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Abstract: When modelling and analysing business processes, the main emphasis is usually put
on model validity and accuracy, i.e., the model meets the formal specification and also models
the relevant system. In recent years, a series of metrics has begun to develop, which allows the
quantification of the specific properties of process models. These characteristics are, for instance,
complexity, comprehensibility, cohesion, and uncertainty. This work is focused on defining a method
that allows us to measure the uncertainty of a process model, which was modelled by using stochastic
Petri nets (SPN). The principle of this method consists of mapping of all reachable marking of SPN into
the continuous-time Markov chain and then calculating its stationary probabilities. The uncertainty
is then measured as the entropy of the Markov chain (it is possible to calculate the uncertainty of the
specific subset of places as well as of whole net). Alternatively, the uncertainty index is quantified as
a percentage of the calculated entropy against maximum entropy (the resulting value is normalized
to the interval <0,1>). The calculated entropy can also be used as a measure of the model complexity.
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1. Introduction

In recent years, a research area that focuses on the analysis of process models began to develop
and since then a number of various specific metrics has been defined that allow the quantification of
different characteristics of process models. These characteristics include, for instance, complexity [1,2],
uncertainty [3], cohesion [4] or fairness [5]. These metrics are then used to analyse user-friendliness,
usability, comprehensibility, predictability and other indicators [6]. In the following, a procedure
(process) is designed for the analysis and evaluation of uncertainty of any process model represented
using stochastic Petri nets (SPN). The use of stochastic Petri nets carries the advantage of options
to define the probability of each branch by default (e.g., XOR) in the form of firing-rates of the
individual transitions. By considering the probability of branching, it is possible to quantify the
dynamic uncertainty, which takes into account both the model structure and the branching probabilities.
Likewise, it is possible to quantify only the static uncertainty, which does not specify the probability of
branching (all paths have the same probability) [7]. Quantification of uncertainty of process models
represents the expected behaviour of the modelled process, i.e., its degree of predictability. Reducing
uncertainty in the process model (e.g., by adjustment of structure or branching probabilities) can lead
to better predictability of the real state of the modelled process and better managerial effectiveness
associated with its management.

Stochastic Petri nets are an appropriate tool for modelling a series of problems, characterized by
concurrency, asynchronous processing and non-determinism. One of the areas where it is possible
to take advantage of Petri nets (mainly because of an exact mathematical foundation) is the process
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modelling. In this article, therefore, the issue of uncertainty in stochastic Petri nets will be presented
on process models. However, conclusions and the method itself are universal and can be applied and
interpreted on any issue that can be modelled with stochastic Petri nets.

The aim of this work is to define a method that allows us to quantify the uncertainty of any
process model represented with stochastic Petri nets. The method quantifies the uncertainty using the
concept of stochastic processes (continuous-time Markov chains) and information theory (Shannon's
entropy [8]).

2. Petri Nets

Petri nets have been defined in 1962 by Carl Adam Petri [9] and since then, their development
has begun to take different directions (mainly two directions). The first direction leads to new model
features that extend the verification capabilities of Petri nets. These features are primarily behavioural
properties of Petri net such as boundedness, liveness, reachability, fairness and many more. Almost all
of these behavioural properties require specific assumptions that restrict the definition of Petri net, e.g.,
for verification of most of these properties it is required the assumption of pure net (network without
self-cycles) or some algorithms will work only with ordinary nets (multiplicity of all arcs is equal one).
The second direction leads to expansion of the Petri net definition by adding new additions that simplify
and refine modelling (sometimes leads to a lower degree of formality). The most common examples
of this second direction are stochastic and timed Petri nets that allow refining of the individual state
changes by taking into account the time consumption (stochastically or deterministically). Different
example are coloured Petri nets (CPN), which expands the basic Petri net with additional modelling
language, thus expanding (partly simplifying) the modelling capabilities of Petri nets. The biggest
drawback of most Petri net extensions in this direction is limited analytical options, i.e., most of the
assumptions need to be verified by using the simulation.

The following is the definition of stochastic Petri net [10,11]. Solid introduction to issue of
stochastic Petri nets can be found in [12].

Definition 1: Stochastic Petri net is a 5-tuple, SPN “ pP, T, F, Λ, M0q where:

‚ P “ t p1, p2, . . . , pmu – a finite set of places,
‚ T “ tt1, t2, . . . , tnu – a finite set of transitions,
‚ P X T “ ∅ – places and transitions are mutually disjoint sets,
‚ F Ď pP ˆ Tq Y pT ˆ Pq – a set of edges, defined as a subset of the set of all possible connections,
‚ Λ : T Ñ R` – firing rates of exponentially distributed timed transitions,
‚ M0 : P Ñ N0 – an initial marking.

Definition 2: Marking of stochastic Petri net
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net. M : P Ñ N0 , is called marking of SPN.
Marking of Petri net represents the network state after execution of a specific number of steps, i.e.,

after firing of a specific number of enabled transitions.
Definition 3: Pre-set, Post-set
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net. Pre-sets and post-sets are defined as:

‚ p “ tt|pt, pq P Fu – the pre-set of p,
‚ t “ tp|pp, tq P Fu – the pre-set of t,
‚ p “ tt|pp, tq P Fu – the post-set of p,
‚ t “ tp|pt, pq P Fu – the post-set of t.

Definition 4: Enabled transition
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net. A transition t P T is enabled within

marking M, if:
@p P t : M ppq ě 1
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Definition 5: Next marking
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net and M is its marking. If a transition t P T is

enabled at marking M, then by its execution is obtained next marking M, which is defined as follows:

@p P P : M ppq “

$

’

&

’

%

M ppq ´ 1, i f p P tzt
M ppq ` 1, i f p P tzt
M ppq otherwise

The situation that the transition t changes the marking M to M is usually expressed as M rty M.
Definition 6: Reachability, sequence of transitions
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net. A sequence of transitions σ is the

succession of enabled transitions that goes from marking M to different marking M. The situation is
referred to as M rσy M. A marking is called reachable if there is a sequence of transitions to it from
the initial marking.

Definition 7: The set of all reachable marking
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net. The set of all reachable markings from

initial marking M0 in SPN is denoted by R pM0q.

R pM0q “

»

—

—

—

—

–

M0 pp1q M1 pp1q ¨ ¨ ¨ M|RpM0q|
pp1q

M0 pp2q M1 pp2q ¨ ¨ ¨ M|RpM0q|
pp2q

...
...

. . .
...

M0 ppmq M1 ppmq ¨ ¨ ¨ M|RpM0q|
ppmq

fi

ffi

ffi

ffi

ffi

fl

Definition 8: Boundedness
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net. Place p P P is called k´ bounded if:

Dk P N1 : @M P R pM0q : M ppq ď k

Place p P P is called bounded, if it is k ´ bounded for some k P N1. If every place in SPN is
bounded, then this net is called bounded Petri net.

Definition 9: Live marking, live net
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net. Marking M P R pM0q is live, if @t P T

there exist some marking M1 P R pMq such that transition t is M1-enabled. An SPN is live iff all
reachable markings are live.

3. Steady-State Probability of Markings and Markov Chains

According to [10] it is possible to represent the set of all reachable markings in terms of Markov
chains. Firstly, for the need of defining the stationary probabilities of all marking it is necessary to
define the transition rate matrix.

Definition 10: Transition rate matrix
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net and R pM0q its reachability set. Transition

rate matrix Q of SPN is defined as:

Q : pR pM0q ˆ R pM0qq Ñ R

The values are made according to the following rule:

Qi,j “

$

’

’

&

’

’

%

ř

tkPth:hPT^Miě1^MirhMju

λk, i f i ‰ j

´
ř

MkPth:hPRpM0q^i‰ku
Qi,k, i f i “ j
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Definition 11: Steady-State probability
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net and Q its transition rate matrix.

Steady-State distribution vector η is defined as normalized left null space of transition matrix Q:

ηQ “ 0

η1T “ 1

Vector η represents the steady-state probability of each SPN marking:

η “

»

—

—

—

—

–

Pr pM0q

Pr pM1q
...

Pr
´

M|RpM0q|

¯

fi

ffi

ffi

ffi

ffi

fl

Long term probability of marking M P R pM0q is defined as a corresponding element of vector η :

ηi “ Pr pMiq

The probability of marking can be viewed as a joined probability of individual places in a
specific marking.

Pr pMq “ Pr pM pp1q “ x1, M pp2q “ x2, . . . , M ppmq “ xmq

In the calculation of steady-state probabilities it is appropriate to ensure the liveness of Petri
net model, since each dead marking corresponds to an absorbing state in the Markov chain. Every
absorbing state can always occur, i.e., its stationary probability is equal to 1 and thus all live markings
have stationary probabilities equal to 0. This would lead to a fully deterministic model without any
uncertainty. It is also necessary to ensure the boundedness of the Petri net in order to ensure that the
set of reachable markings is finite (unbounded Petri net = infinite number of all reachable markings).

4. Entropy

Entropy can measure the amount of disorder (uncertainty) that is associated with a
random variable.

Definition 12: The entropy of the random variable X is defined (with the assumption
0log2 p0q ” 0) as:

H pXq “ ´
ÿ

x
Pr pX “ xq log2Pr pX “ xq

Definition 13: Entropy of stochastic Petri net
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net and η is the vector of its stationary

probabilities ηi “ Pr pMiq , Mi P R pM0q. The entropy of the SPN is defined as:

H pSPNq “ ´
|RpM0q|
ÿ

i“1

ηilog2ηi

Definition 14: Uncertainty Index of stochastic Petri net
Let SPN “ pP, T, F, Λ, M0q be a stochastic Petri net and H pSPNq its entropy. Uncertainty

index of SPN is defined as:

Uncertainty Index pSPNq “
H pSPNq

log2 |R pM0q|
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The normalization with maximum entropy makes the uncertainty index a dimensionless quantity
which is suitable for the comparison of models with a different number of reachable markings. The
uncertainty index value is from the interval <0,1>, where 0 interprets the fully deterministic model and
1 the absolute chaotic model. When the value of uncertainty index is closer to 1, the less is predictable
the behaviour of the model. Furthermore, it is possible to use entropy as a measure of complexity,
which reflects the size of the model (the number of reachable markings).

5. Example

In this work, we chose to present the measure of uncertainty through a simple example, mainly
because of the applicability of this method in the broad area of subjects that use Petri nets as a tool for
modelling and verification. The use of a more complex example would be beyond the scope of the
article and moreover, the essence of the method would be hidden by the complexity of the example.

In the following is presented an example of stochastic Petri net which consists of 6 transitions
and 5 places, see Figure 1. The example contains the essential characteristic features that are included
in the process model. These elements are, for instance, the sequence (e.g., transition T4), AND-split
(transition T1), AND-join (transition T6), XOR (transitions T6 and T5 or T6 and T3) and cycle (transition
T6 to place P1). More information about the mapping of these and other elements into Petri nets can be
found in [3].

Figure 1. Example of a stochastic Petri net (SPN).

All reachable markings R pM0q of this example Petri net are as follows:

M0 M1 M2 M3 M4

p1 1 0 0 0 0
p2 0 1 0 1 0
p3 0 1 1 0 0
p4 0 0 1 0 1
p5 0 0 0 1 1

Taking into account the specific values of transition firing rates, for instance,
Λ “ pλ1, λ2, λ3, λ4, λ5, λ6q, the given net is shown in Figure 2 as a Markov chain.

Figure 2. Corresponding Markov chain.
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It is then possible to calculate the steady-state probability vector. The solution of this chain, for
Λ “ p5, 2, 3, 3, 2, 1q is the steady-state probability vector:

η “

»

—

—

—

—

—

–

0.0385
0.2692
0.1538
0.3462
0.1923

fi

ffi

ffi

ffi

ffi

ffi

fl

The entropy of the example network can then be expressed by:

H pSPNq “ ´p0.0385log20.0385
`0.2692log20.2692` 0.1538log20.1538
`0.3462log20.3462` 0.1923log20.1923q “ 2.093

Reference limit (maximum entropy) is in this case log25 “ 2.3219. The value of entropy itself
can be useful when comparing the complexity of the model when changing its structure, i.e., as an
alternative to the known measures of complexity (e.g., [3] or [13]). However, if we want to express
the position of the complexity to the maximum complexity, which the model can have with the given
structure, the initial marking and the exponential distribution, it is possible to use the uncertainty index.

The uncertainty index for this particular case is determined by the relation H pSPNq {log2 |R pM0q|,
i.e., 2.093{2.3219 “ 0.9015. The result can be roughly interpreted as the situation that the uncertainty of
the example stochastic Petri net (SPN) reaches 90.15% of the maximum.

It is possible to analyse the uncertainty as a response to changes in a parameter of SPN, for
instance, the number of tokens in the initial marking or an adjustment of a specific parameter λ P Λ.
In the following, an example is presented that shows the development of the uncertainty both with
respect to a different initial marking and to different values of the parameter λ P Λ. Figure 3 shows
the evolution of entropy and maximum entropy, depending on the number of tokens in the place
p1. Figure 4 expresses the ratio of the entropy and the maximum entropy from Figure 3, i.e., the
uncertainty index, and indicates that the increasing number of tokens in the initial marking (in the
place p1) decreases the uncertainty index of the SPN.

Figure 3. Entropy and maximum entropy vs. number of tokens.
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Figure 4. Uncertainty index vs. number of tokens.

Uncertainty is declining, since for this particular example decreases the uniformity of the
stationary probability distribution between markings. This can be verified in the deeper analysis of the
distribution of the individual sets of all reachable markings. The stationary probability distribution for
various initial marking in the place p1 is shown in the Figure 5. Increasing the number of tokens in
place of p1, grows the number of reachable markings and also their distribution becomes less uniform,
i.e., the overall uncertainty index decreases. Figures 3 and 4 show that the complexity (entropy) is
growing, but the uncertainty index decreases.

Figure 5. The stationary probability distribution for various initial marking in the place p1.
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If we consider that the example network represents, for instance, the process model for the
processing of purchase orders and the number of tokens in place p1 represents the amount of received
purchase orders (in given time), it is possible, based on the values of the uncertainty index, to assess
the behaviour of the system, for example, its saturation or robustness. With the increasing number of
purchase orders (tokens) the uncertainty index decreases (see Figure 4), i.e., the degree of certainty,
that some order is in a particular state grows. This can cause the growth of the average length of the
life cycle of the purchase order (e.g., the unprocessed orders can pile up in specific places). In general,
different situations may arise, for instance, the average time for the processing of purchase orders
may be constant, rise or fall (in different speeds). The manager may consider if the system behaviour
conforms (e.g., if it is sufficiently robust to sudden change in the number of purchase orders processed
in the same quality). While the behaviour of the system can be influenced by changing the model
structure or by modifying its parameters Λ. Figure 6 shows the evolution of SPN uncertainty index
in relation to the changing value of the parameter λ2. The parameter was selected randomly for the
sole purpose of presenting visual analysis capabilities. When considering a fixed number of purchase
orders the Figure 6 shows the behaviour of the system when changing the parameter λ2 (i.e., the time
to complete the partial operation with a purchase order; this time can be changed, for instance, by
changing the number of workers, better technical equipment of a better organisation of work) and with
the conservation of the other parameters values. When the value of λ2. is equal to 4 the uncertainty
index is highest, i.e., the distribution of states (markings) is locally the most uniform (which could be
interpreted as a situation that the purchase orders are accumulating in certain places least).

Figure 6. Uncertainty index vs. exponential rate λ2

For a better understanding, the relationship between the uncertainty index and changing the
exponential parameter λ2 in the case of M0 “ p1, 0, 0, 0, 0q is presented in Figure 7. From the picture,
it appears that the increasing value of the parameter λ2 reduce the dominance of the markings M1
and M3, and enhance the dominance of the markings M2 and M4. When the value of the parameter
λ2 is equal to 4, the stationary probability distribution is the most uniform, i.e., the uncertainty index is
greatest. In a real application, the change of the parameter λ corresponds, for instance, to a variation
of the time required for the processing of certain activities (e.g., processing of purchase orders in the
example above).
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Figure 7. The stationary probability distribution between markings vs. exponential rate λ2.

With this type of analysis is then possible to set different assumptions on the modelled system and
assess the behaviour of the system when adjusting various parameters of the model. Interpretability of
results is directly linked to the specific problem (specific system that is modelled and analysed). The
aim of this article is to present a new approach for the calculation of the uncertainty in stochastic Petri
nets, without specific industry applications. This ensures more effective applicability to a broad range
of disciplines (logistics, computer network, etc.), without further specialization.

6. Validation

The uncertainty (entropy) can be seen as the complexity of the model, since it reflects properties
as the difficulty to understand or maintain the process. According to [14] there are a number of metrics
that have been developed over the last few decades, mainly to measure the complexity of software.
Most of these metrics can be also used on the issue of business processes. When defining a new metric
it is suitable to perform its validation. Validation can be of two types, i.e., the theoretical and empirical
validation. One of the most widely used theoretical validation measures is Weyuker’s properties [15].
The Table 1 summarizes the fulfilment or non-fulfilment of each Weyuker’s properties.

Table 1. Fulfilment of Weyuker’s properties for our approach.

Description Fulfilment

Property 1 Two different processes should not return the same measurement results Yes
Property 2 The change in a process should cause a change of its complexity No
Property 3 It is possible that two distinct processes have the same complexity. Yes

Property 4 Good metric should discriminate different processes (with the same
functionality) based on their internal structure (design) Yes

Property 5 Complexity of the subprocess should be smaller than or equal to the
complexity of the original process. No

Property 6 It is possible to have two different processes with the same complexity, but
if concatenated to a third process, their resulting complexities are not equal. Yes

Property 7 Complexity should depend on the order of the statements Yes
Property 8 Renaming of the process or its components does not change its complexity Yes

Property 9 It is possible that complexity of two interacting processes is bigger than
sum of their individual complexities Yes

Property 2 is not fulfilled, since there may be an infinite number of Petri nets that have the same
underlying Markov chain, i.e., the same complexity (entropy). Concerning property 3, if different Petri
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nets have the same underlying Markov chain, then they have the same complexity (entropy). Property
5 is not fulfilled, since non-live process, which includes a live subprocess, has the entropy equal to 0,
but the complexity of the live subprocess is greater than 0. Property 6 is dependent on the fulfilment of
the property 3 and the form of how the two processes are composed together. Figure 8. illustrates the
fulfilment of the property 6.

Figure 8. An example for the Property 6 fulfilment.

Property 9 is fulfilled, since if a live process is concatenated with a non-live process and the
resulting process is live, than the entropy of the resulting process is greater than the sum of individual
entropies. An example of the property 9 fulfilment illustrates Figure 9.

Figure 9. An example for the Property 9 fulfilment.

Further empirical validation was performed (comparison of the existing metrics with our
approach). We have made a comparison of the entropy as a complexity measure with the McCabe’s
approach [13] and uncertainty-based uncertainty measure introduced in [3]. Table 2 shows the
comparison of the resulting values of complexity (our approach, McCabe’s approach and approach
introduced in [3]) for the model from Figure 1 (and its modifications).
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Table 2. A comparison of the proposed approach with other approaches.

Model Entropy (Proposed
Approach)

McCabe’s
Approach [13]

Entropy-Based
Uncertainty Measure

Introduced in [3]

2.09 7 4

1.64 5 2

1.19 3 2

0.84 2 0

The table indicates that the resulting values of both approaches show the same trend, i.e., are
comparable. The correlation coefficient (based on the presented samples) is 0.996 between our and
McCabe’s approach and 0.940 between approach introduced in [3] and ours. The correlation values
suggest that there is a strong functional relationship between these approaches (based on the data in
Table 2), i.e., they measure the same quantity-complexity.

7. Discussion

Analysis of process models provides valuable information about its usability, predictability and
accuracy. One way to quantify the degree of predictability of the process model is using metrics
based on the evaluation of uncertainty. Measurement of uncertainty can be an appropriate tool
for assessing the relevance and the predictability of these models, and thus serve to more effective
managerial decision making. The degree of uncertainty in the process model is directly dependent
on two main indicators. The first is the number, the ratio and the distribution of specific elements
(OR, XOR, AND, and LOOP) in the model. These elements provide branching, synchronization and
cycles in the model, and thus are the main building blocks of process models that shape its specific
structure. One of the approaches to the measurement of uncertainty in the process model (defined
in [3]) is based on quantifying the entropy of partial substructures of the model at different levels
of abstraction. However, this approach takes into account only static structure of the model and
does not take into account its dynamic component (behaviour), which can be expressed in Petri nets
using tokens. It calculates the uncertainty of the process models that are modelled using Petri nets
(puts restrictions on how the model should look like). Our approach uses the value of entropy when
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comparing models with different structures, plus the index of uncertainty is used when analysing
the model when changing its parameters (for instance, initial markings, exponential distribution).
The value of the entropy expresses the complexity and the uncertainty index expresses the ratio of
the entropy towards the maximum entropy (complexity, which the model can have at most for the
same structure, the number of tokens and the exponential distribution). Analysis of the complexity
lies in comparing equivalent models (different structure, but the output is the same). The value
of uncertainty/complexity (entropy and/or index uncertainty) gives the manager the possibility to
change the structure of the model and at the same time to consider the behaviour when changing the
model parameters (number of markings representing a specific entity or activity; or the adjustment
of the exponential distribution of a transition). On the basis of this analysis, the manager optimizes
the process model, to comply with its requirements (structure and behaviour). In other references,
for instance [3,14], it is possible to analyse only the structure of the model and not its behaviour.
Our approach quantifies the uncertainty of any stochastic Petri net model (the only condition is
liveness and boundedness). The second indicator, which implies the uncertainty of process models are
branching probabilities in the above-mentioned elements. In the presented method, these probabilities
are expressed in the form of firing rates using the exponential distribution for each transition in the
network. The structure of the Petri net implies all reachable markings and firing rates imply (using the
transition rate matrix) steady-state probabilities of this set. Using the Shannon entropy can be then
quantified the level of uncertainty over the Markov chain (reachable markings and their probabilities).
The degree of uncertainty (uncertainty index) that is defined on the interval <0,1> can be expressed as
a percentage of the calculated entropy against maximum entropy. The resulting value of uncertainty
index represents the uniformity of stationary probabilities distribution of individual markings, i.e.,
the more even distribution of stationary probabilities is, thereby increasing its entropy (approaching
the maximum entropy), and at the same time its uncertainty (uncertainty is approaching 100%). The
normalization with maximum entropy makes the uncertainty a dimensionless quantity which is
suitable for the comparison of models with a different number of reachable markings. Furthermore, it
is possible to use the calculated entropy as a measure of complexity, since it meets most of Weyuker’s
properties and at the same time, the comparison of our approach with approaches [13] and [3] yields
the correlation coefficient of 0.940 and 0.996, respectively.

The advantages of this approach

‚ The calculation of entropy in the stochastic Petri nets is a universal metric for the evaluation
of uncertainty in reactive and concurrent systems. The only restriction is the requirement for
modelling using stochastic Petri nets.

‚ Exactly defined boundaries of uncertainty (interval <0,1>).
‚ The possibility of using the verification capabilities of Petri nets.
‚ The possibility of using the entropy as a measure of complexity.
‚ The possibility to simulate different model parameters (e.g., firing rates, number of tokens), and

follow the development of uncertainty index, i.e., the ability to search for local optima within a
specific operating point (the original model parameter values).

The disadvantages of this approach

‚ Standard disadvantages of Petri nets in general, e.g., state explosion (extension of the model with
new places or the increase in the number of tokens in the initial marking, leads to an exponential
growth of all reachable markings), restrictions based on the definition, etc. Computational
efficiency of the uncertainty calculation is directly linked to the number of all reachable markings.
Time complexity of the calculation of the stationary probability has the quadratic character (O
(Nˆ2), where N is a number of all reachable markings).

‚ The condition that the model must be live. In other cases, the entropy is equal to zero.
‚ The condition that the model must be bounded, which ensures that the cardinality of the set of all

reachable markings is finite.
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There are other approaches that work with uncertainty, for instance [16] use the Dempster Shafer
believe theory for modelling uncertainty within Petri and other authors use the fuzzy Petri nets to
reduce the uncertainty, for example [17] or [18]. However, none of these approaches is comparable
with ours.

8. Conclusions and Future Work

In this work, a procedure for calculation of the uncertainty in stochastic Petri nets has been defined.
The level of uncertainty (entropy, uncertainty index) can serve as a useful indicator for determining
the degree of predictability in the modelled systems (e.g., process models). The value of entropy is
useful when comparing models with different structure and the uncertainty index can be used when
analysing the model, i.e., changing its parameters (initial marking, the exponential distribution). The
value of entropy expresses the complexity of the model and the uncertainty index expresses the ratio
of the entropy to the maximum entropy, i.e., complexity, which the model can have at most for a given
structure, the number of tokens and exponential distribution.

On the sample example were presented possible analysis of the SPN model. The evaluation
of the theoretical and empirical validation shows that our approach (using entropy to determine
the uncertainty in SPN models) is an appropriate approach for measuring complexity in systems
modelled using stochastic Petri nets. Future research will focus on the expansion of this approach
to the measurement of uncertainty on issues closer to reality. This expansion consists mainly in the
diversification of individual tokens. With diversification of tokens can be possibility quantified the
uncertainty of complex models. That can be achieved by using, for instance, coloured Petri nets (CPN)
that allow us to assign a vector of values as a token.
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