
Pension-related application of the cohort life table. 

Ján Gogola, Ondřej Slavíček 

 University of Pardubice 
Faculty of Economics and Administration, 

Institute of Mathematics and Quantitative Methods 
Address: University of Pardubice 

Faculty of Economics and Administration 
Studentská 84, 532 10 Pardubice 

E-mail: jan.gogola@upce.cz 

 
Abstract: Longevity risk, the risk that people will live longer than expected, weighs 
heavily on those who run pension schemes and on insurers that provide annuities. Hence 
the prediction of future mortality rates is an issue of fundamental importance for the 
insurance and pensions industry. 
Our analysis focuses on mortality at higher ages (65-95), given our interest in pension-
related applications where the risk associated with longer-term cash flow is primarily 
linked to uncertainty in future rates of mortality. The Lee-Carter model became one of 
the most applied models and it is used to forecast age-specific death rates. The main 
goal of this paper is to apply the Lee-Carter model to construct the so-called “cohort life 
tables” for calculation of a 30-year annuity to a person aged 65 in 2015. 
We use data on deaths and exposures for the Czech Republic from the Human Mortality 
Database (HMD). The HMD provides evidence that life expectancy is increasing. We have 
shown that if the today rate of increase will continue, it will at age 65 concluded (after 
calculation) to increase the present value of pension liabilities in defined-benefit schemes 
about 5 % if we use cohort life table instead of period life table. 
Probability statements derived from the use of a single model and parameter set should 
be treated with caution. Hence, there is a need for awareness of model risk when 
assessing longevity-related liabilities.  
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1 Introduction 

Benjamin Franklin said: ”In this world nothing can be said certain, except death and 
taxes.”  The death is certain, but the timing is much less certain. 

The mortality of the population in developed countries has improved rapidly over the 
last thirty years and this has important financial implications for the insurance industry, 
since several important classes of liability are sensitive to the direction of future mortality 
trends. This uncertainty about the future development of mortality gives rise to 
longevity risk.  

Longevity risk, the risk that people live longer than expected, weighs heavily on those 
who run pension schemes and on insurers that provide annuities. The risk that the 
reserves established for the payment of benefits (retirement, widowhood, orphan hood, 
disability, dependency,…) are inadequate for that purpose if they are based on life tables 
(or mortality tables) with lower survival hypothesis than real. Longevity risk plays a 
central role in the insurance company management since only careful assumptions about 
future evolution of mortality phenomenon allow the company to correctly face its future 
obligations. Longevity risk represents a sub-modul of the underwriting risk module in the 
Solvency II framework. The most popular and widely used model for projecting longevity 
is the well-known Lee-Carter model. 
This paper follows on articles Gogola, J. (2014), Gogola, J. (2014a), Gogola, J. (2015), 
Jindrová, P., Slavíček, O. (2012), Pacáková, V., Jindrová, P. (2014) and Pacáková, V., 
Jindrová, P., Seinerová, K. (2013). They deal with the development and the prediction of 
life expectancy in selected European countries (Czech Republic, Slovakia, Finland and 



Spain) by applying Lee-Carter model and the Quantification of Selected Factors of 
Longevity.  
Most stochastic mortality models are constructed in a similar manner. Specifically, when 
they are fitted to historical data, one or more time-varying parameters (κt) are identified. 
By extrapolating these parameters to the future, we can obtain a forecast of future death 
probabilities and consequently other demographic quantities such as life expectancies. 
They are important for quantifying longevity in pension risks and for constructing 
benchmarks for longevity-linked liabilities. The main goal of this paper is to apply the 
Lee-Carter model to construct the so-called “cohort life tables” and use them for 
calculation of a 30-year annuity to a person aged 65 in 2015. 

2 Methodology and Data 

We use data of the total population, males and females’ deaths and exposure to risk 
between 1950 and 2014 for the Czech Republic (CR) from the Human Mortality Database 
(www.mortality.org). We consider the restricted age range from 0 to 95. 
Let calendar year t runs from exact time t to exact time t+1 and let txd , be the number of 

deaths aged x last birthday in the calendar year t. We suppose that the data on deaths 
are arranged in a matrix ( )txd ,=D . In a similar way, the data on exposure are arranged 

in a matrix ( )txe ,=cE  where txe ,  is a measure of the average population size aged x last 

birthday in calendar year t, the so-called central exposed to risk. We suppose that ( )txd ,  

and ( )txe ,  are each ya nn ×  matrices, so that we have an  ages and yn  years. 

We denote the force of mortality (or hazard rate) at exact time t for lives with exact age 
x by tx,µ . The force of mortality can be thought as an instantaneous death rate, the 

probability that a life subject to a force of mortality tx,µ  dies in the interval of time 

)d,( ttt +  is approximately ttx d, ⋅µ  where td  is small. 

The force of mortality tx,µ  for human populations varies slowly in both x and t and a 

standard assumption is that tx,µ  is constant over each year of age, i.e., from exact age x 

to exact age x+1, and over each calendar year, i.e., from exact time t to exact time t+1. 
Thus, 

txvtux ,, µµ =++  for ,10,10 <≤<≤ vu                             (1) 

and so tx,µ  approximate the mid-year force of mortality 5.0,5.0 ++ txµ . 

We suppose that txd ,  is a realization of a Poisson variable txD , : 

txD , ~ ( )txtxePo ,, µ⋅ ,                                        (2) 

The expected values are the product of exposures txe ,  and the force of mortality tx,µ . 

Assumption (2) leads us to the maximum likelihood estimates of txtx m ,
MLE
, =µ  as 
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or in a matrix form cE
D=m , that means element-wise division in R. 

We also consider the mortality rate txq , . This is the probability that an individual aged 

exactly x at exact time t will die between t and t +1. 
 
  



We have the following relation between the force of mortality and the mortality rate: 
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We use the following conventions for our model: 

• The xx βα ,  coefficients will reflect age-related effects 

• The tκ  coefficients will reflect time-related effects 

Our models are fitting to historical data. 
 
The Lee-Carter model was introduced by Ronald D. Lee and Lawrence Carter in 1992 with 
the article Lee, R. D., Carter, L. (1992). The model grew out of their work in the late 
1980s and early 1990s attempting to use inverse projection to infer rates in historical 
demography. The model has been used by the United States Social Security 
Administration, the US Census Bureau and the United Nations.  It has become the most 
widely used mortality forecasting technique in the world today. 

Lee and Carter proposed the following model for the force of mortality: 

txxtxm κβα ⋅+=,log ,                              (5) 

with constraints 
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The second constraint implies that, for each x, the estimate for xα  will be equal (at least 

approximately) to the mean over t of the txm ,log . 

Let φ represent the full set of a parameters and the notation for tx,µ  is extended to 

)(, φµ tx , to indicate its dependence on these parameters.  

For our model the log-likelihood is: 
=),;( EDφl  ( )∑ −⋅−⋅⋅

tx
txtxtxtxtxtx deed

,
,,,,,, )!log()()](log[ φµφµ ,  (8) 

and estimation is by maximum likelihood (MLE). 

By the equation (5) the log of the force mortality is expressed as the sum of an age-
specific component xα  that is independent of time and another component that is the 

product of a time-varying parameter tκ  reflecting the general level of mortality and an 

age-specific component xβ  that represents how rapidly or slowly mortality at each age 

varies when the general level of mortality changes. 
Interpretation of the parameters in Lee-Carter model is quite simple: )( xexp α is the 

general shape of the mortality schedule and the actual forces of mortality change 

according to overall mortality index tκ  modulated by an age response xβ  (the shape of 

the xβ  profile tells which rates decline rapidly and which slowly over time in response of 

change in tκ ). 

For practice the fitting of a model is usually only the first step and the main purpose is 
the forecasting of mortality. For forecasting-time series we use Random Walk with Drift.  



The estimated age parameters, xx βα , , are assumed invariant over time. This last 

assumption is certainly an approximation but the method has been very thoroughly 
tested in Booth, H., Tickle, L., Smith, L. (2005) and found to work. 
We assume that trend observed in past years can be graduated (or smoothed) and that it 
will continue in future years. 

By the Random Walk with Drift the dynamics of tκ follows 

 11 −− ++= ttt εθκκ ,                              (9) 

with i.i.d standard Gaussian distribution tε ∼ N(0; 2
εσ ). 

Value at future time t+h can be written as 
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which has Gaussian distribution N( hht ⋅⋅+ 2; εσθκ ). 

Hence the best point estimate for future value at time t+h is      θκ ⋅+ ht , 

and the 95% confident interval is  

)96,1;96,1( hhhh tt ⋅⋅+⋅+⋅⋅−⋅+ εε σθκσθκ .  (11) 

3 Results 

In Figure 1 we have plotted the maximum likelihood estimates for the parameters of 
the Lee-Carter model, using CR total population data, aged 0-95. Model fitting was done 

in R, which was also used for graphs (Figure 1). Note that estimated values for xβ  are 

higher at the lowest ages, meaning that at those ages the mortality improvements are 
faster. The decreasing trend in tκ  reflects general improvements in mortality over time 

at all ages. 
 

Figure 1  Estimated parameters of the Lee-Carter model for population of CR 

 
Source: Own processing 



We will now simulate the tκ up to 2060 according to equation (9). These results in case 

of the total population are plotted in Figure 2. The dashed curves in plot show the 2,5-th 
and 97,5-th percentile of the distribution of tκ  resulting in a 95 % confidence interval. 

By forecasted tκ  we get the predictions for the force of mortality )exp(, txxtx κβαµ ⋅+= , 

which lead us by equation (4) to mortality rates qx,t. 

Figure 2  Predicted tκ  for total population with 95 % CI 

 
Source: Own processing 

To avoid underestimation of the relevant liabilities we use dynamic mortality model. 
Cohort or dynamic life table provide a view on the future evolution of mortality rates and 
it implies the diagonal arrangement in a projecting life table (see Table 1).  

 

Table 1 Period life table vs. Cohort life table 

qx,t 2014 2015 2016 2017 2018 2019 2020 

. . . . . . . . 

65 0.014699 0.014505 0.014314 0.014125 0.013938 0.013754 0.013573 

66 0.015832 0.015618 0.015406 0.015197 0.014991 0.014788 0.014587 

67 0.017191 0.016954 0.016721 0.016491 0.016263 0.016039 0.015818 

68 0.018574 0.018311 0.018051 0.017795 0.017543 0.017294 0.017048 

69 0.020037 0.019744 0.019456 0.019172 0.018892 0.018615 0.018343 

70 0.021675 0.02135 0.021029 0.020714 0.020403 0.020097 0.019795 

71 0.023349 0.02299 0.022637 0.022289 0.021946 0.021609 0.021276 

. . . . . . . . 
Source: Own calculations 

 
Finally by equations (12)-(15) we find the present values of the annuities such as term 
immediate annuity ��:��|, term annuity-due ���:��|. We will also consider annuities payable      
m-times per year. 
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(where (UDD) means the assumption of Uniform Distribution of Deaths). 

Take an individual aged 65 in 2015 (birth year = 1950) who wants to purchase a 30 
years annuity. For calculation annuities first we use the Period table, which contains the 
last available mortality rates. In our case it is year 2014 (the second column of Table 1). 
Then we use the diagonal values (Cohort table) for the cohort aged 65 in 2015 (born 
1950) who are still alive in year 2015+t. 

Table 2 gives present values of 30 years annuities for the individual aged 65 from the 
whole population of the Czech Republic with interest rate of 2 % p.a. 
In appendix (Table 3 and Table 4) we show present values of annuities separately for 
both genders.  

Table 2 Present values of annuities for the total population in the Czech Republic  
(x=65, n=30, i=0,02) 

  
 

 
 

    

Period table 14.04 14.31 14.74 15.01 

Cohort table 14.75 15.01 15.43 15.69 

Relative change 5.01% 4.85% 4.69% 4.54% 

2.5% 14.13 14.40 14.83 15.09 

 0.65% 0.61% 0.60% 0.57% 

97.5% 15.34 15.60 16.01 16.27 

 9.26% 8.99% 8.64% 8.39% 

Source: Own calculations 

4 Conclusions 

National governments and the WHO announce life expectancies of different 
populations every year. To financial institutions, life expectancy is not an adequate 
measure of risk, because all it does not give any idea about how mortality rates at 
different ages vary over time. On the other hand, indicators of longevity risk cannot be 
too complicated. An indicator that is composed by a huge array of numbers is difficult to 
interpret and will lose the purpose as a “summary” of a mortality pattern. 
We have presented stochastic models to analyse the mortality and shown how they may 
be fitted. Afterwards we can turn to the industry requirement to forecast future mortality.  
We have shown that if the today rate of increase will continue, it will at age 65 concluded 
(after calculation) to increase the present value of pension liabilities in defined-benefit 
schemes cca. 4,5-5 % if we use cohort life table instead of period life table.  
But forecasting of mortality should be approached with both caution and humility. Any 
prediction is unlikely to be correct. 
There is a need for awareness of model risk when assessing longevity-related liabilities, 
especially for annuities and pensions. The fact that parameters can be estimated does 
not imply that they can sensibly be forecast. 
Such forecasting should enable actuaries to examine the financial consequences with 
different models and hence to come to an informed assessment of the impact of 
longevity risk on the portfolios in their care. 
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Appendix 

Table 3 Present values of annuities for males (x=65, n=30, i=0,02) in the CR 

   
 

 
 

    

Period table 12.68 12.95 13.38 13.66 

Cohort table 13.29 13.55 13.99 14.25 

 Relative change 4.83% 4.65% 4.54% 4.38% 

2.5% 12.72 12.99 13.43 13.70 

  0.37% 0.33% 0.36% 0.32% 

97.5% 13.85 14.11 14.54 14.80 

  9.26% 8.95% 8.69% 8.40% 

Source: Own calculations 
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Table 4 Present values of annuities for females (x=65, n=30, i=0,02) in the CR 

  
 

 
 

    

Period table 15.14 15.41 15.83 16.10 

Cohort table 15.92 16.18 16.58 16.84 

Relative change 5.13% 4.98% 4.78% 4.64% 

2.5% 15.27 15.53 15.95 16.21 

 0.83% 0.79% 0.76% 0.72% 

97.5% 16.54 16.79 17.18 17.44 

 9.23% 8.97% 8.59% 8.36% 

Source: Own calculations 
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