statistics can be 

evaluated directly from the distribution  pQ  of the data. The 

quantile function thus provides the natural way to simulate 

values for those distributions for which it is an explicit 

function of p [2]. 

D. Simulation of extreme values 

In a number of applications of quantile functions in general 

insurance interest focuses particularly on the extreme 

observations in the tails of the data. Fortunately it is possible 

to simulate the observations in one tail without simulating 

the central values. We will present here how to do this. 

Consider the right-hand tail. The distribution of the largest 

observation has been shown to be  1 .nQ p  Thus the largest 

observation can be simulated as     n n
x Q u , where 

 

1 n

nn
u v  and n

v  is a random number from interval [0, 1]. If 

we now generate a set of transformed variables by 

 

 

1 n

nn
u v  

     

1

1
11

n
nn n

u v u


               (11) 

     

1

2
22 1

n
nn n

u v u
 

   

 

where i
v , , 1, 2, ...i n n n    is simply simulated set of 

independent random uniform variables, not ordered in any 

way. It will be seen from their definitions that  i
u , 

, 1, 2, ...i n n n    form a decreasing series of values with 

   1i i
u u


 . 

In fact, values  i
u  form an ordering sequence from 

a uniform distribution. Notice that once  n
u  is obtained, the 

relations have the general form 
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The order statistics for the largest observations on X are 

then simulated by  
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 In most simulation studies of n observations are generated 

and the sample analyses m times to give an overall view of 

their behavior. A technique that is sometimes used as an 

alternative to such simulation is to use a simple of ideal 

observations, sometimes called a profile. Such a set of ideal 

observations could be the medians 
r

M , 1, 2, ..., .r n . 

III. PROBLEM SOLUTION 

The publication [16], Swiss Re Sigma No 2/2015 in 

Table 10, page 41, provides data about 40 the most costly 

insurance catastrophic losses (1970- 2015) in million USD, 

2014 prices. These data are the basis for our modelling and 

simulation of a few the highest values of losses. The data are 

ranging from 3410 to 78638 million USD in 2014 prices 

(Table 1). 

 

 



 

 

Table 1: 40 the most costly insurance losses (1970-2015) 

3410 4818 7681 15783 

3501 5125 8241 16157 

3839 5426 8458 16836 

3882 5740 8682 22258 

3899 5780 8730 22355 

4010 6134 9813 25104 

4123 6449 10087 26990 

4200 6456 11339 36079 

4492 6959 12240 36828 

4765 7418 15234 78638 
Source: Swiss Re Sigma No 2/2015 

 

A.  Simulation by Pareto Quantile Function 

First we want to verify whether the 2-parameter Pareto 

distribution defined by (1) fits the data adequately by selecting 

Goodness-of-Fit Tests in Distribution Fitting procedure of 

Statgraphics Centurion XV package [15]. The first step is 

parameters estimation by maximum likelihood method [3], 

[12]. The estimated parameters of the fitted Pareto distribution 

are shown in Table 2. According to our parameter markers  by 

(1) - (3) est a = 3410 and est b = 1.04777.  

 
Table 2 Parameters of Pareto Fitted Distribution 

Pareto (2-Parameter) 

b - shape = 1.04777 

a - lower threshold = 3410.0 

        

The Table 3 shows the results of test run to determine 

whether the most costly insured catastrophe losses can be 

adequately fit by a 2-parameter Pareto distribution (1).   

Since the smallest P-value = 0.858776 amongst the tests 

performed is greater than or equal to 0.05 we do not reject the 

hypothesis that losses comes from a 2-parameter Pareto 

distribution with 95% confidence. 

 
Table 3 Results of Kolmogorov-Smirnov Test 

 Pareto (2-Parameter) 

DPLUS 0.0576431 

DMINUS 0.0955203 

DN 0.0955203 

P-Value 0.858776 

 

 

We can also by Quantile plot and Quantile-Quantile or Q-Q 

plot assess visually how well the 2-parameter Pareto 

distribution with ML estimated parameters in Table 2 fits the 

data. 

The Quantile Plot (Fig. 3) shows the fraction of 

observations at or below x, together with the cumulative 

distribution function of the fitted distribution. To create the 

plot, the data are sorted from smallest to largest and plotted at 

the coordinates. Ideally, the points will lie close to the line for 

the fitted distribution, as is the case in the plot at Fig. 3.  
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Fig.3 Quantile plot 

 

The Quantile-Quantile plot (Fig. 4) shows the fraction of 

observations at or below x plotted versus the equivalent 

percentiles of the fitted distribution. The fitted Pareto 

distribution has been used to define the x-axis. The fact that 

the points lie close to the diagonal line confirms the fact that 

the Pareto distribution provides good fit for the data, but 

deviates away from the data at highest values of x. Evidently,, 

the tail of the Pareto distribution is too fat. 
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Fig.4 Quantile-Quantile plot 

 

Table 4 shows the values of the cumulative distribution 

function at 5 selected values of x. Lower tail area is the 

probability that the catastrophe insured losses are less than or 

equal to x,  upper tail area is the probability that losses are 

greater than x. So for example the probability that the 

catastrophe losses exceed the value of 300 000 million USD is 

0,014. 

 

 

 Table 4 CDF of the Pareto (2-parameters) distribution 

x Lower Tail Area (<) Upper Tail Area (>) 

10000 0.676084 0.323916 

50000 0.940011 0.0599889 

100000 0.970983 0.0290175 

200000 0.985964 0.0140362 

300000 0.990822 0.00917793 

 



 

 

The Table 5 contains the selected quantiles of Pareto 

distribution, which is well fitted model for the most costly 

insured catastrophe losses.   

 
Table 5 Selected quantiles of the fitted Pareto distribution 

Lower Tail Area (<=) Pareto (2-Parameter) 

0.75 12804.5 

0.8 15843.6 

0.9 30701.5 

0.95 59492.8 

0.99 276417.0 

 

If will not change conditions of the occurrence of these 

events on the globe, will not change even their distribution. 

Then 20% of the most costly insurance losses will exceed 

15843.6 million USD, 10% will exceed 30701.5 million USD, 

1% will exceed 276 417 million USD.  

Knowing the probability model and its parameters, we can 

use quantile function (3) and by simulation procedure 

described in part II-D we will simulate five the highest values 

at 40 the most costly insurance losses.  

The steps of simulation by (11) and (12 ) presents the 

Table 6 and possible the highest five values (in million USD) 

in the world natural catastrophes we can find in the last column 

denoted as Q(u). So the highest simulated loss is 82 421.36 

million USD, the second highest is 48123.9 million USD etc. 

 
Table 6  Process of simulation Q(u) for Pareto distribution 

v n v
1/n

 u Q (u) 

0.23549 40 0.964494 0.964494 82481.36 

0.77309 39 0.993423 0.958150 70505.06 

0.55488 38 0.984619 0.943413 52865.58 

0.90776 37 0.997388 0.940949 50758.02 

0.33132 36 0.969781 0.912514 34880.10 

 

Two last columns in Table 7 show the boundaries for each 

order statistic. For example the highest possible insured loss is 

with probability 0.95 from 24 991.87 million USD to 

18 066 831.58 million USD and 0.5% of losses may even 

exceed the value of 18 066 831.58 million USD if losses are 

by Pareto distributed. 

 

 

Table 7 Quantiles of selected order statistics 

Q(BETAINV(0.5)) Q(BETAINV(0.995)) Q(BETAINV(0.005)) 

164 921.29 18 066 831.58 24 991.87 

70 901.33 993 661.54 18 346.01 

45 453.34 318 235.24 15 002.34 

33 581.25 163 674.11 12 884.65 

26 690.92 103 499.70 11 390.54 

 

Visualized results of the simulation process we can see at 

Fig.5 and Fig.6.   

 
Fig.5  Graphical result of simulation of five the most costly    

insurance losses using Pareto QF 

 

 

Fig.6 Graphical result of simulation of four  the most costly 

insurance losses 

 

B. Simulation by Weibull Quantile Function 

Analogous procedure of probability modelling and extreme 

losses simulation as using Pareto model in part III-B we have 

repeated for the Weibull 3-parameters distribution (4). 

 

Table 8 Parameters of Fitted Weibull Distribution 

Weibull (3-Parameter) 

α - shape = 0.723827 

β - scale = 7185.26 

θ - lower threshold = 3410.0 

The estimated parameters of the fitted Weibull distribution 

are shown in Table 8. The results of Goodness-of-Fit test that 

the 3-parameter Weibull distribution fits the losses adequately 

has shown Table 9. Since the smallest P-value = 0,984947 is 

greater than or equal to 0.05, we do not reject the hypothesis 

that data come from a 3-parameter Weibull distribution with 

95% confidence. If we compare results in Table 3 and Table 9 

We can also assess visually that the 3-parameters Weibull 

distribution very well fits to the most costly insured 

catastrophe losses (Fig. 7, Fig. 8). 

 

 

Table 9 Results of Kolmogorov-Smirnov Test 



 

 

 Weibull (3-Parameter) 

DPLUS 0.0723181 

DMINUS 0.0719318 

DN 0.0723181 

P-Value 0.984947 
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Fig.7 Quantile plot 

 

  

Comparing the P-Values in Table 3 and Table 9 and Q-Q 

plots at Fig. 4 and Fig. 8 we can observe better fit of the 

Weibull distribution on empirical data, even on the upper tail 

of distribution. The fact that the Weibull distribution not 

overestimates the largest insured catastrophe losses is also 

positive. 
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Fig.8 Quantile-Quantile plot 

 

Table 10 presents tail areas for the fitted 3-parameters 

Weibull distribution. Comparing with Table 4 the output 

indicates that the upper tail of the Weibull probability model is 

not so fat or long as it is in case of Pareto distribution. 

 

Table 10  CDF of the Weibull (3-Parameters) distribution 

X Lower Tail Area (<) Upper Tail Area (>) 

10000.0 0.609108 0.390892 

20000.0 0.839985 0.160015 

50000.0 0.979128 0.0208718 

60000.0 0.98837 0.0116304 

100000.0 0.998583 0.00141745 

 

Table 11 presents selected high quantiles for the fitted 3-

parameters Weibull distribution.  For example, the output 

indicates that the value of the fitted Weibull distribution below 

which we would find an area equal to 0.99 is 62 668.1, thus 

much lower value than is the same quantile of Pareto 

distribution (Table 5) . 

 

Table 11 Selected quantiles of the fitted Weibull distribution 

Lower Tail Area (<=) Weibull (3-Parameter) 

0.75 14692.9 

0.8 17276.7 

0.9 26153.7 

0.95 36125.5 

0.99 62668.1 

 

By the same sequence of steps as mentioned in section II-D 

and applied for the Pareto distribution in section III-A we have 

simulated five the highest insured catastrophe losses using 

quantile function of the fitted Weibull distribution. The 

Table 12 obtains the results of the simulation and Fig. 9 

presents the graphical form of simulation. 

 

Table 12   Process of simulation Q(u) for Weibull distribution 

v n v
1/n

 u Q(u) 

0.23549 40 0.964494 0.964494 41400.19 

0.77309 39 0.993423 0.958150 38840.09 

0.55488 38 0.984619 0.943413 34273.20 

0.90776 37 0.997388 0.940949 33642.14 

0.33132 36 0.969781 0.912514 27998.02 
 

 

 

 
Fig.9 Graphical result of simulation of five the most costly    

insurance losses using Weibull QF 

IV. CONCLUSION 

The worldwide insurance industry has been rocked by the 

increasing catastrophes in recent years and increased demand 

for catastrophe cover (e.g., per occurrence excess of loss 

reinsurance), leading to a capacity shortage in catastrophe 

reinsurance. Catastrophe events in last years are associated 

with increases in premiums for some lines of business. These 

market developments are particularly important for non-

proportional reinsurance because this coverage is designed to 



 

 

cover the tail of the loss distribution and is triggered only 

when losses are unexpectedly high. 

Modelling of the tail of the loss distributions in non-life 

insurance is one of the problem areas, where obtaining a good 

fit to the extreme tails is of major importance. That is of 

particular relevance in non-proportional reinsurance if we are 

required to choose or price a high-excess layer. Long tailed 

distributions as Pareto or Weibull play a central role in this 

matter and an important role in quotation in non-proportional 

reinsurance. 

The results of the probability modelling and simulations 

based on 40 the most costly insurance losses in the world 

natural catastrophes in time period 1970-2014 using Pareto 

and Weibull quantile functions provide valuable information 

for insurance and non-proportional reinsurance of catastrophe 

losses. They may be useful for setting priorities, premiums and 

non-proportional reinsurance the highest insurance claims. 
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