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Abstract

The concept of the Fibonacci number of an undirected
graph G = (V,E) refers to the number of independent ver-
tex subsets U of V such that no two vertices from U are
adjacent in G. In this paper the Fibonacci numbers of
molecular graphs corresponding to one type of phenylenes
are calculated using the decomposition formula. Investiga-
tion of the Fibonacci numbers of certain classes of graphs
leads to a difference equation or systems of difference equa-
tions. The explicit formula for the Fibonacci numbers of
linear phenylenes is found as a function of the number n of
hexagons in the phenylene.
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1 Introduction

The Fibonacci numbers Fn are defined by the second order recur-
rence Fn+2 = Fn+1 + Fn with F0 = 0, F1 = 1 . The Lucas num-
bers Ln satisfy the same recurrence with the initial terms L0 = 2,
L1 = 1. All graphs discussed in this paper are undirected simple
graphs, which means graphs without loops and multiple edges. For
the general graph-theoretic terminology we refer the reader to any
of standard monographs, e.g. [11]. The total number of subsets of
{1, 2, ..., n} such that no two elements are adjacent is the Fibonacci
number Fn+2. In view of this fact Prodinger and Tichy introduced
in 1982 the notion of the Fibonacci number of a graph [8, p. 16].

Definition 1. Let G−(V,E) be a simple graph. The Fibonacci
number f(G) of G is defined as the number of all subsets U of V
such that no two vertices in U are adjacent.

The subset U of k mutually independent vertices is called the
k-independent set of G. We denote i(G, k) the number of the k-
independent sets of G and i(G, 0) = 1 by definition for any graph
G. Then, the Fibonacci number of G is given by the relation
f(G) =

∑
k i(G, k), where the summation is taken over all non-

negative integers k .
Further, Prodinger and Tichy derived some basic and effective

results.

Theorem 1. Let G1 − (V,E1), G2 − (V,E2) be graphs such
that E1 ⊆ E2. Then f(G1) ≥ f(G2).

Theorem 2. If G1, G2 are disjoint graphs, then f(G1 tG2) =
f(G1)f(G2).

Theorem 3. Let Pn be a path with n vertices and Cn a circuit
with n vertices. Then f(Pn) = Fn+2 and f(Cn) = Ln.

The following decomposition theorems (see e.g. [7]) can be used
to calculate the Fibonacci numbers for special classes of graphs.

Theorem 4. Let G be a graph with at least two vertices and
v its arbitrary vertex. Then f(G) = f(G− v) + f(G− (v)), where
G − v is the subgraph of G obtained from G by deletion of the
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vertex v and G− (v) is the subgraph of G obtained by deletion of
the vertex v and all the vertices adjacent to v.

Theorem 5. If vertices u, v are adjacent in a graph G, then

1. f(G) = f(G − {u, v}) + f(G − (u)) + f(G − (v)), where
G − {u, v} is the subgraph of G obtained by deletion of the
vertices u and v of G,

2. f(G) = f(G−uv)−f(G−(u, v)), whereG−uv is the subgraph
of G obtained by deletion of the edge uv of G and G− (u, v)
is the subgraph of G obtained by deletion of the vertices u, v
and all the vertices adjacent to them.

The Fibonacci numbers for various classes of graph have been
found. For example, Yeh [12] computed algorithmically the Fi-
bonacci numbers of product graphs and Alameddine [1] found upper
and lower bounds for the Fibonacci numbers of maximal outerpla-
nar graphs on n vertices. We presented in [9] a computer program
for calculating of the Fibonacci number for a given graph. This pro-
gram was created by using the adjacency matrix of a graph and an
analogy of Theorem 4. A special attention is paid to the Fibonacci
numbers of graphs in chemistry.

A molecular graph in chemical graph theory is a representa-
tion of the structural formula of a chemical compound in terms of
graph theory. A topological index is a map from the set of chemical
compounds represented by molecular graphs to the set of real num-
bers. It must be a structural invariant independent on the pictorial
representation of a graph. Many topological indices are closely
related to some physico-chemical characteristics of the respective
compounds. One of the most famous and interested topological in-
dices is the Fibonacci number of a molecular graph. The chemists
Merrifield and Simmons elaborated a theory aimed at describing
molecular structure by means of finite set topology. Even though
their theory was not particularly succesful their graph-topological
formalism containing independent sets of vertices attracted the at-
tention of colleagues. Therefore in chemistry the Fibonacci number
of a graph is called the Merrifield-Simmons index. In this paper we
prefer to use the term ‘Fibonacci number of a graph’.

Hexagonal systems are of the great importance for theoretical
chemistry because they are the natural graph representations of the
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benzenoid hydrocarbons [5]. Hexagonal chains are the graph repre-
sentations of an important subclass of benzenoid molecules, namely
of the so-called unbranched cata-condensed benzenoids. The struc-
ture of these graphs is apparently the simplest among all hexag-
onal systems [6]. Therefore the first results on topological indices
were achieved for hexagonal chains. Došlić and Litz [4] investigated
enumerative properties of unbranched polyphenylene chains. They
found exact formulas for the numbers of independent sets of given
cardinalities in three types of uniform chains and also presented
some results on polyphenylene dendrimers. Bai and Zhao [3] dis-
cussed the Merrifield-Simmons index of polyphenyl chains and ob-
tained some extremal results. In recent years, a lot of works have
been published on the extremal problem for the Fibonacci num-
ber of graphs. Wagner and Gutman in [10] gave a survey which
collects and classifies these results, and also provides some useful
auxiliary tools and techniques that are used in the study of this
type of problems.

Phenylenes are a class of polycyclic non-benzenoid alternate
conjugated hydrocarbons in that the carbon atoms form 6- and
4- membered circuits (cycles). Each 4- membered circuit (square)
is adjacent to two disjoined 6- membered circuits (hexagons), and
no two hexagons are adjacent. Their respective molecular graphs
are also referred to as phenylenes.

By eliminating the 4- membered circuits from a phenylene, a
cata-condensed hexagonal system is obtained, sometimes called as
the hexagonal squeeze of the respective phenylene. There is a
one-to-one correspondence between a phenylene and its hexago-
nal squeeze [2]. Gutman [5] pointed out that the linear hexagonal
chain is the unique hexagonal chain with the maximum Merrifield-
Simmons index among all the hexagonal chains with n hexagons.
The linear phenylene Ln (see Fig. 1) has the linear hexagonal chain
as its squeeze. Therefore it is likely that the Fibonacci number of
the linear phenylene is the maximum Fibonacci number among all
the phenylenes with n hexagons. We will express the Fibonacci
number of the linear phenylene as a function of the number of its
hexagons in the next section.
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2 The main results

First, we derive the system of equalities for the Fibonacci numbers
of the graphs obtained from the linear phenylene using the suitable
decomposition theorem.

Figure 1: The molecular graph of the linear phenylene

Lemma 1. Let Ln be the linear phenylene with n hexagons
and let An, Bn, Dn, En be graphs as in Fig. 1. Then the following

5



relations hold for any positive integer n > 1.

f(Ln) = f(An) + f(Dn) (1)

f(An) = f(Bn) + f(Dn) (2)

f(Bn) = 4f(Ln−1) + 4f(An−1) (3)

f(Dn) = f(Ln−1) + f(An−1) + f(En) (4)

f(En) = f(Ln−1) + 2f(An−1) (5)

Proof. Each relation can be derived by using Theorem 4 if we
choose the removed vertex v in a suitable way (see Fig. 1). Speci-
fically we put

(1) vertex v to one of vertices of degree 2 in the n-th hexagon
which is adjacent to two vertices of degree 2,

(2) vertex v to the vertex of degree 1 which is adjacent to the
vertex of degree 2,

(3) vertex v to one of vertices of degree 3 in the last square
which is adjacent to the vertex of degree 1, and then we use again
Theorem 4 on the graph Bn − (v) and Theorem 2, with the fact
that f(P1) = F3 = 2, which gives desired expression,

(4) vertex v to the vertex of degree 1 and after that we apply
Theorem 4 on the graph Dn − (v) where the vertex of degree 1 is
chosen,

(5) vertex v to one of vertices of degree 2 in the last square.

Relations (1)–(5) are also valid for n = 1, as the Fibonacci num-
ber of the empty graph is equal to one. Now, we denote f(Ln) = ln,
f(An) = an, f(Bn) = bn, f(Dn) = dn and f(En) = en for simplifi-
cation of the following text.

Theorem 6. The Fibonacci numbers of the graphs An are
given in the form

f(An) = an =
1

γ − δ
[
(199− 13δ)γn−1 − (199− 13γ)δn−1

]
for any positive integer n, where γ = 15+

√
241

2
, δ = 15−

√
241

2
.
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Proof. First, we will find a linear difference equation arising
from Lemma 1 with an as the unknown variable. We can rewrite
the system of relations (1)–(5) to the form

ln = an + dn,

an − dn = 4ln−1 + 4an−1,

dn = 2ln−1 + 3an−1,

and after eliminination of dn

2an = ln + 4ln−1 + 4an−1, (6)

an = 6ln−1 + 7an−1. (7)

We obtain ln−1 = 1
6
an − 7

6
an−1 from equality (7) and replacing

n− 1 with n we have ln = 1
6
an+1 − 7

6
an.

Substituting these identities for ln−1 and ln into (6) and after
simplification we obtain an+1− 15an− 4an−1 = 0 which can be also
written as

an+2 − 15an+1 − 4an = 0 (8)

for any positive integer n.
The last equation is a homogeneous linear difference equation

of the second order with constant coefficients. The corresponding
characteristic equation is x2 − 15x − 4 = 0 with two real roots
γ = 15+

√
241

2
, δ = 15−

√
241

2
.

The general solution of equation (8) is an = K1γ
n+K2δ

n, where
K1, K2 are arbitrary real numbers. Using Theorems 2, 3 and 4 we
can easily calculate

a1 = f(P5) = 13, a2 = 2(f(P8) + f 2(P3)) + 3f(P5) = 199. (9)

Then, we obtain the following system of equations for K1, K2

K1γ +K2δ = 13,

K1γ
2 +K2δ

2 = 199.

The numbers K1 = 199−13δ
γ(γ−δ) , K2 = 199−13γ

δ(γ−δ) are the solution of this

system and therefore an = 199−13δ
γ(γ−δ) γ

n + 199−13γ
δ(γ−δ) δ

n, which completes
the proof.

The following statement gives the main result of this paper.
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Theorem 7. The Fibonacci number of the linear phenylene
with n hexagons can be expressed in the form

f(Ln) = ln =
1

γ − δ
[
(18γ + 4)γn−1 − (18δ + 4)δn−1

]
(10)

for any positive integer n.

Proof. We know that ln = 1
6
an+1 − 7

6
an. Then successively

ln =
1

6(γ − δ)
[(199− 13δ)γn − (199− 13γ)δn]−

− 7

6(γ − δ)
[
(199− 13δ)γn−1 − (199− 13γ)δn−1

]
=

=
1

6(γ − δ)
[
(γ − 7)(199− 13δ)γn−1 − (δ − 7)(199− 13γ)δn−1

]
=

=
1

6(γ − δ)
[
(108γ + 24)γn−1 − (108δ + 24)δn−1

]
as γδ = −4 and γ+ δ = 15, which gives the desired expression.

The leading term of the above expression behaves asymptoti-
cally as 15, 262n. Therefore, we can conclude that f(Ln) ∼ 15, 262n

for large values of n.
We have computed the Fibonacci numbers of the linear pheny-

lenes Ln for the smallest numbers of hexagons in the linear phenyle-
nes (Tab. 1).

n 1 2 3 4 5 6 7

f(Ln) 18 274 4182 63826 974118 14867074 226902582

Table 1: The Fibonacci numbers of Ln for 1 ≤ n ≤ 7

Remark. Obviously the linear recurrences from Lemma 1 lead
to the same linear difference equation for sequences {bn}, {dn} and
{en} as for {an}. The explicit formulas for them are different only
in coefficients K1, K2, which can be established by using the initial
terms of the sequences, specifically b1 = 8, b2 = 124, d1 = 5,
d2 = 75, e1 = 3, e2 = 44. However, it is also possible to use directly
recurrences (3), (4), (5) and the explicit formulas for an and ln.
Then we have
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bn =
2

3 (γ − δ)
[
(γ − 1) (199− 13δ) γn−2 − (δ − 1) (199− 13γ) δn−2

]
,

dn =
1

6 (γ − δ)
[
(γ − 13) (199− 13δ) γn−1 − (δ − 13) (199− 13γ) δn−1

]
,

en =
1

6 (γ − δ)
[
(γ + 5) (199− 13δ) γn−2 − (δ + 5) (199− 13γ) δn−2

]
.

These explicit formulas are valid for any positive integer n, only
if we want to use them to find b1 and e1 the identities γ−1 = − δ

4
,

δ−1 = −γ
4

have to be applied.
The above formulas can be simplified by using the relations

γδ = −4 and γ + δ = 15. Then

bn =
1

γ − δ
[
(124γ + 32)γn−2 − (124δ + 32)δn−2

]
,

dn =
5

γ − δ
(γn − δn) ,

en =
1

γ − δ
[
(44γ + 12)γn−2 − (44δ + 12)δn−2

]
.

It is also easy to find by a classical way the ordinary generating
functions for the sequences of the Fibonacci numbers of the above
mentioned graphs. The generating functions for the sequnces {ln},
{an}, {bn}, {dn}, {en} are successively

L(x) =
∞∑
n=1

lnx
n =

18x+ 4x2

1− 15x− 4x2
,

A(x) =
13x+ 4x2

1− 15x− 4x2
,

B(x) =
8x+ 4x2

1− 15x− 4x2
,

D(x) =
5x

1− 15x− 4x2
,

E(x) =
3x− x2

1− 15x− 4x2
.
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3 Conclusion

The application of Theorem 4 to find explicit formulas (depending
on one or two parameters) of the Fibonacci numbers for various
classes of graphs leads to a difference equation of a higher order or
a system of difference equations. However, the system of difference
equations often consists of a great number of equations and then the
solution is rather complicated. For example, this situation appears
if we want to find an expression for the Fibonacci numbers of some
nonlinear types of phenylenes. In such cases it is possible to find
at least some bounds for the Fibonacci numbers of given graphs or
to express an explicit formula for them in a numerical form. The
decomposition formulas from Theorem 5 can be more effective than
Theorem 4 for the branched phenylenes.
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[9] J. Seibert, P. Trojovský, Recurrences and Generating Func-
tions for Fibonacci Numbers of Graphs with Mathematica, In:
Proceedings of the Conference Informatika a algoritmy, Prešov
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