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Abstract. This paper deals with an increase in measurement accuracy of the Inertial Measurement Units (IMU). In 
the Inertial Navigation Systems (INS) a fusion of gyroscopes, accelerometers and in some cases magnetometers are 
typically used. The typical problem of cheap IMU is non-stationary offset and high level of noise. The next problem 
of IMU is a problem with a bumpy floor. For this case it is necessary to a have high quality chassis to eliminate 
additional noise. Also, it is possible to eliminate this noise by using some algorithm, but results are still poor. These 
properties lead to the inaccurate position estimation in the integration process. Even a small offset error leads to a big 
mistake in position determination and grows quickly with a time. This research is focused on the elimination of these 
poor properties and increase of accuracy of position estimation using Kalman Filtration. 

1 Introduction 
Precise navigation of mobile robots in unknown areas is 
common issue in much research. For the robot navigation 
in exterior the Global Navigation Satellite System 
(GNSS)is commonly used. For better results in outdoors 
is also possible to use the Satellite Based Augmentation 
Systems (SBAS). In Europe the European Geostationary 
Navigation Overlay Service (EGNOS)is usually used, 
while in US Wide Area Augmentation System (WAAS)is 
used. The benefit of using GNSS navigation systems is 
the achieved accuracy, typically better than 15 meters. 
Our research is focused on the autonomous navigation of 
a robotics platform in indoor spaces like ruins, mines, etc. 
The GNSS navigation system is not suitable for indoor 
areas because in the buildings navigation does not have a 
signal received from satellites or base stations. For these 
cases, it is necessary to develop an alternative navigation 
system.  

The navigation of a robotics platform in indoor spaces, 
a modern navigation system called visual odometry can 
be used. This system is known from the eighties, but 
massive penetration is connected with fast Digital Signal 
Processors (DSP). This system is based on capturing a 
scene by the camera. The algorithm calculates interesting 
points from an actual and previous captured scene. The 
algorithm searches pairs of interesting points and 
afterwards calculate a distances between these pairs, 
called pixel distance. Also it is necessary to use some 
type of transformation to transform pixel distances to real 
coordinates. The distance estimation is performed using 
the common elevation angle of a sensing camera, the size 
of a sensing chip and focal length. This problem is 
described in detail in papers [1], [2], [3] and [4]. 

An alternative navigation system is called Inertial 
Navigation System (INS). This system uses 
accelerometers and gyroscopes. High level of noise and 
non-stationary offset is typical for cheap measurement 
units. These properties lead to the inaccurate acceleration 
estimation in the integration process. This is typical 
especially for low-cost accelerometers. Even a small 
offset error leads to a big mistake in position 
determination and grows quickly with time.Normally, the 
high level of noise is possible to eliminate using 
advanced digital filters [5], but in this case we need a 
special filter like Kalman filter. In our research we are 
focused on the eliminating a wrong position estimation 
using a Direct Cosine Matrix, Odometrymeasurement and 
Kalman filter [6]. The final device will be used as fusion 
of a navigation of robotics platform with an optical 
measurement device [7], [8], [9]. 

2 Rotation formalism 

2.1 Direct cosine matrix (DCM) 

The Direct Cosine Matrix provides transformation 
vectors in Euclidean space around an origin by an angle θ. 
In practical use it is necessary to have some rotation 
formalism to provide a rotation around three independent 
axes called Yaw, Pitch, Roll (in some cases called α, β 
and γ). These axes are shown in Figure 1. 

Basic clockwise rotation around an x-axis by an angle 
γ in three dimension space can be written in a matrix 
form (1). Similar equations (2), (3) exists for an y-axis 
and an z-axis. 
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where Rn is the rotation matrix defined on an axis and α,
β and γ are angles of clockwise rotation.

Figure 1. Euler angles. 

A final three-dimension rotation matrix is created by a 
simple matrix multiplication (4).

R = Rx (γ)Ry (β)Rz(α)                            (4) 

2.2 Position estimation correction using DCM

The correction of position estimation using DCM by 
simple matrix multiplication is provided using (4).

The corrected results using DCM transformation was 
presented in [1]. Precision of results was poor and it is 
necessary to increase precision to use this system for 
fusion with a higher precision navigation system based on 
visual odometry. In this time, we are testing a suitability 
of increasing anestimation accuracy position 
determination of IMU only on direct path. The DCM 
correction will be implemented to the final version of 
robotics platform navigation – navigation of robotics 
platform using a fusion of visual odometry, Inertial 
Measurement Unit and optical odometers at every wheel.

2.3 Position estimation correction using moving 
average filters

The moving average filters are usually used to eliminate 
the extreme deviations in a data series. The diagram of 
fifth order Moving Average Filter (MVA) is shown 
inFigure 2. 

In our research we tried to use this type of filtration to 
eliminate extreme deviations in our measured data using 
IMU. The results of using this type of filtration are shown 
inFigure 6. 
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where M is an order of filter, Ai are coefficients of filter, 
xk+i are input data, yk are filtered output data  

Figure 2. The moving average filter for fifth order [7]. 

3 Kalman filter and it´s Implementation 
to our system 
The Kalman filter is a modern, effective and robust 
method for solving problems of dynamic systems with 
random signals. The implementation and using of 
Kalman Filter is described in papers [10], [11]. The 
Kalman filter is established using equation (6) and (7). 

�(� + 1) = � ∙ �(�) + � ∙ �(�) + �(�)  (6)

�(�) = � ∙ �(�) + ! ∙ �(�) + "(�)   (7)

where x(t) is state vector in time t, y(t) is a vector with 
measurements in time t, u(t)is thedrive state vector, v(t) is 
process noise vector, e(t) is the measurement noise vector, 
A,B,C,D are matrixes,which providesbehaviour of system.

In our case, a model of traveled distance we can 
establish using equation (8).

x(t) = x0 + v ∙ t + a∙t2

2
             (8) 

where x(t) is a distance in time, x0 is an initial distance, v
is a speed, a is an acceleration, t is a time. 

Using equation (9) we can establish a time-dependent 
system of equations. 
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where xm is a vector of measured results, x0 is a vector
containing the initial distance (before measurement),v is a 
vectorcontaining theinitialspeed (before measurement)

The vector xm is a vector which contains measured 
distances according to time and it is reference to our 
system.

�8 (�) =  �8 (� − 1)  + .(�)
2

�2                (10) 

where ye(t)isan actual estimated path using acceleration 
from accelerometers, ye(t-1)is a previous value of 
estimated path, a(t) is time-depend acceleration acquired 
from accelerometers.

In our case we can rewrite an equation (6) and (7) to 
easier form, because theinformation about the influence 
of the control signalshave not been assumed.

�(� + 1) = � ∙ �(�) + �(�)                   (11) 
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The behaviour of a system is defined by the simple 
state vector. This vector is created using measured 
distance and calculated speed.

x(t) =  9x(t)
s(t):                                  (13) 

where s(t) is calculated speed - derivation a distance by 
time.

x(t + 1) =  9x(t + 1)
s(t + 1): = 9x(t) + s(t) ∙ T

s(t) :  = 

= ;1 T
0 1< 9x(t)

s(t): = A ∙ x(t)                    (14) 

y(t) =  [1 0] ∙ 9x(t)
s(t): = C ∙ x(t)                 (15) 

The last variables are v(t) and e(t). The noise process 
vector v(t) have two elements because the state vector x(t)
also have two elements (measured distance x(t) and it´s 
derivation–speed s(t)).

v(t) =  9
vx(t)
vs(t):                                   (16) 

e(t) =  >ey (t)?                                   (17) 

The Kalman filter usingVarianceMatrix of noise of 
process signed Q and Variance Matrix of noise of 
measurement signed R. The both matrixes are possible to 
establish using equations (16), (17), (18) and (19)  

Q = var@v(t)B =  9 var(vx) cov(vx, vS)
cov(vs, vx ) var(vs) :    (18) 

R = var@e(t)B =  >var(ey )?                    (19) 

The Kalman filter minimalizes the mean value of 
trace of the correlation matrix.

P(t) = E ;(x(t) − xF(t)) ∙ @x(t) − xF(t)BT< → MIN   (20) 

where E[…] is mean value, �F(�) is an optimal result (the 
best estimation value of x(t))

In the Kalman filter is recalculation step and 
predictive step. In the recalculation part, the estimations 
of the state vector and a correlation matrix of error are 
increasing to the time t-1.

K = P(t − 1) ∙ CT ∙ (C ∙ P(t − 1) ∙ CT + R)−1    (21) 

P(t) = P(t − 1) − K ∙ C ∙ P(t − 1)                (22) 

xF(t) = xF(t − 1) − K ∙ (y(t) − C ∙ xF(t − 1)) (23)

H(� + 1) = � ∙ H(�) ∙ �J + L                      (24) 

�O(� + 1) = � ∙ �F(�)                            (25) 

Equations (21) to (25) provide a recursive solution of 
a model which is described by the equations (11) and (12).

The last step of The Kalman filter design is setting of 
initial values. The best estimated value xF(t) is equal to 
zero, because the initial speed and distance is also equal 
to zero.  

xF(t = 0) = 9x(0)
s(0): = ;0

0<                      (26) 

4 Propossed approach 
In our research we are using a wireless-controlled 
robotics platform. On this platform is fitted a cheap 
Inertial Measurement CHR-6Dand user-made optical 
odometer. The parameters of the optical odometer are 
shown at Table 1. In Table 2 the chassis parameters are 
shown. 

Figure 3. Our robotics platform. 

Table 1. Optical encoder wheel parameters. 

Optical encoder wheel parameters

Parameter Value

Outside Radius 60mm
Inner Radius 45mm

Pixel length (at outside radius) 2,94mm
no. of steps 64 steps

bits 1 bit

Table 2. Chassis parameters of our robotics platform. 

Robotics chassis configuration

Parameter value

Nr. of Wheels 4
Wheel diameter 58 mm

Wheel 
circumference 182,21 mm

Chassis type Automobile type - controllable front part

The IMU is based on accelerometer ADXL335 and 
gyroscopes LP510AL for roll and pitch axes and 
LY510ALH for yaw axis. All parameters of IMU are 
written in Table 3.The odometer is based on an infrared 
light barrier and a 64 step encoder wheel. The parameters 
of optical wheel are written inTable 1. The wheel rotation 
is captured by a STM32F4Discovery development kit. 
The measured data from the odometer is transferred to 
the Raspberry PI 2 via a serial link every 0.25 seconds. In 
this time, data from odometer and IMU are transferred 
via a wired connection, but in near future this connection 
will be upgraded to the Bluetooth connection. In this time, 

odometer 

RPI 2 

IR camera 
+ 5x 1W IR-
LED 
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the Raspberry Pi 2 is used for recording data stream. 
Then, the captured data is processed in Matlab software. 
In the future, all algorithms will be implemented at this 
platform. In Figure 3 our robotics platform is shown. 

Table 3. Inertial measurement unit parameters. 
IMU POLOLU CHR-6D

Parameter value

Gyroscopes LP510AL and LY510 ALH 300°/full scale

ADXL335 16bit, ±3g
300mV/g

5 Position estimation 

The position estimation of the path using IMU is 
calculated by equations (27) and (28). 

v(t) = v(t − 1) + a(t) ∙ Ts                     (27) 

sa(t) = sa(t − 1) + v(t) ∙ Ts                  (28) 

where Sa(t) is the calculated distance using data from 
accelerometers, v(t) is the calculated speed, a(t) is 
measured acceleration, Ts is sampling frequency.

The position estimation of path using optical 
odometer is calculated by equation (28).

so(t) = s(t − 1) + c(t) ∙ Wc
N

                 (29) 

where so(t) is calculated distance using data from the  
odometer, c(t) is count of impulses measured by 
odometer in defined time, Wc is a wheel circumference 
(in our case 182,21 mm), N is a number of impulses(steps) 
in one rotation of a wheel (in our case 64 steps). 

The maximal error caused by resolution of odometer 
wheel can be calculated using equation (30) and (31).

αl =  360°
N

                                   (30) 

eo =  ± αl
2

∙ Wc
360

                              (31) 

where eo is maximal error caused by the resolution of the 
odometer wheel; �X is an angle covered in one step; Wc is
wheel circumference, N is a number of steps on the 
odometer wheel (in our case 64 steps). 

6 Results and discussion 
At present, in our solution we are using post-processing 
calculations in Matlab software, but in future all 
calculations will be implemented into a powerful 
microcontroller, like Raspberry Pi 2 or equal.The 
captured data is calculated in pair in Matlab software. 
The first data array contains a number of counted 
impulses from the odometer which depends on time; the 
second data array contains acceleration in depends on 
time; the third data array contains angular velocity also in 
depends on time. In this time we are using only a first and 
second data array for position estimation. The third data 
array (measured angular velocities) will be used in the 
following research. 

At the Figure 4, the original measured data is shown. 
This measured data contains a lot of noise caused by the 
bumpy floor. For this case it is necessary to use some 
type of filtration. The result using a moving average filter 
of the tenth order is shown in Figure 6. Using of digital 
filters is described in detail in [7].  

Figure 4. Original acceleration measured using inertial 
measurement unit vs calculated from odometer. 

In Table 4 and Table 5, estimated path length using an 
odometer and an IMU is shown. In the table results 
calculated from filtered data using a moving average 
filter is shown. For better readability, the first five 
measurements from fifteen are shown in the tables. 
Totally, each path had fifteen repetitions. The statistical 
values are calculated from all measurements. 

Figure 5. Filtered acceleration measured by IMU using Moving 
average filter. 

Figure 6. Filtered acceleration measured by IMU using Kalman 
filter. 

At the Figure 6, the filtered data using Kalman filter is 
shown. 

In Table 6 the filtered data using MVA is shown. 
InTable 7, the filtered data using the Kalman Filter is 
shown. From the tables it is possible to find that, the 
Kalman filter rapidly increase a precision compared with 
unfiltered data. The results using MVA has better 
precision than unfiltered data but worse than parameters 
in case of using the Kalman Filter.
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Table 4. Estimated path length using odometer. 

Real 

Path 

lengt

h (m)

Estimated Path Length Using Odometer

Measure number

Aver. 

(m)

STD

.

DEV 

(m)
1 2 3 4 5

3 2,99 3,0
2 2,98 3,0

1 3,00 3,005
0,01

3

4 4,08 3,9
6 3,98 4,0

1 4,02 3,992
0,04

1

5 5,09 5,0
2 5,03 4,9

4 5,02 5,070
0,06

1

10 10,0
1

9,9
3

10,1
5

9,9
8

10,1
0

10,04
1

0,08
0

Table 5. Estimated path length using IMU. 

Real 

Path 

lengt

h (m)

Estimated Path Length Using IMU

Measure number

Aver. 

(m)

STD

.

DEV 

(m)
1 2 3 4 5

3 3,25 3,15 2,91 3,2
5 3,09 3,126

8
0,10

8

4 4,28 3,95 3,95 4,0
1 3,90 4,135

0,11
8

5 5,19 5,27 5,16 4,9
1 4,92 5,219

0,16
5

10 10,5
8

10,2
5

10,3
6

9,5
1

10,1
3

10,39
1

0,47
6

From Table 4 and Table 5 it is possible to recognize 
that, the odometer has more precise measurement than 
IMU.  

Table 6. An estimated path using IMU – MVA. 

Real 

Path 

lengt

h (m)

Estimated Path Length Using IMU –MVA

Measure number

Aver. 

(m)

STD

.

DEV 

(m)
1 2 3 4 5

3 3,12 3,11 2,95 3,1
4 3,09 3,072

2
0,07

8

4 4,17 3,94 3,93 3,9
5 3,90 4,085

0,08
2

5 5,12 5,18 5,07 4,9
4 4,94 5,180

0,12
7

10 10,3
1

10,1
7

10,2
8

9,7
9

10,1
0

10,17
3

0,13
1

Table 7. An estimated path using IMU - Kalman filter. 

Real 

Path 

lengt

h (m)

Estimated Path Length Using IMU – Kalman Filter

Measure number

Aver. 

(m)

STD

.

DEV 

(m)
1 2 3 4 5

3 3,07 3,09 2,97 3,1
1 3,05 3,051

0,05
3

4 4,1 3,99 3,97 4,0
0 3,97 4,078

0,09
8

5 5,09 5,16 5,12 4,9
5 4,94 5,091

0,11
7

10 10,2
7

10,1
7

10,2
0

9,8
1

10,0
9

10,19
1

0,22
8

7 Conclusion 
In this paper an increasing estimation accuracy position 
determination of Inertial Measurement Units was 
described. This paper is focused on the implementation of 
the Kalman Filter to our robotics platform. Firstly this 
research used an alternative to Kalman filtration –
Average Moving Filter (AMF). Results were better 
compared with unfiltered data, but precision was still 
poor. For this case it is necessary to implement predictive
filtration -Kalman filter.

The results recorded using the Kalman filter has very 
well precision. The main problem of the Kalman filter is 
that, it is necessary to have a precision reference signal –
for this case we are using an Odometer. 

The odometer has the best precision.The disadvantage 
of the odometer is that, measuring only path length 
(impulses) and does not care about curves etc. For this 
case, it is necessary to have gyroscopes for recording a 
rotation of robotics platform. Also a big disadvantage of 
the odometer is wheel slip. In case of a slippery floor, the 
odometer counts impulses, but the position of robotics 
platform is the same. The disadvantage of IMU is a big 
noise in measured signal and lower precision than the 
odometer. The IMU have problems with additional noise 
and have a lower precision than the odometer.

Also big disadvantageof IMU is a problem with 
bumpy floor. In case of bumpy floor, it is impossible to 
measure acceleration and rotation using IMU without 
high quality chassis. To eliminating this problem we are 
using a fusion of Odometer and IMU.

In this time, we are testing suitability of our theory 
only on a direct path. The DCM correction will be 
implemented to final version of a robotics platform –
navigation of robotics platform using a fusion of visual 

odometry, Inertial Measurement Unit and mechanical 
odometers at every wheel. A very big advantage of our 
visual odometry is precision of position estimation [12]. 
The final device will be used as a fusion of navigation of 
the robotics platformwith an optical measurement device 
to create a 3D space map of dangerous spaces like a ruins, 
abandoned mines etc. [7], [8], [9]

Acknowledgment
The research was supported by the Internal Grant Agency 
of University of Pardubice, the project No.
SGSFEI_2016_022.

References
1. L. Beran, P. Chmelar, and M. Dobrovolny, 

Navigation of robotic platform with using Inertial 
Measurement Unit and Direct Cosine Matrix, 
56thInternation-al Symposium Electronics in 
Marine(Elmar), 56, 87-90 (2014) 

2. L. Beran, P. Chmelar, and L. Rejfek, Navigation of 
Robotics Platform using Monocular Visual 
Odometry, 25th International Conference 
Radioelektronika, 25, 213-216 (2015) 

 
  

DOI: 10.1051/05001 (2016), matecconf/2016MATEC Web of Conferences 75050017

ICMIE 2016

5 

5



3. J. Campbell et.al, A Robust Visual Odometry and 
Precipice Detection System Using Consumer-grade 
Monocular Vision, Robotics and Automation. ICRA 
2005, 3421-3427, (2005) 

4. CH. Yang, M. Maimone, and L. Matthies, "Visual 
Odometry on the Mars Exploration Rovers," Systems, 
Man and Cybernetics, 1, 903 (2005) 

5. L. Rejfek,Z. Mosna,  D. Kouba, J. Boska, and 
D. Buresova, Application of digital filters to check 
quality of the automatically scaled ionograms, 
Journal of Electrical Engineering, ISSN: 1335-3632, 
66, 3 164-168 (2015) 

6. J. Borenstein and L. Feng , Measurement and 
Correction of Systematic Odometry Errors in Mobile 
Robots, IEEE Transactions on Robotics and 
Automation, 12, 6 869-880, (1996) 

7. P. Chmelar, L. Beran, N. Kudriavtseva , The Laser 
Color Detection for 3D Range Scanning Using 
Gaussian Mixture Model, 25th International 
Conference Radioelektronika 2015, 25, 248 253 
(2015) 

8. P. ChmelarAnd M. Dobrovolny, The Fusion of 
Ultrasonic and Optical Measurement Devices for 
Autonomous Mapping. 2013, 23rd International 
Conference Radioelektronika, 23, 292-296 (2013) 

9. P. Chmelar, L. Beran, N. Kudriavtseva., "Projection 
of point cloud for basic object detection," 56th 
International Symposium (ELMAR 2014), 56, 11-14
(2014) 

10. B. Gersdorf and U. Frese, A Kalman Filter for 
Odometry using a Wheel Mounted Inertial Sensor. 
10th International Conference on Informatics in 
Control, Automation and Robotics, 10, (2013) 

11. J.Z. Sasiadek and P. Hartana, Sensor data fusion 
using Kalman filter, in, FUSION 2000. Proceedings 
of the Third International Conference, 3, (2000) 

12. L. Beran, P. Chmelar, and L. Rejfek, Navigation of 
Robotics Platform Using Advanced Image 
Processing Navigation Methods, V. Eccomas 
Thematic Conference on Computional Vision and 
Medical Image Processing(VIPIMAGE), 5, 341-346 
(2015) 

 
  

DOI: 10.1051/05001 (2016), matecconf/2016MATEC Web of Conferences 75050017

ICMIE 2016

5 

6


