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Abstract
Depth sensor technology has undergone a large quality increase in recent years. Devices like
Microsoft Kinect proved to provide reliable 3D data about the surrounding environment.
This led to an emergence of new user interfaces based on a tracking of user's hands. In
spite of advantages in natural interfaces, where user is free of any input device, a keyboard
and mouse is still a major paradigm for human computer interaction in 2015. The main
reason for this stems from the high intricacy of the hand feature detection and gesture
classi�cation tasks to properly interpret gestures of human hands.

This work presents a detection algorithm for accurate calculation of �ngertip coordi-
nates and other hand properties, based on a hand image captured from a depth sensor. It
properly analyzes both straight and bent �ngers and is rotation invariant. The algorithm
can be used for a development of user interfaces based on a human gesture analysis, in
a same way as it was used in our TouchTable interface. TouchTable is a multi-touch, mul-
timodal user interface developed as a part of the dissertation. The user of this interface
can relax his hands on a working surface, which prevents fatigue from longer usage. This
fatigue is known from traditional touch screens and in-air gesture based user interfaces.
Advantages of the proposed algorithm over other methods of �ngertip detection are de-
scribed. The algorithm is evaluated using DepthTip, a new public dataset that can be
used to evaluate accuracy of �ngertip detection algorithms.

Keywords
3D, auditory memory, curvature, blob extraction, convolution matrix, data retrieval, data
storage, depth sensor, depth camera, digital image processing, ergonomics, �nger, �ngertip,
gesture, hand, HCI, Human computer interaction, human hand, information processing,
Kinect, MoCap, multi-touch interface, linear regression, TouchTable, template matching,
user interface, visual memory, data retrieval, data storage.



Název práce
Analýza ruky v uºivatelských rozhraních s pouºitím gest : návrh p°esného algoritmu
s výkonem v reálném £ase

Anotace
Hloubkové sensory prod¥laly v posledních letech velký kvalitativní vzestup. Za°ízení jako je
Microsoft Kinect prokázaly svou schopnost poskytovat spolehlivá 3D data o okolním pros-
toru. To vedlo ke vzniku nových uºivatelských rozhraní, zaloºených na snímání lidských
rukou. V¥dci nyní zkoumají rozdílná paradigmata uºivatelské interakce, nicmén¥ ideální
°e²ení dosud nebylo nalezeno, nebo´ na uºivatele jsou stále kladena mnohá omezení. I p°es
velké pokroky v oboru p°irozených uºivatelských rozhraní, kde je uºivatel osvobozen od
práce s jakýmkoliv pomocným vstupním za°ízením, klávesnice a my² je v roce 2015 stále
hlavním paradigmatem interakce s po£íta£em. Hlavním d·vodem je vysoká komplexnost
úloh analýzy lidské ruky a interpretace gest. Tato práce prezentuje algoritmus detekce ruky
pro p°esný výpo£et sou°adnic ²pi£ek prst· a dal²ích parametr· ruky na základ¥ snímku
ruky získaného z hloubkové kamery. Algoritmus správn¥ analyzuje jak rovné, tak ohnuté
prsty a je rota£n¥ invariantní. Algoritmus lze pouºít pro vývoj uºivatelského rozhraní
zaloºeného na gestech rukou, jako je TouchTable. TouchTable je multi-modální uºivatel-
ské rozhraní vyvinuté v rámci této dizertace. Práce prezentuje výhody navrºeného algo-
ritmu oproti dosud publikovaným metodám. P°esnost algoritmu je vyhodnocena pomocí
DepthTipu, nové ve°ejné datové sady, která slouºí k vyhodnocování algoritm· po£ítajících
sou°adnice prst·.

Klí£ová slova
3D, sluchová pam¥´, zak°ivení, ektrakce blobu, konvolu£ní matice, získávání dat, ukládání
dat, hloubkový senzor, hloubková kamera, digitální zpracování obrazu, ergonomie, prst,
²pi£ka prstu, gesto, ruka, zpracování informací, HCI, Interakce £lov¥k-po£íta£, Kinect,
snímání pohybu, multidotykové rozhraní, lineární regrese, TouchTable, shoda se ²ablonou,
uºivatelské rozhraní, vizuální pam¥´, získávání dat, ukládání dat.
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Chapter 1

Introduction

The remarkable growth of human-computer interaction (HCI) has been an ongoing process
during the last 30 years. In HCI, researchers are trying to �nd the best possible user inter-
face where users could interact with a computer in an ideal way. There are multiple criteria
that are used to evaluate the quality of such an interaction; productivity, ergonomics, ease
of use, and learning curve being some of them. Before starting to work on this thesis,
I originally worked for 15 years as a software engineer. I spent a huge amount of time in
front of the computer screen. During periods of large work load I even developed health
problems with my wrists. So I share, and well understand, the goals of the HCI discipline.
For me personally, it is crucial to use the computer in a healthy, productive way. How this
interaction should look, is exactly the question that HCI is answering.

Traditionally, sending commands to computers was possible thanks to input hardware
devices that were operated by movements of user hands and �ngers. A computer keyboard
was �rst used more than 70 years ago, followed by a mouse and later also a touch screen.
Though productivity of working with a mouse and keyboard is high, ergonomics is not
ideal. Long-term usage of these devices requires thousands of tiny muscle movements,
causing repetitive small strains on hand tissues. It can graduate in time to various health
problems like Repetitive Strain Injury (RSI) or Carpal Tunnel Syndrome (CTS). This
happens because the hand is forced to perform such movements for which it is not well
suited. That is why researchers are trying to design such a user interface where users
could work with their hands and perform gestures to control the computer. However, the
health bene�t of such a user interface, where there is no input hardware, is not the only
motivation. Parkale suggests [21] that hand gestures have the advantage of being easy to
use, natural and intuitive. Researchers sometimes combine a gesture control with speech
commands [28] to increase productivity.

In spite of advantages in natural interfaces where a user is free of any input device, the
keyboard and mouse is still a major paradigm for human computer interaction in 2015.
The main reason for this, stems from a high complexity of hand feature detection and
gesture classi�cation steps, which are needed to properly interpret gestures. This is not
only caused by very diverse physical conditions during the scene digitization phase, but
also by di�culties during the gesture classi�cation phase. The human hand is an awkward
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shape formed by non-straight curves. It is thus hard to detect in a digital image and it is
also challenging to model it in some simple, mathematical way. In di�erent positions, parts
of the hand can be occluded by other parts, and thus not visible to a sensor; for example
if the user has his thumb hidden under his palm.

This thesis aims to shift human knowledge in the feature detection phase by �nding
a suitable algorithm to detect hand features from 3D input, with the focus on �ngertips.
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Chapter 2

Existing user interfaces using human

hands

This chapter introduces a reader to theory behind the design of user interfaces that are
using human hands as a main modality of input. By studying the existing interfaces,
the thesis research goal will be furmulated in further text. The theory related to user
interface design is de�ned by a scienti�c discipline called Human-computer interaction
(abbreviated as HCI). This discipline studies the process of communication between a man
(a user) and a computer. HCI researchers are developing new paradigms of user interfaces,
experiment with new available hardware and create prototypes of user interfaces. Further,
they measure their productivity and ergonomics in user experiments.

2.1 HCI discipline

The goal of HCI is to �nd an optimal user interface for communication with the computer.
This search is performed under given constraints (like an environment, light conditions,
and age of users etc.). A learning curve, ergonomics and productivity are factors being
optimized. One of the main tools to verify given goals of HCI research is a user experi-
ment, where the selected computer user is working with the user interface. Experiments
answer one or more speci�ed research questions, for example whether the new user interface
paradigm is more productive than the baseline.

2.2 User interfaces using human hands

User interfaces that are using human hands as a main method of user input can be divided
into two groups. When in-air gestures are used, the user is performing operations through
movements of his hands in the air. Touch based interactions use a touch of the �ngers on
the working surface to execute user intended actions.
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2.2.1 In-air gestures

Many systems attempted to use in-air gesture user interfaces in scenarios where users were
controlling what is happening on a computer screen. The user would, for example, wave
their hands to select and choose menu items that were moving around on the surface of
the monitor. This approach is not very compatible with our human nature and with the
way our brain understands interaction with real world objects. The problem is with the
position of objects that users are trying to manipulate. Humans normally use their hands,
not to manipulate something that is out there (on the screen), but what their hands are
physically touching. The consequence is that in-air gestures do not work well as a substitute
for traditional devices, that manipulate with on-screen content, like keyboard and mouse
(in [13], p. 104). They are much more useful in scenarios where a user can submerge in an
augmented or virtual reality. Advances have been made by joining Oculus rift virual reality
glasses, and the Leap motion controller into a single user interface. Precise detection of
�nger movements together with an in-place display of a virtual object result in an appealing
way how to interact with a virtual world.

2.2.1.1 Gorilla arm syndrome

A user of an in-air gesture based system must be working with an extended arm. In a short
time, she starts feeling discomfort and tension in the shoulder; called Gorilla arm syndrome.
This condition prevents the user from long-term usage of the interface and decreases user
accuracy. The low resolution related to Gorilla arm syndrome may be solved by changing
the method of detection, by attaching EMG sensors to hands [5]. Even though EMG
sensors can handle the detection issue, they have a disadvantage of forcing the user to
wear some hardware.

2.2.2 Touch based user interfaces

When working with these user interfaces, users are interacting by physically touching some
objects on the working surface. These objects can be projected on the surface or can
physically exist there. Physical objects can not only be manipulated by users, but also by
the computer to create bi-directional communication, as in [25].

2.2.3 Multimodal user interfaces

This user interface can be operated by single modality (like keyboard, mouse or touch) or
by a combination of more modalities. Rather than focusing on single modality interfaces,
our collective goal, as a community of researchers, should be to understand how to most
e�ectively design systems that use input modalities in combination, where the strengths of
one modality compensates for the limitations of another (in [13], p. 98). As an example,
the CAD system can use a physical manipulator (like wooden cube) to rotate a view,
a mouse and keyboard to edit the 3D scene, and a voice to input description of edited
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components. The same enrichment of user experience can be achieved by a combination of
HCI output modalities. This trend is supported by development of virtual and augmented
reality user interfaces ([13], p. 388). Tab. 2.1 shows possible input and output modalities
used in user interfaces.

Table 2.1: Possible input and output modalities of user interfaces

Modality Input/Output Notes

Vision Output 2D and 3D displays with images and videos

Hearing Output Speakers, headphones, 3D sound

Haptic (sense of touch) Output Physical manipulators, e.g., digital clay [19].

Kinaesthetic (sense of balance) Output Devices where user can walk on movable surface, while remaining in one spot.

Gustation (taste) Output Devices producing taste (applications in future VR user interfaces)

Olfaction (smell) Output Devices producing smell (applications in future VR user interfaces)

Keyboard Input Space multiplexed input device.

Mouse Input Time multiplexed input device, attached to virtual UI elements by clicking.

Touchpad Input Space multiplexed input device with multi-touch possibility.

Voice Input Voice input analyzed by voice recognition algorithms.
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Chapter 3

Related work on human hand analysis

In this work, in-air gesture based user interface is not considered as an option and instead,
touch based user interface is designed. This is because the aim is to create an interface,
which is used on a daily basis. While performing in-air gestures, users su�er from Gorilla
arm syndrome which is not desired.

In any case, human hand is a main input device. In detail, this chapter explores the
state of the art research in the area of human hand analysis. This relates mainly to the
feature detection phase of an algorithm which interprets human gestures. As an input of
the human hand analysis, digital data acquired from the scene digitization phase is used.
The output is recognized hand and �ngertip features with calculated 2D or 3D coordinates.
Having the digital image of the scene, the algorithm needs to know whether there are some
human hands in the image and if so, where are they and where are their �ngertips.

As already mentioned in the introduction, due to the awkward shape of the human
hand, a reliable �ngertip detection algorithm is still a vivid research area. Research interest
into the �ngertip detection problem has grown signi�cantly in recent years. The trend is
apparent from the graph in Fig. 3.1. It displays a number of scienti�c publications that
were found between 2007 and 2013 by the academic search engine Google Scholar, using
the 'Fingertip detection' search term.
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Figure 3.1: Fingertip detection research trend

3.1 Phases of algorithm interpreting human gestures

While building a gesture based user interface, several phases of the computation need to be
solved. This chapter describes these phases and studies challenges associated with them.
Phases are following:

1. Scene digitization phase - the aim is to capture the scene by a suitable sensor,
i.e., a visible light camera or a depth sensor.

2. Feature detection phase - the aim is to extract information about human hands
and �ngers from the digitalized scene.

3. Gesture classi�cation phase - the aim is to study the position of hands to recognize
gestures.

4. Gesture to user interface mapping - recognized gestures are mapped to user
interface commands.

3.1.1 Scene digitization phase

Obtaining reliable digital data about the scene used to be a very di�cult task. Several
techniques based on an image captured from a visible light camera were investigated. If two
cameras are used for capturing, a 3D model of the scene can be calculated. Optical based
systems can be divided into two major groups - marker based and markerless. Marker
based systems place high visibility markers on joints and important parts of the human
body. In this way, an accurate detection of body movement is achieved. Markerless systems
put no physical constraint on the user, however they obviously deliver worse data quality.

In 2009, Microsoft Kinect was introduced to the market. It is able to calculate a 3D
depth image from a captured scene and contains software that returns information about
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full human body motion. The scienti�c community welcomed Kinect immediately as it
enabled them to get robust, reliable data in an a�ordable way [11]. The depth sensor is
usually placed horizontally in front of the user. The user extends his arms and performs
various hand gestures, as in [24].

Microsoft Kinect is just one of the hardware options that can be chosen to build up
a gesture based user interface. A list of novel, most commonly used devices, that are not
based on visible light cameras, is shown in Fig. 3.2.

Wii
Wii is a game console controller developed by Nintendo. It entered the market in
November 2006. The device is held in hand in a similar way as if holding a tennis
racket. Wii detects a movement in three axes thanks to built-in accelerometers and
an infrared light camera.

Microsoft Kinect
Kinect is a depth sensor developed by Microsoft. It is able to reconstruct a depth
image (with resolution 640x480 pixels), of the surrounding environment at a rate of
30 Hz. The device projects a grid of small infrared points, to objects in the scene.
Depth information is calculated from the distortion of these dots, captured by an
IR camera with a resolution of 1280 x 1024 pixels. Based on the depth information,
together with depth pixel-level classi�cation of the human body, the device calculates
positions of all important body joints. It can provide motion capture data for up to
four people in the scene. Its advantage compared to visible light cameras is that it
works properly under any ambient light conditions. Kinect also contains a motor,
capable of tilting the device up and down, which adapts the view of the sensor to the
changing distance from the users.

Asus Xtion PRO
This depth sensor was brought to the market in 2011 by PrimeSense and is based on
the same technology as Kinect. Unlike Kinect, it has no motor and is not so widely
used.

Leap motion
Leap Motion was developed by the same-named company and was brought to
the market in June 2013. It is placed on the table close to the monitor, captur-
ing movements of the hands and 3D trajectory of �nger movements. The user does
not need to touch the screen when using Leap motion. The device is equipped by two
IR cameras and three IR diodes as a source of IR light. Unlike Kinect, the device
can capture only hands, but provides much more information about hand features.

The list above intentionally does not contain devices where additional wearable hard-
ware, like gloves or bracelets is required to be worn on a body of the user, as the trend is
to build a user interface without any physical constraints.
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(a) WII controller (b) Microsoft Kinect

(c) Asus Xtion Pro (d) Leap Motion

Source: www.nintendo.com, msdn.microsoft.com, www.asus.com, www.leapmotion.com

Figure 3.2: Modern MoCap devices

3.1.2 Feature detection phase

Feature detection is one of the disciplines of computer vision. Its aim is to compute
abstractions of digital image information called features. During the process, local decisions
at every image point (called a pixel) are made, whether there is an image feature of a given
type at that point, or not. It is necessary to classify hand and �nger pixels and separate
them from background pixels of the scene. This is done as a part of an image segmentation
step, where image pixels are classi�ed by some of the computer vision methods, like HSV
thresholding. If working with a depth map from some depth sensor, classi�cation can be
done by comparing depth of �nger pixels compared to depth of background pixels from
calibrated depth frame where hands are not present.

Based on the needs of the natural user interface, the feature detection phase may
not only classify pixels and separate a hand from the background, but also extract other
information about more detailed features. These can be exact positions of �ngertips, the
center of a palm, and �nger vectors. Simple algorithms work only with a 2D projection of
a 3D scene and extract located feature positions only in two dimensions. More complex
algorithms are able to reproduce 3D coordinates that can be used to build more advanced
gesture detection systems.

Fig. 3.3 shows segmented pixels of a hand, separated from the background, and a de-
tected hand contour with �ngertips as a result of the feature detection algorithm.
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Figure 3.3: Steps of feature detection algorithm

Hand and �ngertip feature detection methods can be divided into following groups,
based on the chosen approach. State-of-the-art methods used in feature detection phase
are described in chapters mentioned in the brackets for each approach:

• Hand contour analysis (described in 3.2)

• Topological image skeleton approach (described in 3.3)

• Detection using circular patterns (described in 3.4)

• Random forests (described in 3.6)

3.1.3 Gesture classi�cation phase

Gestures are used in user interfaces for di�erent purposes. For example a pinch gesture
(where the user is pressing together the thumb and the index �nger of one hand) can be
used for selecting some objects in a 3D scene to interact with them [20]. The gesture where
two index �ngers are touching the working surface can be used for zooming and rotating
the scene [22].

There are two major ways how to detect gestures from the scene:

a) Use a feature detection algorithm, where a feature is de�ned as a whole gesture.

b) From the detected features of the hand and �ngers, calculate a mathematical hand
model. Use this model to recognize the gesture, by de�ning mathematical properties
of the hand, which is performing the gesture.
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3.1.4 Gesture to a user interface mapping phase

This phase is closely related to an optimal way how already detected gestures translate to
commands sent to a computer. It is favourable to choose such gestures for a given task that
somehow resemble the action in a non-digital context. This is called a metaphor approach.
Until now, a lot of research has focused on �nding suitable metaphors for a given task, such
as in [30], where a bar metaphor is used. It mimics handling of objects that are skewed
with a bimanual handle bar. In [A.1], a new user interface component for storing and
retrieving of digital content is introduced. It is based on placing the digital content into
a 3D space and associating it with some symbols. This is a metaphor for tidying up, where
we store some physical items in the shelves, letting the brain create association between
a 3D position of the content and the content itself.

3.2 Hand contour analysis

In this approach, a hand contour is used to calculate �ngertips. The contour comprises
of a set of connected pixels on a boundary between hand and background. An algorithm
analyzes sharp turns of the hand contour and classi�es them as �ngertips.

3.2.1 Local maxima of y-axis contour coordinate approach

In [10], the algorithm calculates �ngertips based on a local maximum of the curvature
function. It was developed for an interface where tablet users were pressing buttons on
a virtual keyboard, placed on a working desk. The algorithm works in the following steps:

• Edges are detected from the red channel of a RGB camera image.

• Short edges are discarded and a simpli�ed contour is extracted.

• Fingertip candidates are found as points with local maxima of the curvature function.

• Additional criteria to reduce false positives are applied, e.g., minimal �ngertip width
test. Fingertip width is calculated as a distance between two points to the left and
right of the �ngertip, where curve direction is parallel to the y axis of the image.

Fig. 3.4 shows images created by the last two steps of the algorithm, where white
crosses represent detected �ngertips. As apparent from the result, the algorithm has two
problems:

• Fingertip positions are not very precise, particularly for the thumb.

• Algorithm is not rotation invariant - due to the method how �nger width is calculated;
it works only if �ngers of user are oriented vertically.
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Figure 3.4: Two last steps of the simple curvature based �ngertip detection

3.2.2 k-curvature algorithm

In [17], �ngertips are detected from the source image using a k-curvature algorithm. Based
on a segmented image, the curvature function is calculated from pixels laying on the bound-
ary of hand blob and background. The curvature function describes how fast is changing
the direction of the hand contour along the points in it. It is calculated as a �rst derivative
of the angle between subsequent points on the hand contour. Fingertip detection works
according to the following steps:

The hand binary image is segmented using a depth image from Microsoft Kinect. Pixels
are sorted into two classes - background and hand. An example of such a binary segmented
image is in Fig. 3.3, step 1.

The hand contour is calculated from the hand binary image, using a blob search.

Fingertip candidates are calculated using a k-curvature algorithm:

• Three points on the curve L, C and R are selected for an angle test, each having
equal distance of k pixels from C.

• The angle between vectors ~LC and ~RC is calculated. If it is lower than a given
threshold α, point C is considered as a �ngertip candidate.

• Fingertip candidates can also contain valleys between �ngers. Valleys are discarded
by comparing distances of the candidates from the center of the hand.

The distance k together with the angle threshold α are numerical constants that must
be experimentally chosen, based on the proportional size of a hand in an image. The
resulting image is in �gure 3.5.
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Figure 3.5: Result of k-curvature �ngertip detection

In contrary to previous work described in [10], this algorithm has the advantage of being
rotation invariant. It means that �ngertips are detected no matter what is the rotation of
the hand in the image. However, �ngertip positions are also not very precise, as a �ngertip
point is detected only from small surroundings of a �ngertip area, comprising of three
points on a hand curve.

3.2.2.1 k-curvature algorithm with touch and hover

When two downward-pointing cameras are attached above a planar surface, system can
also provide 3D positions of a user's �ngertips on and above the plane, allowing us to
distinguish between touch and hover [18]. Hover is a �nger state, where the �nger is lifted
slightly above the desk, not physically touching it. Additionally, the hand tracker not
only calculates positional information for the �ngertips, but also �nger orientations. This
method thus provides a great amount of extra information on a user's hands, for building
a gesture based human interface. Its slight disadvantage is that it can be di�cult to setup
and calibrate two cameras.

3.3 Topological image skeleton approach

The skeleton of a segmented shape is a thin version of that shape that is equidistant to
its boundaries. Because the skeleton emphasizes geometrical and topological properties of
a shape, it has been successfully used in several applications in computer vision; such as
optical character recognition, �ngerprint matching or pattern recognition. If a skeleton is
calculated from a segmented image of a hand blob, it can be used to detect �ngertips. By
reducing hand pixels only to the skeleton, the number of pixels needed to analyze �ngertips
is reduced. This has a positive e�ect both on e�ciency and also accuracy, as �ngertips
must be on the axis of the single �nger [31]. Example of the skeleton algorithm input and
output is shown in Fig. 3.6. As can be seen from this example, a skeleton can contain
such endpoints that are not actually �ngertips, which can possibly lead to false positives
during the �ngertip detection phase.
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(a) Segmented hand blob (b) Skeleton calculated from hand blob

Figure 3.6: Example of skeleton algorithm input and output

3.4 Detection using circular patterns

A �ngertip in the binary image forms a circular shape with one of its ends connected to
a larger area of hand pixels, forming a �nger segment. Its circular shape can be used to
the advantage of the �ngertip detection. There are three methods available to do so:

• Template matching

• Applying convolution matrix

• Distance from center of mass method

3.4.1 Template matching

Template matching is a technique in digital image processing, for �nding small parts of an
image that match a template image. A �ngertip can be used as such a template, where
initially a su�cient number of �ngertip templates is obtained. Though this technique can
be e�ective under de�ned conditions, the performance may su�er in special cases. This
happens if the size of the �ngertip in the image can vary, for example if user distance
from the camera is unknown. This results in the necessity to have a larger template set,
containing di�erent template sizes. Another performance problem can be caused when the
input frame needs to maintain a high resolution while being processed, as this increases the
number of image region match trials. This can however be overcome by reducing resolution
of both the search and template images.

In [8], template matching is applied on a binary image with an extracted hand region
(Fig. 3.7b). Authors use L1 norm template matching, with sequential similarity detection
algorithm (SSDA) to extract the �ngertip. A circular image (Fig. 3.7a) is used as a �ngertip
template. The circular template may be robust to axial change of the �nger. The result
of the �ngertip extraction is shown in Fig. 3.7c.
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(a) Circular template (b) Segmented hand image (c) Detected �ngertip

Figure 3.7: Example of template matching algorithm steps

3.4.2 Convolution matrix

A convolution matrix (sometimes referred as a kernel or mask) is a method commonly
used in computer vision for blurring, sharpening, embossing or edge-detection. This is
accomplished by means of convolution between a kernel and an image.

The circular convolution matrix can be constructed in such a way that if its center is
aligned with the center of the �ngertip, a high output response is observed. This can be used
for �ngertip detection. As with template matching, processing larger hand images of higher
resolutions can result in bad computational performance. An example of a convolution
matrix used in [6] is in Fig. 3.8. This method not only provides �ngertip coordinates, but
also �nger vectors of last �ngertip segments. Even though authors claim that the method
calculates angles of bent �ngers on both hands, only vectors of the last �nger segments are
calculated. Vectors of remaining �nger segments remain unknown.

The �nal detected �ngertip coordinates are not very accurate, which is apparent mainly
for the thumb of the right hand in Fig. 9 in [6].

Figure 3.8: Fingertip detection convolution matrix

3.4.2.1 Improved convolution matrix - circular �lter

As already mentioned, processing templates or convolution matrices on a larger image
can have signi�cant performance impact. This issue is partially addressed in [9] by using
a FAST feature detector [26]. Authors are able to recognize gestures at the �nger level in
real-time at more than 50 fps with commodity computer hardware. The main idea is not
to process all pixels of the circular template, but only those that are on the boundary of
the circle. The algorithm also uses 3D depth information in the segmentation phase, which
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yields better results than only using a 2D hand blob. It uses a Bresenham circle of radius
4, to segment the pixel's periphery into arcs of consistently lower, equal or higher depth
compared to the center pixel. For comparison, again the maximum deviation threshold
is used. The algorithm also detects �nger segments (referred to as pipes) and matches
detected �ngertips with those segments. Although axial �nger vectors are provided, its
length and orientation is not always properly calculated, as is clearly apparent (despite
from low image resolution) from Fig. 3.9 published originally in [9].

Figure 3.9: Results of �ngertip detection using FAST

3.5 Distance from center of mass method

The already mentioned approach for detection of corners in the segmented hands is the
curvature function analysis, where an algorithm is searching for local maxima of the func-
tion. But if due to some error in the segmentation phase, the boundary of the segmented
hand does not become smooth, there can be a very large number of corners detected and
extraction of �ngertips will become very complicated. This is overcome by the distance
from center of mass method [4], which works according to the following steps:

1. User shows the �ve �ngers of the hand in front of the camera for calibration. The
hand should be perpendicular to the camera and fully outstretched.

2. Most distant point in the hand contour from the centroid is found and circle is
constructed around the centroid.

3. Radius of the circle is decreased (by optimal step size) till �ve peaks of the graph are
eliminated, representing �ve detected �ngers.

Algorithm idea is explained in Fig. 3.10.
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Figure 3.10: Distance from center algorithm for �ngertip detection

The algorithm is capable not only to provide reasonably exact �ngertip coordinates,
but also axial �nger vectors of stretched �nger. The algorithm will fail though if a �nger
is bent, as a �ngertip may be closer to the hand contour centroid than some other point
on the hand curve.

3.6 Random forrests

Shotton et. al [29] published a state of the art real-time human pose recognition algorithm.
A single input depth image is segmented into a dense probabilistic body part labeling, with
the parts de�ned to be spatially localized near skeletal joints of interest. Re-projecting the
inferred parts into world space, authors localize spatial modes of each part distribution
and thus generate con�dence-weighted proposals for the 3D locations of each skeletal joint.
The �nal classi�cation of source image pixels is shown in Fig. 3.11.

Figure 3.11: Result of human body classi�cation using random decision forest

The algorithm works according to the following steps:

1. Random decision forest classi�er is trained using two datasets containing training
images: real camera images and synthetised camera images. Realistic synthetic depth
images are sampled from a large motion capture database, picturing humans of many
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shapes and sizes in highly varied poses. The classi�er avoids over�tting by using
hundreds of thousands of training images. Decision trees in the forest are trained to
classify several very simple depth features, for example a feature that can detect thin
structure or a feature that detects pixels high above the �oor.

2. Single depth frame pixels are iterated and classi�ed using trained trees by traversing
from the root down to leaf nodes:

• Split nodes consists of a feature f θ and a threshold τ . Traversing down con-
tinues left or right according to comparison with threshold τ .

• When leaf node in tree reaches threshold τ , learned distribution over body part
labels is stored.

3. The distributions from all trees in the forest are averaged together to give the �nal
classi�cation.

4. Spatial modes of the inferred per-pixel distributions are computed using a mean shift,
resulting in the 3D joint proposals.

Due to the use of very fast tree data structure and simple feature detectors, super
real-time performance was achieved (processing of approx. 200 frames per second). Also
thanks to the prior training on both real and synthesized datasets earned discriminative
approach naturally handles self-occlusions and poses cropped by the image frame.

Though it is excellent for full body pose estimation, it does not provide enough details
about hand features. Depth pixels of individual �ngers are classi�ed only as right hand
or left hand so algorithm can not be used for determining of hand gestures. It also can
properly categorize human shape only for poses for whose it was previously trained. For
�ngertip detection, training or synthesizing the dataset would be tedious task due to an
enormous variability of all �nger movements.
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Chapter 4

Research goals

The ultimate goal of my research is to answer questions about the most suitable design
and implementation of a 3D user interface, based on an intuitive and ergonomic human
computer interaction. Existing gesture-based interfaces are not meeting the ergonomy
goals yet. In-air interfaces su�er from Gorilla-arm syndrome, while touch-based do not
allow users to rest their hands or are not achieving needed accuracy.

However, this is a life-time research task. This thesis therefore focuses on a more
speci�c research question, which is a building stone to ful�ll the ultimate goal. The main
focus of this thesis is to �nd such a real-time algorithm for human hand analysis, that has
a high �ngertip detection accuracy compared to already published work. The algorithm
in question should also extract additional clues about detected hand features. The �nal
algorithm should therefore meet these objectives, ideally all of them:

• High �ngertip detection accuracy: �ngertip coordinates should be calculated with
precision that allows users to perform accurate computer tasks, e.g., if using �ngers
instead of a mouse cursor,

• ability to detect �ngertips for both straight and bent �ngers,

• ability to provide additional hand features: this includes palm center plus forearm
and �nger vectors,

• ability to provide coordinates of both base and middle joint of each �nger, so that
information about how the �nger is bent can be used for gesture analysis,

• 3D calculated coordinates: if source data from digitization phase contains depth
information, a three dimensional position of the �ngertip should be calculated,

• real-time performance: at least 30 frames per second processing speed to allow real-
time usage in HCI scenario.

As to my best knowledge, an algorithm meeting all these goals has not yet been pub-
lished.
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Secondary objectives of the work are following and are related to 3D user interface
design and to the gesture to a user interface mapping phase:

• Explore the relation between the placement and orientation of a depth sensor and
advantages that the placement poses for the user interface.

• Study an impact of using other possible modalities in a user interface, that are
suitable to accompany human gestures (like human voice or physical manipulators).

• Introduce a new user interface paradigm that is more suitable for particular tasks
then if using a traditional mouse and keyboard user interface.
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Chapter 5

Design of TouchTable - gesture based

user interface prototype

As the main goal of the thesis is to �nd a hand detection algorithm, a user interface
prototype is needed to test this algorithm in real user experiments. This chapter contains
the details on designing and implementing the TouchTable - a multi-modal user interface
where users are using their hands as an input device.

5.1 Methodology of design of TouchTable

During the design process, the following methodology based on the feedback from users
was used. One iteration of the process was organized in the following steps:

• Based on current knowledge, a prototype of touch-based 3D user interface is designed
and implemented.

• An experiment is prepared and executed. Users are given a task that they should
perform both with traditional UI (keyboard and mouse) and novel prototype.

• The resultant data is collected during the experiment, such as time to complete the
task or verbal feedback from users. Results are analyzed and compared.

• Based on the analysis of the results, conclusions are made about the user interface
prototype. New knowledge regarding suitability of the design is gathered and a new
hypothesis is formed on how to improve the design.

• Prototype is improved.

Apart from this evolution process and inter-related user experiments, other measures
how to evaluate the new implemented algorithms can be used. In this work, a hand
detection algorithm was also evaluated against a dataset containing a su�cient number of
3D image samples with a hand. During this evaluation, �ngertip detection accuracy and
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algorithm performance were measured. It was critical to achieve best possible �ngertip
detection accuracy and a processing speed higher than 30 frames per second. This is
described in detail in chapter 6.

5.2 TouchTable

The TouchTable is a prototype of a 3D user interface for working with a computer, that
was published in [A.7]. User experiments, where users are executing computer operations
with their hands, need to be performed. The TouchTable is not only pursuing the search
for the ideal 3D user interface, but also providing necessary feedback for further evolution
of performance, precision and behaviour of a �ngertip detection algorithm.

The TouchTable analyses human hands lying on the desk. It is using a �ngertip detec-
tion algorithm to determine �nger coordinates of both user's hands in real time. It also
collects data about the height of the �ngers above the desk. The interface is multi-modal
as it uses speech recognition to execute voice commands.

5.2.1 Depth sensor placement above the desk

During the scene digitization phase, the TouchTable is using a Microsoft Kinect depth
sensor as an input device. The depth sensor is usually placed horizontally in front of a user.
The users extend their arms and perform various hand gestures, as in [24]. Whereas the
setup with a horizontally facing depth sensor can be quite suitable for capturing a whole
body motion, it is not suitable for detecting tiny �nger movements. A user of such interface
also su�ers from Gorilla arm syndrome, as described in chapter 2.2.

5.2.2 TouchTable goal

A TouchTable's goal is to increase productivity of the user, who is working with a computer,
with a focus on CAD systems. It tracks both users' hands resting on the desk. Depth
information is analyzed and mapped to commands that control the computer. A computer
image is projected from underneath, to a semi-transparent working desk. The novel vertical
placement of the depth sensor brings the following advantages:

• The user can rest both his arms on the desk and does not su�er from the Gorilla
arm syndrome. He can have palms laying on the table. This is an advantage against
regular touch displays placed horizontally, where users cannot rest hands on the
surface, as palm touch would generate undesirable interactions.

• As user's arms are supported, the precision is good enough to detect �ngers tapping
on objects, as small as 64x64 pixels. As a user sits at the desk, he can use the new
interface as a complementary way to control the computer and, from time to time,
switch to a usage of a traditional mouse and keyboard interface easily.
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5.2.3 Overall TouchTable architecture

Fig. 5.1 shows a TouchTable setup, consisting of a display and a detection module. The
display module is responsible for projecting a computer image onto the projection desk.
The detection module captures hands of a user, analyzes the data and sends appropriate
control commands to a computer.

Figure 5.1: Layout of TouchTable interface

The display module consists of a table with a semi-transparent polycarbonate desk
attached to the top. The desk is 2 mm thick and has a size of 900x540 mm, placed 87
cm above the �oor. A special projector with a short projection range and high luminance
(3500 ANSI) is hidden inside the table, projecting the computer image to the desk from
below. Finger positions and an image projected onto the polycarbonate desk are synchro-
nized, so that an interaction with the desktop happens in the same place where the �nger
touches. Sometimes, areas in the returned depth map, contain blobs with depth reported
as 0. This is caused by a malfunction of the Kinect device under some unspeci�ed light
and re�ection conditions. If there are a lot of such invalid depth pixels, the whole user
interface can no longer work properly. By trial and error, I have realised that these false
spots can be minimized by placing the already mentioned polycarbonate desk on another
desk from chemically brushed glass. This has an e�ect of somehow helping the Kinect to
properly determine the depth of nearly all pixels in the depthmap. It even slightly sharpens
a projected image from the short-range projector.

The detection module consists of the depth camera (Microsoft Kinect), placed on an
adjustable stand 89 cm above the working surface. The camera is attached to a processing
computer, IBM Lenovo ThinkPad, 3MB RAM, 2.2 GHz Intel Core 2 Duo. Software,
implemented in .NET and using EmguCV image processing library. To communicate with
Kinect device, TouchTable was originally implemented with OpenNI and NITE software
libraries. Later, the implementation was changed to Microsoft Kinect SDK because of the
di�culties to properly install OpenNI drivers.

For speech recognition, the TouchTable uses a Microsoft Kinect microphone array con-
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sisting of four microphones. Word commands recognized from an audio stream are accessed
through Microsoft Kinect Speech API.

5.2.4 Processing algorithm

• When the �rst frame is processed, the depth map is stored as an Environment-
DepthMap.

• When a frame with a hand on it is processed, hand pixels are recognized by comparing
the actual distance of a pixel with the EnvironmentDepthMap from the previous
step. If the distance is bigger than a threshold of τ = 1cm, the pixel is regarded as
a hand pixel (value=1) in a 1-bit image, representing the hand and the table.

• The hand map image from the previous step is �rst eroded, and then a non-
hierarchical list of contours is extracted.

• Fingertips are calculated using some �ngertip detection algorithm, described in chap-
ter 6.2. For performance reasons, the number of points in a contour can be reduced
by replacing all the points from straight line segments with their end-points.

• A heuristic is applied to match the detected �ngertips to �nger indexes, as described
in the chapter 'Finger adherence algorithm' in [A.5].

• A smoothing of the �ngertip coordinates is applied. A position of the �nger from the
last few frames is averaged to avoid shaky movements of the mouse cursor, controlled
by the �nger. Best results are achieved when using the last four frames. Should
this value be too high, an undesirable e�ect is experienced, where cursor movement
follows �nger movement with noticeable delay.

5.2.5 TouchTable gesture to user interface mapping

Once �nger positions and movements are properly detected, they must be mapped to
speci�c computer commands. To do it in a meaningful way, some insight was needed
to understand how a user works in a CAD system. This is why a user experiment was
conducted. Users were asked to use a mouse and a keyboard (referred as regular interface)
to draw a simple house (in Google SketchUp) with a pointed roof and exact dimensions
(Fig. 5.2). Timing and frequency of commands were than measured using a proprietary
keyboard and mouse monitoring application.
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Figure 5.2: The sample house that testers were asked to draw in Google Sketchup

Fig. 5.3 shows a graph with information extracted from the time measurements for
a regular interface.

Figure 5.3: Percentage of the time spent in user activities, when drawing using regular
interface, grouped by the type

Once better understanding of user behavior was gained, subsequent mapping of user
activity to the user interface command, for TouchTable interface, was chosen. The mapping
is listed in table 5.1:

User Activity User Interface Command

The index �nger

touches the desk

+ thumb is hidden in a palm. Left mouse click

+ thumb is sticking out of a palm, touching the surface. Rotating camera around the center of screen

+ thumb is sticking out of a palm, not touching the surface. Double mouse click

The index �nger is moving on the desk. Mouse drag & drop

Two index �ngers are performing Zoom/Unzoom gesture. Zoom/Unzoom viewport of 3D scene

A user voice command "Pulling", "Hand", "Draw Line", "Move It", "Cancel". Activate the tool Pull, Hand, Line, Move�Undo

The user pronounces �gures, e.g., "two point �ve". Type exact dimension for last design operation

Table 5.1: Mapping of user activities to commands
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5.2.6 User experiment

To evaluate the TouchTable prototype and its �ngertip detection algorithm, 5 users (re-
ferred to as U1 to U5) were asked to draw houses 10 times. Firstly, they used a regular
interface and then they used the TouchTable. U1 was an experienced TouchTable operator,
testers U2-U5 had no such experience and before the experiment, were allowed to perform
only two trials. If a user made a mistake during the experiment, he pronounced 'Undo' as
a command to revert it. The time to �x the error was also recorded, resulting in a longer
drawing time. Table 5.2 shows the result of the experiment.

Measured Values

Time to Finish a Drawing

of Sample House (in Seconds)

Mouse & keyboard TouchTable

Average 27.74 56.24

Standard Deviation 11.19 26.72

Min 17.16 22.80

Max 78.34 141.15

Table 5.2: TouchTable interface compared to a regular (mouse and keyboard) interface

The experiment revealed that an average time to �nish a task using the TouchTable was
slower by 28.5 seconds compared to using the regular interface. The best TouchTable time
of the experienced user U1 was slower only by 5.64 seconds, compared to the best regular
interface user of 17.16. By analyzing data and observing user behavior, the following
conclusions were made:

• Longer times for using the TouchTable were mainly caused by frequent mistakes, as
a �nger often tapped on an unintended location. This manifested in a high average
changing command time of 8.8 seconds (users pronouncing "Undo"). The main reason
for mistakes was not caused by users' faults, but by low accuracy of a used �ngertip
detection algorithm, which was the 'Hand contour polygon simpli�cation algorithm'
described in chapter 6.2.2. Further research was then made to improve this accuracy
as described in chapter 6.2.

• TouchTable users were interleaving voice commands with the �nger movement to
work �uently. Users reported this as very comfortable. However, no signi�cant time
was saved this way, compared to traditional and very fast keyboard shortcuts.

• A signi�cant learning curve is related to the TouchTable interface for proper pronun-
ciation of commands, for �nger movements, and hand coordination.
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• TouchTable users did not need to change an active command if they wanted to
rotate or zoom the current view, they just used more �ngers. A regular interface
user needed to press the associated keyboard shortcut. However, no signi�cant time
gain was observed.

• Zooming by using two �ngers was as fast as using the mouse scroll wheel.

• It was di�cult for users to get used to the fact, that they can (and should) rest their
palms on the surface. It is against their experience with classical touch displays, e.g.,
smart phones. It took users several minutes to actually relax the hand on the surface
fully. In comparison with the normal touch screens, this allowed them to be free from
the strain put on a shoulder and arm muscles, while operating with user interface.
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Chapter 6

Design of accurate �ngertip detection

algorithm

Humans use their �ngertips as actuators very naturally, for their interaction with the real
world. They use the index �ngertip to point to some destination, they can tap on some
objects to bring them into focus or they are using �ngertips for di�erent gestures. A hand
based user interface must be in compliance with this natural schema of interaction. To build
a successful user interface, understanding of human hand in the captured image is a crucial
task with respect to �ngertips. It is necessary to compute where exactly the �ngertips are.
This chapter explains what is understood by the word '�ngertip' and contains proposed
implementation and evaluation of �ngertip detection algorithms, that are solving the goals
stated earlier in this thesis.

6.1 De�nition of a �ngertip

Before �ngertips in a scene can be detected, proper de�nition of '�ngertip' and how to
understand its coordinates must be clari�ed. Based on this �ngertip de�nition, �nger-
tip detection algorithms can be then designed and tested for accuracy. In general, two
approaches can be chosen for �ngertip de�nition:

• Mathematical hand model approach

• User de�ned approach

6.1.1 Mathematical hand model

In [33], Deliang Zhu and col. propose a 3D mathematical model of a hand and all �ngers
with their joints. More coordinate systems are de�ned:

• Global coordinate system of input device, like a depth sensor
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• Local coordinate system of a palm, that is simpli�ed as a rectangle. Origin with x,y,z
= (0,0,0) is located in the center of the palm.

• Local coordinate system for all �ngers, de�ned relative to the palm coordinate system.

Authors de�ne several constraints for the hand model, like static distance of �nger roots
from the palm center, or perpendicularity of �nger planes from the palm plane (with
exception of thumb plane which may not be perpendicular). During movement of the
hand, it should follow the static constraints and dynamic constraints of the hand. The
hand model can be seen in Fig. 6.1. Fingertips are de�ned as �nal joints in the hand
skeleton. The �nal accuracy, when used in user interface, depends on how well was the
hand model �tted over the hand, using the captured data from scene digitization phase
(described in chapter 3.1).

Figure 6.1: 3D skeleton hand model

6.1.2 User-de�ned �ngertip de�nition

As a human hand is an organic shape that is hard to de�ne mathematically, each user
can understand in a di�erent way, where is the tip of his �nger. Thus, the system can
be taught by �rst letting users to manually de�ne their �ngertip positions in captured
sample images. The implemented algorithm's accuracy can be then compared against this
annotated dataset. In an experiment, an algorithm can analyze all samples in the dataset
and the distance between the users' expected �ngertip position and the calculated position
can be then measured. The algorithm can then be improved to minimize this di�erence.
For the purpose of the dissertation, the DepthTip dataset was created to serve for user
de�ned �ngertip detection.
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6.1.2.1 Using a dataset to evaluate �ngertip detection algorithm

For the purpose of evaluation, any dataset containing test images of the hand was needed.
At �rst, ColorTip [16] was considered for the purpose. Unfortunately, it contains images
of the whole body of a user and does not have su�cient resolution for accurate evaluation
of the �ngertip detection. This is the reason why DepthTip [2] was created. DepthTip
is a set of 73 test images, where images of the right hand are captured using Microsoft
Kinect. 10 images are captured for each of the �ngers with di�erent bent �nger angles.
The database also contains 3 images with all �ve �ngers visible and 14 where none of the
�ngers are extending out of the palm contour. DepthTip images are manually annotated to
mark exact �ngertip coordinates. This is done by coloring a single pixel with the marker,
as can be seen in Fig. 6.2. As stated earlier, this allows us to validate �ngertip detection
algorithms.

Figure 6.2: Single pixel marked as �ngertip in DepthTip dataset

6.2 Fingertip detection algorithms

As a part of the thesis, several algorithms were designed for a �ngertip detection, that are
able to extract hand and �ngertip features from the depth sensor. They di�er mainly by
processing speed and �ngertip detection accuracy:

• Simple algorithm based on hand curvature analysis

• Hand contour polygon simpli�cation algorithm

• Finger cut-o� algorithm

• Circular scan algorithm (all pixels)

• Circular scan algorithm (contour only)
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In this chapter, these algorithms are described. Based on the feedback from the
TouchTable interface, �ngertip detection went through an evolution with aim, to increase
�ngertip detection accuracy, increase number of �nger and hand features detected or im-
prove the processing speed.

The source code for all �ngertip detection algorithms is available for download, together
with sources to run the TouchTable user interface. Necessary information can be found in
Appendix B - Dissertation source code.

6.2.0.2 Preconditions for algorithms to work properly

As an input, the algorithms take a binary image of hand pixels, where white pixels represent
the hand and black pixels represent the background. An example can be seen in Fig. 6.3).
It can be created by any method of 'feature from background' subtraction, like applying
HSV threshold on a frame from an RGB camera. Additionally, noise reducing �lters may
be applied. In the TouchTable, a binary hand image is calculated from a depth image
retrieved from a depth sensor. On this binary image, a minimal �nger thickness threshold
τ is applied. If the pixel has a distance from the working desk higher than τ , it is considered
a hand pixel. Table distances are measured during a device calibration, where no hands
are physically present in the frame.

(a) (b)

Figure 6.3: Input images for �nger detection algorithm

6.2.0.3 Algorithm phases

Algorithms are implemented in C++, using EmguCV. EmguCV is a wrapper of the fre-
quently used OpenCV software library. However, any similar image processing library can
be used. The input image is analysed in two phases:

1. Contours of blobs of hands are retrieved.

2. Based on the detected contours, �ngertips are calculated.
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6.2.0.4 Phase I - contour detection

The aim of this phase is to extract contours of the hand as a sequence of 8-connected pixels
for further hand shape analysis.

1. The input image is eroded using a 3x3 rectangular structuring element to reduce the
amount of noise.

2. Contours of hand blobs are detected using a regular blob detection algorithm. In the
TouchTable implementation, the OpenCVMethod cvFindContours in CV_CHAIN_APPROX_SIMPLE
mode is used.

3. Contours that do not meet a minimal bounding box limit are discarded, as they do
not belong to blobs of the hand, but rather to a background noise. In our setup, the
size of this limit was experimentally set to 30x30 pixels. This size depends on the
image resolution and proportional size of the hand's blob inside the captured image.
Also contours that do not meet the minimal hand border length threshold (of 150
pixels) are discarded too.

6.2.0.5 Phase II - �ngertip detection

The aim is to calculate �nger features based on the preprocessed hand image, and the hand
contour. This phase di�ers for each of the presented �ngertip detection algorithms.

6.2.0.6 Performance experiments

For a reasonable HCI use case, it is necessary for a �ngertip detection algorithm to work
in real-time. Performance was therefore measured using a computer system time, while
calculating results 1000 times on a set of all DepthTip images. This was the experiment
setup:

• Image resolution: 343x324 pixels

• Computer spec.: Intel(R) Core(TM) i7-3632QM

• CPU speed: 2 x 2.20GHz

Measured times can be found in chapters related to each individual algorithm. Overall
comparison of algorithms can be found in chapter 6.3.

6.2.1 Simple algorithm based on hand curvature analysis

This algorithm was implemented �rst in April 2011. It is an implementation of a k-
curvature algorithm. It analyzes the binary hand image in three phases:

1. All pixels in one hand contour are iterated. These are considered as �ngertip candi-
dates.
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2. Fingertip candidate is discarded, if it is not part of a convex hull of the hand contour.
This allows us to discard such points, that represent locations between adjacent
�ngers, close to the palm center.

3. The angle between the �ngertip candidate pixel and two pixels in the sequence (dis-
tant by 40 pixels to the left and right from the current) is measured. If the angle
is less than the de�ned angle threshold α (40 degrees), the pixel is considered to be
a �ngertip. If more pixels in a sequence are analyzed as �ngertips (typically along
the curve of the �ngertip), they are merged into a single �ngertip and the middle
pixel of this sequence is used as a �ngertip.

All constant values were chosen experimentally based on the characteristics of a hand blob
and �nger shapes in a depth image. This is possible in this scenario because the distance
of TouchTable user's hands from the sensor is approximately constant.

The algorithm has very poor performance, processing approximately one frame per
3 seconds, which makes it unusable in a real-time scenario. Fig. 6.4 shows an input
and output of the algorithm. Yellow pixels represent recognized hand pixels, green lines
represent recognized hand contours and red spots represent detected �nger tips. Moreover
(as can be seen in the example output picture), �ngertip detection accuracy is biased
towards the non curved sides of the �ngers.

Figure 6.4: Output of the simple algorithm based on a hand curvature analysis

6.2.2 Hand contour polygon simpli�cation algorithm

The main goal of this algorithm [A.7] is to increase the performance of the previous al-
gorithm, so that it can be utilized in user experiments. Its average processing speed for
one frame was measured against DepthTip dataset. It works extremely fast, processing 1
frame in less than 1 millisecond. Average processing speed is 0.08 milliseconds which is
completely su�cient for HCI interaction.

The idea of this algorithm is to simplify the hand contour by polygon approximation,
as can be seen in Fig. 6.5. The approximated polygon is marked in the �gure along the
hand shape, �ngertips are marked as diagonal crosses. The rest of the algorithm works in
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the same way as Simple algorithm based on hand curvature analysis, where �ngertips are
found as points with sharp angles between left and right neighbors.

Figure 6.5: Polygon simpli�cation of hand contour

6.2.2.1 Algorithm failures

Algorithm was tested against the DepthTip dataset and failed to detect 11 �ngertips out
of 95 (11.58%). It does not correctly detect �ngertips in situations where the �nger is
bent. In that case, the �ngertip is closer to the palm center and is not part of the convex
hull of the hand contour. Therefore, it is discarded by the algorithm. Fig. 6.6 (a) shows
such a failure for the DepthTip sample no. 10. Failed detection happened for following
DepthTip samples: 10, 39, 40, 48, 49, 53, 54, 55, 58, 70 and 71.

Additionally, the algorithm failed not only for bent but also for straight �ngers. This is
because polygon simpli�cation sometimes �attens the shape of a �nger, forming a rectan-
gular �ngertip area rather than a sharp �ngertip angle. Thus �ngertip angle does not meet
the threshold criteria and the �ngertip is not detected. Fig. 6.6 (b) shows such a situation
as thumb is not detected.

6.2.3 Finger cut-o� algorithm

This chapter presents a �nger cut-o� algorithm for accurate calculation of �ngertip coor-
dinates based on hand contours [A.5]. It provides not only information on exact �ngertip
position, but also orientation and lengths of all �ngers in the image. The main goal of
design of the 'Finger cut-o� algorithm' is higher accuracy of �ngertip coordinate calcula-
tion. This precision makes this algorithm unique. For straight �ngers, it is superior not
only to the 'Hand contour polygon simpli�cation algorithm' described in chapter 6.2.2,
but also to all other algorithms from literature mentioned in 3.2. The algorithm is real-
time; processing 30 frames per second, to allow real-time interaction of the user with the
computer.
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(a) Sample no. 10 (b) Sample no. 71

Figure 6.6: Failed cases of 'Hand contour polygon simpli�cation algorithm'

Implementation was done using the computer vision software library OpenCV. Where
appropriate, used library methods are mentioned for reader's reference. Fig. 6.3 shows
examples of an input image.

6.2.3.1 Algorithm details

The �ngertip detection works in following steps:

1. Polygon approximation of the hand contour is constructed in the same way as for
the 'Hand contour polygon simpli�cation algorithm', as seen in Fig. 6.5.

2. Polygon points are iterated and compared to their neighbors. If the distance between
two consecutive points is smaller than the minimal threshold of minDist pixels,
points are merged and replaced by their mid point. This is to avoid a situation
where more than one point is part of a simpli�ed polygon, and is still very close to
the �ngertip. With the minDist value setup experimentally to 15 pixels, all close
polygon points at the �ngertip areas were merged properly.

3. All points in the polygon are analyzed and assigned to one of the following classes,
where the number in brackets is a numerical representation of the class: �ngertip
(class 1), concave �nger base (class 2), convex �nger base (class 3), concave hand
contour (class 4) and convex hand contour (class 5). Fig. 6.7 shows detected points
with assigned classes. The classi�cation is done using these rules:

• Class 1: point in a convex polygon hull, meeting minimal angle to its direct
neighbors threshold criteria.

• Class 2: point not being part of the convex hull, that is direct neighbor of Class
1 point.
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• Class 3: point being part of the convex hull, that is direct neighbor of Class 1
point.

• Class 4: point not being part of the convex hull, that is not Class 2.

• Class 5: point being part of the convex hull, that is neither Class 1 nor Class
3.

Figure 6.7: Classes assigned to points in the polygon

4. For each of �ngertip points (class 1), �nger cut-o� line is drawn. It separates the
blob of associated �nger pixels from a blob of palm pixels. This line intersects the
neighboring concave �nger base point (class 2) and is perpendicular to the �nger
axial vector, de�ned in Eq. 6.1.

~a = (~v1 + ~v2)/2 (6.1)

~v1 and ~v1 are vectors pointing from the �ngertip (class 1) to �nger base points (class
2 or 3). Fig. 5 shows a binary image with the cut-o� line drawn. If two concave
�nger base points are detected for the �ngertip, only the one closer to the �ngertip
is used to create the cut-o� line. At the end of the cut-o� line, a black circle with
radius of 3 pixels is drawn. This is to force a clear separation of the cut-o� �nger
blob from the blob of the palm, as the blob detection step works in 8-connectivity
mode. For the same reason, width of the cut-o� line is two pixels rather than 1 pixel.

5. Blobs are detected in the binary image with cut-o� �ngers, using 8-connectivity.
OpenCV Method cvFindContours in CV_CHAIN_APPROX_SIMPLE mode is used. Min-
imum bounding boxes of blobs are visible in Fig. 6.8.

45



Figure 6.8: Minimum bounding boxes of cut-o� blobs

6. For each detected blob, a �tting line is calculated using the least squares method.
Coordinates of all pixels in the blob are used as input data for the least squares. The
resulting calculated line is an exact representation of the �nger axial vector.

7. Length of the �nger axial vector is calculated by �nding two intersecting points of
the �nger axis, going through the center of the �nger blob, with contour of the hand.
Fig. 6.9 shows the result of the algorithm.

(a) One detected �ngertip (b) Five detected �ngertips

Figure 6.9: Final results and �ngertip detection precision

6.2.3.2 Detection results

As already mentioned, the �ngertip is calculated as an intersection between the �tting line
of all pixels of the �nger's blob, and the whole hand convex contour. This ensures that
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calculated coordinates will be precisely in the medial axis of the �nger. Fig. 6.10 show
the di�erence between the old Hand contour polygon simpli�cation algorithm and new
algorithm. Accurate �nger position, calculated by the new algorithm, is marked with a red
circle, while the sharp corner of the simpli�ed polygon used by the old algorithm is drawn
in gray (being slightly biased towards the left edge of the �nger).

Figure 6.10: Di�erence in accuracy between 'Hand contour polygon simpli�cation algo-
rithm' and 'Finger cut-o� algorithm'

The algorithm also provides additional clues about hand features to help design ad-
vanced user interfaces:

1. Number of detected �ngers,

2. length and axial vector for each detected �nger,

3. whole hand orientation and visible length; this is possible because the user's palm is
detected as the largest blob.

The limitation of this algorithm is that it is not suitable for such hand gestures, where
�ngers are bent and do not form straight lines. This problem is solved by another algorithm,
described in subsection 6.2.4: Circular scan algorithm - all pixels.

6.2.3.3 Algorithm failures

Algorithm was tested against the DepthTip dataset and failed to detect 27 �ngertips out
of 95 (28.42%). It does not detect a �ngertip in situations where the �nger is bent. In
that case, the �ngertip is closer to the palm center and therefore the �nger axial vector
is reverted. Subsequently, the �ngertip is detected in a wrong place. Fig. 6.11 (a) shows
such a failure for the DepthTip sample no. 29. Failed detection happened for following
DepthTip samples: 8, 10, 16, 17, 18, 19, 20, 25, 28, 29, 30, 34, 36, 37, 38, 39, 40, 48, 49,
52, 53, 54, 55 (2 failed �ngertips), 58, 70 and 71. As the algorithm is based on 6.2.2, the
problem with �attening the �ngertip is happening too (no detected �ngertip in sample no.
71).

If a �nger is bent only slightly, the �tting line (�nger axial vector) crosses a hand
contour in a position biased towards the bent side. This can be seen in Fig. 6.11 (b).
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(a) Sample no. 29 (b) Sample no. 71

Figure 6.11: Failed cases of 'Finger cut-o� algorithm'

Table 6.1: Algorithm calculation times in the experiment

Sample image Avg time (in milliseconds) Standard deviation

1 �nger 1.76 0.69

5 �ngers 2.63 0.88

Total 1.79 0.81

6.2.3.4 Algorithm performance

Tab. 6.1 shows measured detection times.
Average running speed of the algorithm was 1.79 milliseconds. The number of �ngers

had an impact on the algorithm performance, but thanks to the overall very fast detection,
it does not pose any big issue for usage in HCI scenario.

6.2.4 Circular scan algorithm - all pixels

The algorithm described in this chapter analyses �nger coordinates using circular scanning
[A.4]. It solves the issue of �ngertip detection by �rst classifying hand blob pixels into
categories, and later on, to use the classi�ed pixels to analyze the hand blob. In contrast
to 6.2.3, it works well both for straight and bent �ngers.

The following categories are detected:

• Fingertip (red): These pixels are at the end of each �ngers.

• Palm (white): These pixels are inside the palm, far away from an edge of a hand
shape.

• Finger segment (brown): These pixels are part of �nger between palm and �ngertip.
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• Hand edge (gray): These pixels are part of the palm, close to the edge of the hand
shape.

Color mentioned in brackets matches colors in Fig. 6.12.

(a) Input detph image (b) Detected �ngers with categorized pixels

Figure 6.12: Example of algorithm input and output

6.2.4.1 Pixel classi�cation

The pixel classi�cation algorithm works in a way described in the �ow chart in Fig. 6.13.
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Figure 6.13: Pixel classi�cation algorithm

All hand pixels pk ∈ {p1..pn} from a binary hand map are iterated in a sequence,
analysing one pixel in each step. A new binary image is constructed, containing k blobs
I created by subtracting a binary hand image from a binary image containing a circle of
speci�ed diameter d, with a center in the current pixel. Blobs with an area smaller than
a given threshold are discarded. Based on the number of intersecting blobs found, the pixel
is classi�ed.
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All �ngertip and �nger segment pixels are than sorted into 8-connectivity blobs, where
each such blob represents a detected �ngertip candidate. Only such �ngertip blob can-
didates that neighbor with at least one �nger segment blob, are returned as recognized
�ngertip blobs. All pixels on the border between these neighboring blobs are stored as
Border. This step is necessary, as some pixels on small protrusions in the hand shape are
incorrectly classi�ed by previous steps as �ngertips, even though they belong to a palm.

For each �ngertip blob, �ngertip coordinates are calculated as a point on a �ngertip
blob contour that is the most distant from a middle pixel in Border sequence of pixels.

The diameter value d depends on an environment and was set to 51 pixels. For the
algorithm to work properly, condition 6.2 must be met.

d ∈ (MaxWidth, 2 ∗MaxWidth) (6.2)

It is best to set the value equal to 1.5 ∗MaxWidth. minBlobLength was set to π ∗ d,
where MaxWidth is a maximal �nger width in the source image.

The algorithm was implemented in .NET, using EmguCV library for computer vision
related operations like blob extractions and intersections.

6.2.4.2 Algorithm performance

An average running time of the 'Circular scan algorithm (all pixels)' was 378 ms, compared
to 1.79 milliseconds of 'Finger cut-o� algorithm'. Though it may be su�cient for static
analysis of sample images, for real-time usage in user interface it is not enough. Frequency
around 30 Hz (frames per second) is necessary, so that the user is not limited by the slow
interface responses.

6.2.4.3 Algorithm failures

In contrast to all previous algorithms, this algorithm detected properly 100% of �ngertips
in DepthTip sample database.

6.2.5 Circular scan algorithm - contour only

The algorithm described in this chapter combines an idea of two algorithms together.

• Circular scan algorithm - all pixels brings a bene�t of high accuracy of detected
�ngertips both for straight and bent �ngers.

• Hand contour polygon simpli�cation algorithm brings a bene�t of high processing
speed, thanks to an idea to analyze only a hand contour rather than all hand pixels.

The main idea is to process hand pixels in nearly the same way as in Circular scan
algorithm - all pixels. But, rather than process all hand pixels, only those that form the
hand contour are categorized. This algorithm is one of the main merits of this dissertation.
Fig. 6.14 shows the result of this algorithm. DepthTip sample 55 was chosen as an
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example as it posseses challenging bent �nger positions that other algorithms failed to
detect properly.

Figure 6.14: Fingertips detected in sample 55

The algorithm works in following steps:

• Categorize all hand contour pixels (into �ngertip, palm, �nger segment and hand edge
categories) in the same way as described in subsection 6.2.4: Circular scan algorithm
- all pixels. Fig. 6.15 shows both �ngertip and �nger segment categorized contour
pixels from the DepthTip sample no. 72. The result of the detection can be seen in
Fig. 6.16.

• Iterate all detected �ngertip sequences in the hand contour. Discard such sequences
that:

� Are not neighbouring to at least one �nger segment sequence.

� Do not meet minimal length of the given threshold τ pixels.

• Calculate �ngertip position as a point in the �ngertip contour sequence, that is the
most distant from the mid point between the start and end point of the sequence.
This allows for accurate �ngertip detection both for straight and bent �ngers.
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(a) Fingertip pixels (b) Finger segment pixels

Figure 6.15: Categorized �ngertip and �nger segment pixels

Figure 6.16: Sample 72 detection result

6.2.5.1 Algorithm performance

Average running time of the 'Circular scan algorithm (contour only)' was 21.63 milliseconds,
compared to 378 milliseconds of Circular scan algorithm - all pixels. This presents the
most desired improvement while the detection accuracy was retained. This algorithm is
thus suitable for eal-time usage in a user interface, achieving a processing frequency of 46
Hz (frames per second).
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6.2.5.2 Algorithm failures

As a Circular scan algorithm - all pixels, this algorithm detected properly 100% of �ngertips
in the DepthTip sample database.

6.3 Run-time statistics evaluation of proposed algorithms

This chapter contains comparative results of experiments, where �ngertip detection al-
gorithms were tested against the DepthTip dataset [2]. Four proposed algorithms were
tested together with our own implementation of 'distance from center of mass' method,
as described in section 3.5: Distance from center of mass method. Each algorithm was
executed against every DepthTip sample. Distance (in pixels) between the �ngertip posi-
tion annotated in the DepthTip and the actual position calculated by the algorithm was
gathered.

6.3.1 Fingertip detection accuracy

Fig. 6.17 shows results of �ngertip detection accuracy measurements.

Figure 6.17: Fingertip detection accuracy algorithm comparison

Tab. 6.2 shows numerical values for �ngertip detection accuracy statistics. # Failed

detections column shows the number of samples, where a given algorithm failed to prop-
erly detect a �ngertip. This happens either, if the annotated �ngertip was not detected at
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Table 6.2: Fingertip accuracy comparison

Algorithm
Distance # Failed

detectionsAvg Min Max

Polygon simplif. 4.23 1 13.0 11

Finger cut-o� 3.78 1 10.3 27

Circ. scanning (full) 2.37 0 6.7 0

Circ. scanning (contour only) 2.44 0 6.7 0

Dist. from center of mass 8.31 0 12 21

all, or if it was detected but its location was miscalculated in a place where no �ngertip
exists. The reasons for wrong location calculations are mentioned, for example in chapter
6.2.3 when a �nger axial vector was detected with wrong orientation. Not to distort ac-
curacy results, failed detections where excluded from the accuracy detection statistics, so
only successfully detected �ngertips were measured and formed results (in table Distance
columns Avg, Min and Max).

6.3.2 Performance of the algorithms

Fig. 6.18 shows results of performance, showing time to process a single frame from the
DepthTip dataset.
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Figure 6.18: Frame analysis time algorithm comparison

Not to lose graph resolution in Fig. 6.18, the 'Circular scan algorithm (all pixels)' was
excluded from comparison as it, by far, exceeds the processing times of other algorithms.
Its graph can be found separately in Fig. 6.19

Figure 6.19: Frame analysis time of Circular scan (all pixels) algorithm
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All results can be found in folder 'results' in [2], where a nested folder containing related
results exists for each of the tested algorithms. In the 'results' folder, �ngertip locations
are added as yellow crosses into the image of the original depth frame. More information
on how to access these results can be found in Appendix A - DepthTip evaluation dataset.

6.4 Summary of �ngertip detection algorithms evalua-

tion

All proposed algorithms, and the 'Distance center of the mass' algorithm from literature,
were tested in an experiment. Excluding the 'Circular scan algorithm (all pixels)', all have
su�cient average processing speed. It is lower than the critical threshold of 30 ms, allowing
for real-time user interactions.

For each sample image in the DepthTip, the distance between actual �ngertip coordi-
nates (annotated in dataset) and calculated coordinates (output of the �ngertip detection
analysis) were obtained. Regarding the �ngertip detection accuracy, most exact algorithms
are circular scan based algorithms, with average �ngertip distance between 2.37 and 2.44
pixels. Slightly less accurate is the 'Finger cut-o� algorithm', with 3.78 pixels. Accuracy
is not good enough for 'Hand contour polygon simpli�cation algorithm' (4.23 pixels) and
is worst for the distance from the center of mass algorithm (4.76 pixels). An example of
the output for the last mentioned algorithm can be found in Fig. 6.20. Both circular scan
algorithms ('all pixels' and 'contour only' variants) successfully detected all 73 DepthTip
images; detecting 95 �ngertips. The older 'Finger cut-o� algorithm' [15] detected prop-
erly only 69 �ngertips. From the failed 27 detections, 18 were detected with inaccurate
coordinates and 8 were not detected at all. Results of both algorithms can be found in
respective DepthTip folders called 'circleScanResult' and 'cutO�Result'. The 'Distance
from the center of mass' algorithm failed in 21 cases (sample no. 8, 9, 10, 16, 17, 18, 19,
20, 27, 28, 29, 30, 34, 37, 38, 39, 40, 47, 48, 49 and 50). This happened when �ngers being
detected were bent, which led to locating di�erent points in a hand contour as a �ngertip.
For this algorithm, only accuracy of straight �ngertips was included in statistics (failed
samples were not considered).

The 'Circular scan algorithm (contour only)' meets both performance and accuracy
requirements and thus can be used as a basis for HCI user interfaces. Unlike contour
analysis based algorithms, it works perfectly also for bent �ngers. It is apparent that the
'Circular scan algorithm (contour only)' not only properly detects all 73 images in real
time, but also does it with higher accuracy.
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Figure 6.20: Result of distance from the center of mass (sample 12)

6.5 User productivity experiment

Once the winning algorithm for a �ngertip detection was known (Circular Scan Algorithm
- contour only), the TouchTable user interface was modi�ed to use it. The experiment,
originally performed with the former version of an algorithm (as described in chapter 5.2.6),
was performed again. This allowed us to evaluate the new algorithm in comparison with
the original �ngertip detection algorithm. This experiment serves as an additional measure
to support the hypothesis that increased �ngertip detection accuracy will lead to increased
user productivity in an interaction scenario. This chapter contains results from such an
experiment. The task given to users remained the same - to draw a simple house, using
TouchTable and Google sketchup CAD modelling software.

6.5.1 Experiment setup

As in 5.2.6, 5 users were asked (referred to as U1 to U5) to draw houses 10 times using
the TouchTable with 'Circular scan algorithm (contour only)'. U1 was an experienced
TouchTable operator, U2 was an experienced CAD software user, and users U3 to U5 were
regular computer users with no experience neither with the TouchTable nor with CAD
software.

Clicking operation was not mapped to touching the table using the index �nger as
before, but instead to hiding a thumb of the right hand back to the palm and revealing
(extending) it again. Thanks to it, undesirable shifts of the mouse cursor attached to the
index �ngertip position was avoided.

All other conditions were same as in the original experiment.

6.5.2 Experiment results

Table 6.3 shows the results of the experiment. Figure 6.21 shows achieved times to �nish
the drawing of the sample house using the TouchTable with the new algorithm. Each of
the 5 users performed 10 trials in the experiment.
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Figure 6.21: Time to �nish house - TouchTable with the 'Circular scan algorithm (contour
only)'

Measured Values

Time to Finish a Drawing

of Sample House (in seconds)

Hand contour polygon simpl. alg. Circular scan alg.

Average 56.24 43.81

Standard Deviation 26.72 17.69

Min 22.80 22.51

Max 141.15 96.79

Table 6.3: TouchTable interface with low accuracy �ngertip algorithm compared to
TouchTable with high accuracy �ngertip algorithm

The experiment revealed that, with the new more accurate �ngertip detection algo-
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rithm, together with di�erent mapping of the clicking action, the average time to draw the
house using TouchTable was improved by 12.43 seconds (22.1 %). The minimum measured
time nearly did not change (from 22.8 to 22.51 seconds). The maximum time improved
signi�cantly, from 141.15 to 97.79 seconds.

Lets compare these results to the original experiment results with the regular user
interface of mouse and keyboard. An average time to �nish the house (43.81) is worse by
16.07 seconds (57.93 %), compared to 27.74 for mouse and keyboard. The minimal time
22.51 is worse only by 5.35 seconds (31.18 %).

By analyzing this data and observing user behavior, the following conclusions were
made:

• Improved accuracy of the �ngertip detection algorithm indeed resulted in signi�cantly
higher productivity, as average time to �nish the sample house was lower by 12.43
seconds compared to the original low-accuracy algorithm.

• In spite of the increased productivity, thanks to the new �ngertip detection algorithm,
using the TouchTable interface was still signi�cantly slower (minimal measured time
by 22.51 %) than using a regular (mouse and keyboard) interface.

• A signi�cant learning curve is related to the TouchTable interface for proper pronun-
ciation of commands, for �nger movements and hand coordination. It was di�cult
for users to coordinate movement of their hand with an extended index �nger and
thumb to achieve mouse clicks.

• During the drawing, users had to curl and hide three �ngers in a palm (middle, ring
and little �nger). Users were thus reporting an unpleasant strain in the forehand.
Some of them suggested that it would be easier for them to hold a round object like
a small ball in their palm so that these �ngers, that are not used for any actions,
could rest on the ball instead of being pushed by muscles under the palm. Part of
the ball object could also be a �xed extrusion that could be used to detect a cursor
position instead of an index �nger, and the index �nger could rest also on the ball,
improving the ergonomics.

6.5.3 Slow speech recognition engine

Slower TouchTable times are caused also by a necessity to input dimensions using a voice,
where pronouncing the dimensions leads to unnecessary pauses, compared to direct input of
dimensions using a keyboard. Additionally, it takes noticeable time for a voice recognition
engine to provide a recognized dimension after words were spoken. To �nish the drawing,
the following commands needed to be spoken aloud: Five, Three, Two point �ve, Two
point �ve, Three, Move, Three, Pulling and Five. Recognized numbers were entered by the
TouchTable Sketchup plugin as drawing dimensions. Move and Pulling commands changed
the active drawing tool to Move or Pull respectively. It was measured that the time to
pronounce this sequence alone (without waiting for a speech recognition engine to recognize
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these words) is quite fast, as it takes only 4.4 seconds in average. However, if speech analysis
time is taken also into account, and both pronouncing the word and subsequent recognition
of it is measured, the sequence takes 16.55 in average. This duration must be part of the
whole time to �nish drawing the house in the TouchTable experiment. The regular interface
has an advantage that dimensions are entered directly by the keyboard. Hitting the keys
is much faster than pronouncing and recognizing the spoken commands.

6.5.4 Failed attempt to decrease user interface complexity

As coordination of thumb and hand movement proved to be di�cult, and required a lot
of user focus, an attempt has been made to decrease the interface complexity. Instead of
using the thumb to perform clicks, voice command Click was used in a side experiment.
Even though operating in this new user interface mapping was much easier for users, it
resulted in increased time needed to draw. This is because Click voice command is much
slower compared to fast thumb muscle action. For this reason, this user interface variant
was abandoned as not being productive enough.

6.6 Mathematical model of bent �ngers

Given a mathematical model of a hand, more advanced gesture based user interfaces can
be built. For example, the bent angle of the �nger can be used to squeeze a virtual object
by a given degree. Fingertip detection algorithms usually provide only information about
the �ngertip coordinates. Some algorithms, e.g., 'Finger cut-o� algorithm' described in
chapter 6.2.3, provide also an axial vector of the �ngers if the �ngers are straight and
not bent. To build a proper mathematical model of a hand, the position of the knuckles
also needs to be known for bent �ngers. This chapter describes an approach solving this
problem, that uses line approximation methods [A.3]. Pixels that belong to a �nger are
�rst collected (using circular scanner as described in chapter 6.2.4) and subsequently two
�tting lines are found that ideally �t through the pixels.

6.6.1 Prerequisits for a detection of bent �nger's knuckle

Based on the collected �nger pixels, lying on the surface of the �nger, a suitable model
for a �nger's characterization needs to be formed. It is based on the transformation of
coordinates and a regression model. The regression model gives us a non-smooth function
with a change point. The main goal is to �nd the change point of the approximation
function. Coordinates of the change point of this function determine the position of the
knuckle.
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6.6.2 Change point estimation

For an estimation of the change point value, augmented with its variance, it is necessary
to �nd or design a suitable regression model. An algorithm is based on approximation
of two straight lines and is inspired by [12], non-smooth linear function approximation,
change point estimation, and transformation of coordinates. The main parts of the algo-
rithm transform measured coordinates to a new coordinate system in such a way that new
coordinates can be �tted by a function.

6.6.3 Algorithm details

Algorithm calculates points in several steps:

1. Fingertip and �ngersegment classi�cation,

2. two straight lines approximation,

3. �nding an intersection of straight lines,

4. transforming coordinates of �nger points into a new coordinate system,

5. non-smooth approximation with a change point,

6. transformation of non-smooth function to the old system of coordinates.

6.6.3.1 Fingertip and �ngersegment classi�cation

Input of the algorithm is a bitmap with classi�ed pixels, where each pixel has one of
"�ngertip" or "�ngersegment" classes. In the sample images (Figures 2 - 7), the circle
pixels

Ti, i = 1, . . . , t

with coordinates (Tx,i, Ty,i)U represent "�ngertip" and the square pixels

Sj, j = 1, . . . , s

with coordinates (Sx,j, Sy,j)U represent "�ngersegment". Let us de�ne

Fk = {{Ti} ∪ {Sj}}

and
n = s+ t

for future use. Such classi�cation of pixels help us with the �nger approximation.
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6.6.3.2 Two straight lines approximation

By the least Squares Method, �ngertip pixels are �t to get the following estimator of line

f1 : y = α0 + α1x.

Further �nger segment pixels are �t to get following estimator of line

f2 : y = β0 + β1x.

6.6.3.3 Finding an intersection of straight lines

Let us de�ne point P = [P1, P2]U as an intersection of lines f1 and f2:

P1 =
(α0 − β0)
(β1 − α1)

,

P2 = β0 +
(α0 − β0)
(β1 − α1)

β1 =
β1α0 − β0α1

(β1 − α1)
. (6.3)

6.6.3.4 Transforming coordinates of �nger points into a new coordinate system

Let us de�ne line g:
y = γ0 + γ1x = (P2 − γ1P1) + γ1x

as a bisector of lines f1 and f2. The directions of lines f1, f2, g are

α = arctan((P2 − α0)/P1) = arctanα1,

β = arctan((P2 − β0)/P1) = arctanβ1,

γ = arctan
sinα + sin β

cosα + cos β
= arctanγ1

= arctan

(
α1

√
1 + β2

1 + β1
√

1 + α2
1√

1 + β2
1 +

√
1 + α2

1

)
.

So

g : y =
β0
√
1 + α2

1 + α0

√
1 + β2

1√
1 + β2

1 +
√

1 + α2
1

+

+
α1

√
1 + β2

1 + β1
√

1 + α2
1√

1 + β2
1 +

√
1 + α2

1

x (6.4)

Let
B = P − 2(F − P ),

where coordinates of the point F are arithmetic means of Fk coordinates.
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Let us de�ne line h as perpendicular to a line g and let B ∈ h. Then

h(x) =
h0
γ1
− 1

γ1
x =

B1 + γ1B2

γ1
− 1

γ1
x.

Projection of the point Fk = [Fx,k, Fy,k] into the line h is

projh(Fk) = [F ∗x,k, F
∗
y,k]

F ∗x,k =
γ21x− γ1y +B1 + γ1B2

1 + γ21
,

F ∗y,k =
−γ1x+ γ1B1 + γ21B2 + y

1 + γ21
. (6.5)

Let us move the line g to the new origin:

S = projh(Fm) = (s1, s2)U = (0, 0)V ,

where
m = argmax|AFk|

with
A = projh(P ).

Let the new axis x∗ be the line h. Axis y∗ is given by a formula

y = ω0 + ω1x = −γ1Fm,1 + Fm,2 + γ1x. (6.6)

In the new coordinate system V the point (Fx,k, Fy,k)U has coordinates

(F ∗x,k, F
∗
y,k)V = (||projh(Fk)− S||, ||projh(Fk)− Fk||). (6.7)

Whole process is described in Fig. 6.22.
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Figure 6.22: Process of estimation

6.6.3.5 Non-smooth approximation with a change point

Let us assume that dependency between coordinates is given by two straight lines, and
that the knuckle is given by their intersection, respectively by their change point. So the
measured coordinates can be approximated by just one non-smooth curve of absolute value
function:

Y ∗ = φ(θ, x∗) = θ1x
∗ + θ2 + θ3|x∗ − θ4|. (6.8)

Note that parameter θ4 has a special meaning, it determinates the change point.
Now it is necessary to estimate the values of unknown parameters θ1, θ2, θ3, θ4 occuring

in nonlinear function φ.
Let

x∗ = (F ∗x,1, . . . , F
∗
x,n)

′,

Y∗ = (F ∗y,1, . . . , F
∗
y,n)

′,

Y∗0 = φ(θ0,x∗).

The standard procedure of calculation, described in [23], is to linearize the nonlinear
function (as seen in Eq. 6.8) at the approximate values θ0, i.e.:

E(Y∗ −Y∗0) = Xθ,

φ(θ0,x∗) +Xδθ = 0.
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Now appropriate initial solution can be derived:

θ0 = (1/2, P2,−1/2, P1)
′.

In [12] there are written all steps of estimation for function (Eq. 6.8).
If Y∗ is normally distributed with mean value equal to Xθ and with covariance matrix

σ2I, then estimator of an unknown vector parameter θ̂ = θ0 + δ̂θ is given by formula:

δ̂θ = (XX′)−1X′(Y∗ −Y∗0), (6.9)

where k-th row of matrix X is

Xk,. =

(
∂φ

θ1
(θ0, x∗k),

∂φ

θ2
(θ0, x∗k),

∂φ

θ3
(θ0, x∗k),

∂φ

θ4
(θ0, x∗k)

)
.

The covariance matrix of θ̂ is

Var(θ̂) = σ2(X′X)−1. (6.10)

The unbiased estimator of σ2 is

σ̂2 =
(Y∗ −Xβ̂)′(Y∗ −Xβ̂)

n− 2
. (6.11)

An extensive coverage of linearization method and parameter estimation models can be
found in books [23] and [27].

6.6.3.6 Transformation of non-smooth function to the old system of coordi-
nates

The point (x∗, φ(x∗))V can now be transformed to the point ξ = (ξ1, ξ2)U in the old system
of coordinates U by following formula: ξ1

ξ2


U

=

 cosψ, − sinψ

sinψ, cosψ

 x∗

φ(x∗)


V

+

+

 s1

s2


U

. (6.12)

6.6.4 Experiments

A �nger in a 3D coordinate system was observed by the Kinect sensor. The measured
values used for the experiment come from DepthTip data set and are available online [2].
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To illustrate the whole detection and con�rmation process, lets study the results of the
proposed algorithm for several measurements. One important reason for such an exper-
iment is to check numerical correctness of the results. When testing the quality of the
method, the algorithm successfully detected the knuckle in 47 of 50 experiments.

Figures 6.23, 6.24, 6.25, 6.26, 6.27 illustrate examples with successful resulting approx-
imation. Figure 6.28 demonstrates unsuccessful approximation. A poor quality estimator
in this case can be caused by numerical nonstability. In the case of a non-linear model,
a linearization can be a source of di�erences in the results. Also, when classi�cation of
�ngertip and �nger segment points is not correct, our procedure cannot be considered to
be optimal. An example of such a situation in experiment No. 50 is depicted in Fig. 6.28.

Figure 6.23: Scan, segmentation and approximation of �nger: experiment No. 4
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Figure 6.24: Scan, segmentation and approximation of �nger : experiment No. 5

Figure 6.25: Scan, segmentation and approximation of �nger : experiment No. 6
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Figure 6.26: Scan, segmentation and approximation of �nger : experiment No. 36

Figure 6.27: Scan, segmentation and approximation of �nger : experiment No. 44
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Figure 6.28: Scan, segmentation and approximation of �nger : experiment No. 50

6.6.5 Proposed mathematical model summary

The mathematical model able to �nd knuckle coordinates by �nding an intersection of
two straight lines in 2D space was created. This is achieved thanks to regression models,
grounded in an explicitly de�ned approximation function of �ngers. For our input data
with a given classi�cation of points, the presented solution of a �nger's approximation is
relatively simple and simultaneously approximately optimal.
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Chapter 7

Out of the box thinking - new UI

paradigms

Though the main focus of this work was touch based user interface, where a user is resting
his hands on a working surface, possibilities for novel user interface paradigms are endless.
As stated in chapter 2.2.3, multi-modality is a key factor.

This chapter gives an example of such out-of-the-box thinking. It presents an early
concept of a user interface component that is designed to help computer users to intu-
itively organise their digital storage, so that they can easily locate their previously saved
documents. Instead of using a traditional hierarchical folder tree, a user is associating his
documents with a pair of symbols, organized into three dimensional working space. Posi-
tions of user's hands are captured to determine the pair of symbols, being detected either
using a depth sensor or RGB camera.

7.1 History insight into how we access digital content

In 1968, Doug Engelbart made his famous demonstration, later retrospectively called "The
Mother of All Demos" [7]. The live demonstration featured an introduction of almost all
the fundamental elements of modern personal computing: from multiple windows, through
hypertext to support for collaborative work. One of the novel features presented was
hierarchical tree that user can create and manage to organize pieces of information.

Today, more than forty years later, the way how we are organising our personal data
has not changed much. We are still using folder trees to store our documents and our
applications of daily use have buttons arranged into hierarchically arranged menu items.
Even if we are trying to do our best to keep such hierarchy well organized, we are struggling
to �nd our documents after some time, reverting to fulltext searches.
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7.2 3D Associative Symbol Array as Component of User

Interface

3D Associative Symbol Array is a new theoretical paradigm for user interface component.
It is designed to allow users to access digital information directly, instead of descending
into a hierarchical tree, by utilizing the brain ability to associate symbols to each other.

In chapter 7.2.1, concept of 3-dimensional associative array is de�ned and four basic
types of arrays are proposed. Section 7.3 describes how this concept can be used by users to
build an association and later access data and also describes prototype of the component.

7.2.1 Concept of associative array

Associative array is a theoretical concept of user interface component that enables users to
utilize their associative brain skills to gain fast access to previously stored data or execute
previously associated computer commands. Instead of traditional keyboard, where user is
manipulating only with letters of English alphabet (keys), in this approach user is using
symbol board and "pressing" combinations of two symbols.

To better understand the concept, working with traditional and proposed user interface
component can be compared to behaviour of di�erent data structures used in computing.
User traditionally using keyboard and mouse to access data through hierarchy of folders
is similar to multi-dimensional tree search algorithm. The disadvantage of accessing data
through folder tree is that it requires to select multiple targets with an input device like
mouse or keyboard to �nally reach it, based on depth of the tree. User using proposed
associative array component behaves in a similar way as algorithm directly obtaining data
through key in a hash map, avoiding tree traversal.

7.2.1.1 Symbol board

Symbol board is a multi-modal representation of the associative array, presented to a user as
a part of user interface. It consists of a virtual 3D space, divided to left hand and right hand
operational cubes. Each cube represents a 3D 3x3x3 matrix space, containing 27 symbol
cells. Each cell contains symbol that can have both visual and audible representation and
has x, y and z coordinates, de�ning particular symbol cell:

x ∈ {0, 1, 2}; y ∈ {0, 1, 2}; z ∈ {0, 1, 2} (7.1)

User selects symbols in symbol cells by placing both hands into appropriate positions in
3D virtual space, as described in detail in chapter 7.3.2. This allows for total number of
729 di�erent associations:

N = (33)2 (7.2)

While coordinates x and y are determined by a position of the hand on the table in the
horizontal plane, z coordinate is changing with the height of the hand above the table. If
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z = 0, hand is resting on the desk. In such situation, contact with the desk helps user to
instantly place his hand to correct height without prior training.

7.2.1.2 Associative array types

Associative arrays can be of di�erent types, based on the category of symbols they contain.
Symbols are chosen in a way so that they have easy to remember features like color, shape
or other signi�cant properties.

So that user can easily �nd a position in an array for his hands if he can remember the
symbols, placement of symbols in symbol board adheres to prede�ned logical principles.
In this way, brain can estimate the position of symbol cell ahead of opening the symbol
board, even if appropriate visual and audible symbols are not yet presented. Such a design
is in compliance with a claim, that if we can execute some action in short time mentally,
also physical execution of the action is then fast [32]. Each of the chapters dealing with
di�erent associative array types contains also a description of these logical principles.

Proposed associative array types are:

• Color array

• Animal array

• Audible sounds array

• Items array

7.2.1.3 Color array

Color array is designed in a way so that colors are as distinct from one another as possible.
Appearance of color array symbol board component is in Fig. 7.1. Color placement follows
simple logic:

• As x index increases, intensity of red channel increases.

• As y index increases, intensity of green channel increases.

• As z index increases, intensity of blue channel increases.
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Figure 7.1: Associative color array

Intensity I of red R, green G and blue B channels of array cells is calculated using cell
indices x, y and z:

I ∈ {0, 0.5, 1} (7.3)

R = x ∗ 0.5;G = y ∗ 0.5;B = z ∗ 0.5 (7.4)

7.2.1.4 Animal array

Animals are easy to associate symbols, as they represent di�erent life styles, live in di�erent
environments, vary in size, behaviour and shape. Example of proposed appearance of
animal array in user interface is in Fig. 7.2. Placement of animal symbols follows simple
logic:

• x array index = size of an animal: 0 means smallest, 2 means biggest.

• y array index = position of an animal in the evolution tree: 0 means high intelligence
(typically mammals), 1 means not so intelligent animals but still living, 2 means low
intelligent, prehistoric animals.

• z array index = living environment of an animal: 0 means earth, 1 means water and
2 means air.
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For example a whale is large intelligent mammal, living in sea, so its coordinates in
animal array are 2, 2, 1.

Figure 7.2: Associative animal array

7.2.1.5 Items array

Array consists of symbols of items manufactured by humans. Placement of items inside
the array holds the same logic as of Animals array, so that user can remember only one
set of placement rules both for animal and items associative arrays. Example of proposed
symbols in items array is in Tab. 7.1. Placement logic for items array is following:

• x array index = size of the item: 0 means smallest, 2 means huge.

• y array index = position of item in technology tree: 0 means smart, sophisticated
item, 2 means crude, simple item.

• z array index = operating environment of an item: 0 means earth, 1 means water
and 2 means air.

For example a symbol of Crane will be associated with position with coordinates 0, 0, 0.
Visual appearance of items array can be same as for animals array, using icons of items
placed on cubes in 3D space.
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7.2.1.6 Audible sounds array

In contrary to previous associative array types, that can be visually displayed in user
interface tool, this array contains audible sounds that are played only when user with his
hand activates (enters) symbol cell in 3D array space. This means that user can hear same
sound both when storing the document and when recovering it from a data storage. He
can use his auditory memory, that can be individually more powerful than visual or motor
memory. In this way he can gradually tune to the correct sound while searching for the
document and approaching the correct symbol cell. Placement of sounds inside the array
follows this logic:

• x array index = the tone of musical instrument that is playing: 0 means C, 1 means
E, 2 means G.

• y array index = selection of musical instrument: 0 means violen (most pure sound),
1 means trumpet, 2 means percussion instruments (least pure sound).

• z array index = octave, 0 means C1, 1 means C2 and 2 means C3.

For example a sound of violin playing E2 will be associated with position with coordi-
nates 2, 1, 2.

7.3 Usage of associative array

7.3.1 Information association step

When user wants to store a new association to an existing document (e.g., some �le or an
email) so that he can later easily �nd it, a user interaction follows these steps:

Table 7.1: Proposed symbols in items associative array

x=0 x=1 x=2

y=2, z=2 Arrow Baloon Airship

y=1, z=2 Bumerang Ultralight Concord

y=0, z=2 Qudrocopter Fighter Spaceship

y=2, z=1 Paper boat Catamaran Rae boat

y=1, z=1 Kayak Fishing boat Galley

y=0, z=1 Water scooter Modern Yacht Battleship

y=2, z=0 Hammer Sledge Stonehange

y=1, z=0 Lantern Bicycle Bridge

y=0, z=0 Smartphone Modern car Crane
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1. The symbol board tool is invoked. Multi-modal representations of L and R associative
arrays are displayed on the screen, allowing user to place his right hand to some
position in right array R and left hand to left array L, choosing unique combination
of two symbols.

2. User decides on a pair of symbols to be associated with this document. Pair consists
of one symbol from left hand array L and one from right hand array R. This pair is
uniquely de�ned by two 3D coordinates from arrays L and R.

3. User places both his hands to proper places in 3D space, associated with chosen
symbols in arrays L and R.

4. To con�rm his decision, user extends his left thumb, as if performing the OK gesture,
as seen in Fig. 7.3.

5. Document icon is visual changed in applications that are working with it, so that it
is consistent with chosen associative symbol (e.g., a colorful icon with small picture
of the symbol). This enforces the association of document with pair of symbols in
user's brain.

Figure 7.3: User's left hand con�rming symbol selection

In step 2) user chooses such symbols that most resemble the document in question.
The choice is very individual as every human brain is unique.

7.3.2 Information retrieval step

Information retrieval of previously saved document follows these steps:
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1. User decides to access the document. He uses one of two approaches or combination
of both to do so:

(a) User recalls positions of his hands in the 3D space using his motor memory.
This is done in a similar way as if pressing frequently used keyboard shortcut
without thinking about the keys pressed. Automation of the movement will
help to properly place hands even without recalling the symbols. As suggested
in [3], this approach can be more suitable for items that are accessed often, as
motor memory tends to decay with length of retention interval. Ideal candidates
would be shortcuts to frequently used application commands, such as sending
an e-mail in mailbox application.

(b) User recalls from his memory a pair of symbols and looks them up in the arrays
in the tool. This can be suitable for document, as user can be choosing symbols
based on document content.

2. User accesses the document by placing the hands to the same positions as when he
was storing it.

7.3.3 Early prototype of associative array component

For proper operation of component, information about users hands in 3D space is required.
RGB camera or depth sensor are suitable input devices for the task. Early prototype of
associative array component was built using depth sensor to capture position of user's
hands. If using RGB camera, software could calculate z index by comparing area of hand
pixels with 2D area of the symbol cell.

7.3.3.1 User hands localization in 3D space of symbol board

A depth camera Microsoft Kinect placed horizontally above user's desk was used to obtain
necessary data, in a same way as in TouchTable user interface, described in chapter 5.2.
It provides depth map with resolution of 640x480 pixels with frequency of 30 Hz. As clear
from [A.8] where similar approach of activating virtual cubes by placing user's �st was
used, these parameters are su�cient to create interface with real-time interaction.

The depth image is processed by an auxiliary software, detecting both user's hands in
one of 27 segments of associative array 3D spaces. Fig. 7.4 shows sample situation of 3D
space, captured by RGB camera. Fig. 7.5 shows result of an analysis of the situation based
on a depth frame image, where two segments with detected user's hands are highlighted.
Blobs of gray pixels represent detected user's hands. Displayed number shows z index,
based on height of the hand above the desk. It is calculated using (7.5), where d is
a distance in millimeters of the palm center from the desk surface:

z = bd/10c (7.5)
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7.3.3.2 Hand positioning clues

So that a user can more easily �nd a place where to put his hands, virtual space can be
projected to semi-transparent working desk, as in [A.7]. Some form of physical border (like
harsh tape or metal wire) can also be attached to the desk to create tangible feedback
helping a user to place hands to desired symbol cell. For help with placement to positions
with z=2, glass can be mounted to proper height above the working surface as depth sensor
is ignoring it and can provide depth data for all objects under the glass.

Figure 7.4: User's hands working in a virtual symbol board

Figure 7.5: Detected user's hands in coordinates L(1,2,0) and R(2,1,1)
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7.4 Future work

So that the new proposed user interface component is validated, experiment with real
users is needed. In such an experiment, users would be asked to save multiple documents
and later �nd them again, using associative array. Measures like storing and recovering
speed, number of failed attempts to store or recover documents and other parameters
would be captured. Di�erent types of associative arrays presented in this paper would
be examined, comparing their ability to be used for easy association of documents with
symbols. However, this experiment has not been done yet and it is a subject of further
research. This paper set a theoretical and practical background for such research advance.
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Chapter 8

Summary

A high �ngertip detection accuracy algorithm called 'Circular scan algorithm' was created.
Based on the input image from a depth sensor, the algorithm is able to detect �ngertips
both for straight and bent �ngers in real-time. As to my best knowledge, literature does
not mention any other algorithm that would meet these objectives. A new dataset called
DepthTip, freely available for the scienti�c public, was recorded and annotated. Using this
dataset, an algorithm processing speed of 22 milliseconds and a detection accuracy of 2.44
pixels was measured and compared to other algorithms. The algorithm detected, without
failure, all �ngertips in all 73 samples of the DepthTip dataset.

A user interface called TouchTable was created. It works in a similar way as multi-touch
surfaces already known (like Microsoft Surface), allowing users to interact with a computer
using both their hands. However, compared to regular touch screens, TouchTable has
a di�erent method of hand detection, which is based on an observed hand contour and
placement of the depth sensor above the table. It brings an advantage that the user
can rest his hands on the surface, preventing fatigue during longer work. It also can be
built at a fraction of the cost of similar devices available on the market. The hardware
for a TouchTable costs approximately 800 euros, compared to a new version of Microsoft
surface device, which is valued at 7000 euros.

Additionally, a mathematical model of a bent �nger was created, allowing us to �nd
a knuckle position in 3D space, using line approximation methods.

8.1 Lessons learned

Most valuable lessons learned during my research are as follows:

• By increasing �ngertip detection accuracy, productivity of a user operating a 3D user
interface in a drawing use case, can be increased signi�cantly.

• A 3D user interface that mimics the mouse is not productive enough to replace
mouse and keyboard, but has high potential to be used in new paradigms of user
interface action mappings, as suggested in chapter 7: Out of the box thinking - new
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UI paradigms. Nevertheless, it may be used in scenarios, where traditional devices
are not suitable. This can be, for example environments where mouse and keyboard
could be stolen or damaged (public information stalls) or where high need for sterility
prevents using them (like surgeon operating rooms).

• The most interesting part of my research was to observe how real users were operating
in novel ways with a computer, using my proposed user interfaces. It was an exciting
experience to watch them and learn through the experiment feedback, in order to later
test new ideas in real user interaction. To my surprise, operations that were intuitive
and easy to perform for me (as an author of the interface), posed a serious usability
issue for others. This understanding allowed me to appreciate the real value of such
experiments, where out-of-the-lab ideas, nurtured in the mind of a researcher, are
confronted by real users. This brings the most welcomed and desired understanding
of the direction where the research should continue.

• Current speech recognition engines are not yet in a stage of hassle-free computer in-
put. For some users, especially those that are not �uent English speakers, pronounc-
ing computer commands so that they can be properly recognized, is a challenging
task. Still, if the number of commands is limited, it is already a viable way how to
accompany hand gestures in a keyboard free environment.

• User interface must enable users to fully rest all muscles in the time of inactivity.
This is necessary if it is supposed to be used in the long term. Most of the time, the
user is thinking about the next step and is physically idle. Some interaction with
a computer is then performed quickly when the decision is �nally made. So, the user
interface should require some muscle activity or strain only at the time of action.

• For a hand operated user environment, it is desirable that operations are performed
in place. This means that users can see changes in a user interface at the same
location where they are working with their hands. In this way, the human vision
system and human hand coordination system are synchronized. If the interaction
occurs in the air or at the desk, but the user can only watch the computer screen
with their virtual hands, this confuses users and forces them to split their cognition
models of reality into two - one for their hands and one for the virtual world they
are manipulating.

8.2 Future work

In future, I would like to perform more advanced experiments with the TouchTable and
with more users. I also want to learn how users interact after they underwent longer
training with the TouchTable. I would like to test a physical ball-like manipulator with an
extrusion, instead of the index �nger, to minimize the strain to hand muscles (as suggested
by one of the users). Additionally, I would like to expand the idea of such a 3D user interface
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that is not just mimicking the mouse in the way that a user operates it, but instead, bring
new paradigms for HCI. Experience gained during this work and also creation of hand
analysis algorithms are good starting points for such a follow up research.

As a �nal word I would like to humbly admit, that though my research provided a lot
of answers regarding a productive 3D user interface, many more questions were raised to
be answered by follow up research.
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Appendix A - DepthTip evaluation

dataset

DepthTip is a dataset that is used to evaluate precision of �ngertip detection algorithm,
consisting of 74 images obtained from depth sensor Microsoft Kinect (version 1).

DepthTip is one of the merits of this work and is available for scienti�c public. This
chapter explains the contents of DepthTip and information how to use this dataset for
evaluation of algorithms calculating features like �ngertips, that analyse binary image of
a human hand.

8.3 DepthTip folders

DepthTip can be downloaded as ZIP �le [2] and has following folders:

• inputDataSet

• annotated

• results

8.3.1 Folder inputDataSet

It contains raw data captured from the sensor, where n in the �lename stands for the
number of a sample.

• n_depth.png - depth image, where pixel intensity represents a distance in mm from
the sensor.

• n_rgb.png - image from an RGB camera for reference. Please note that pixel co-
ordinates are not calibrated with the depth image and are slightly shifted, which is
caused by a di�erent placement of RGB and depth cameras on the Kinect device.

• n_hand.png - a binary image where white pixels represent a hand and black pixels
a background.

Fig. 8.1 shows an example of three input �les for the DepthTip sample no. 1.
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Figure 8.1: Example of input �les for DepthTip sample no. 1

8.3.2 Folder results

It contains result of �ngertip detection when given sample is analysed by one of the
proposed �ngertip detection algorithms. Each results subfolder contains �les with name
(n)_(nameOfAlgorithm).png, where (n) in the �lename stands for the number of a sample.
Detected �ngertips are marked with yellow diagonal cross.

Additionally, excel �le called algorithmExperiments.xlsx containing all data created
by the run-time experiments with di�erent �ngertip detection algorithms can be found
in this folder. For each algorithm, spreadsheet contains a two separate lists, one with
algorithm running speeds and one for algorithm detection results.

Folder results has following subfolders:

• CircleScanAnalyzerContourOnly - results of an execution of the proposed algorithm
from 2015 described in chapter 6.2.5.

• CircleScanAnalyzerFull - results of an execution of the proposed algorithm from 2015
described in chapter 6.2.4

• CuttO�FingerPointAnalyzer - results of an execution of the proposed algorithm from
2014 described in chapter 6.2.3. Black cutting lines are visible in the results where
a �nger blob was cut o� by the algorithm from the palm. Numbers displayed at
polygon points are pixel classi�cation groups. More details on the pixel classes can
be found in the published paper.

• DistanceFromCenterAnalyzer - reference results of an execution of the algorithm from
2012 from literature described in chapter 3.5 for �rst 50 DepthTip samples. Gray
circle display the maximum distance circle found.

• PolygonSimpli�cationAnalyzer - results of an execution of the proposed algorithm
from 2013 described in 6.2.2.

CircleScanAnalyzerContourOnly and CircleScanAnalyzerFull contain also red pix-
els (classi�ed as �ngertips) and brown pixels (classi�ed as �nger segment pixels).

85



PolygonSimplificationAnalyzer and CuttOffF ingerPointAnalyzer display also the
simpli�ed hand contour polygon drawn in gray respectively green color.

Fig. 8.2 shows example results for the sample no. 1.

Figure 8.2: Example results of DepthTip sample no. 1 analysis by di�erent algorithms

8.3.3 Folder annotated

Each input depth image was manually annotated by setting of �ngertip pixels to particular
color, depending on the �nger index.

• RGB(128,0,0) for thumb

• RGB(160,0,0) for index �nger

• RGB(192,0,0) for middle �nger

• RGB(224,0,0) for ring �nger

• RGB(255,0,0) for little �nger

The folder contains also a text �le containing coordinates of these annotated pixels.
This is an example of the content from �le annotation/1_annotation.txt.

Detected finger index (1=thumb ,5=little finger ) , x coord , y coord )
1 ,183 ,229

This means that in a depth image the thumb (index = 1) is present at coordinates
x=183, y=229.

8.4 How to use DepthTip to evaluate a �ngertip detec-

tion algorithm

In an experiment, proposed algorithm needs to process all input images and calculate
an average distance from annotated text �les. This value needs to be compared to the
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ground truth algorithm implementations from chapter 6.3.1. From that is for example
clear that the 'Circular scan algorithm' performs much better compared to the 'Finger
cut-o� algorithm'.
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Appendix B - Dissertation source code

8.5 Source code download

Source code for whole TouchTable and all referred �ngertip detection algorithms is freely
available for download [14]. This means that whoever is interested in running TouchTable
experiments or using it to evaluate his own �ngertip detection algorithm in a user experi-
ment is welcome to use it.

The source code contains following modules:

• DepthBasics-WPF: The main executable project that enables to run TouchTable
with a newer version of Microsoft Kinect Device v2.

• KinectExplorer-WPF: The main executable project that enables to run TouchTable
with an older version of Microsoft Kinect Device v1.

• KinectWpfViewers: A visualisation of depth data from Kinect to a human readable
image.

• ReferencesLibrary_x86: All needed libraries to run TouchTable in a 32-bit mode.

• TouchTableCore: The core logic for TouchTable and a �ngertip detection. Fingertip
detection algorithms reside inside this module in the analyzer folder.

• TouchTableUnitTest: Unit tests that are verifying a TouchTable logic and that �n-
gertip detection algorithms work as expected.

The reason why there are two di�erent projects for two di�erent versions of Kinect
device stems from the fact that unfortunately, API to both Kinect versions is not backward
compatible and di�erent source code is needed to work with both devices.

8.6 Code listings for critical code sections

This chapter contains the source code for the winning CircularScanAlgorithm that can be
found under the following path:

TouchTableCore/analyzer/circleScanAnalyzer/CircleScanAnalyzer.cs

For better understanding of the algorithm, it is recommended to refer to the diagram
in Fig. 6.13.
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8.6.1 investigateOneHandPixel method

Input of this method is a single pixel on the hand boundary. Method determines
to what category the single pixel belongs and saves the result to the data structure
resultF ingerT ipSegments and resultF ingerSegments.

pr i va t e void investigateOneHandPixel ( i n t col , i n t row , i n t scanCircleDiameter , double ←↩
halfCirclePerimeter , i n t scanDelta , Image<Gray , byte> handContourMap , Image<Bgr , ←↩
byte> displayImg , Image<Gray , byte> maskWithCircle , double minimalIntersectingArea , ←↩
PointF centerOfScanWindow , Image<Gray , byte> resultFingerSegments , Image<Gray , byte>←↩
resultFingerTipSegments )

{
var scanWindow = new Rectangle ( col − scanDelta , row − scanDelta , scanCircleDiameter ,

scanCircleDiameter ) ;
handContourMap . ROI = scanWindow ;
var intersection = maskWithCircle . Sub ( handContourMap ) ;

us ing ( var memStorage = new MemStorage ( ) )
{

var blobsWithReasonableSize = ImageUtil . FindContours (5 , intersection , memStorage←↩
) ;

var intersectionBlobCount = blobsWithReasonableSize . Count ;
i f ( intersectionBlobCount >= 2)
{

markResultPixel ( displayImg , row , col , 0 , 0 , 128) ;
resultFingerSegments . Data [ row , col , 0 ] = 255 ;

}
e l s e i f ( intersectionBlobCount == 1)
{

// This may be f i n g e r t i p
var singleDetectedBlob = blobsWithReasonableSize [ 0 ] ;
var isPartOfBlobConvexHull =

singleDetectedBlob . GetConvexHull ( ORIENTATION . CV_CLOCKWISE ) . InContour (←↩
centerOfScanWindow ) > 0 ;

var intersectCurveLength = CvInvoke . cvArcLength ( singleDetectedBlob , MCvSlice←↩
. WholeSeq , 1) ;

var curveIsLongerThenHalfCircle = intersectCurveLength > halfCirclePerimeter←↩
∗ 4 ;

var isFingerTip = isPartOfBlobConvexHull &&
curveIsLongerThenHalfCircle ;

i f ( isFingerTip )
{

// This p i x e l i s f i n g e r t i p
markResultPixel ( displayImg , row , col , 0 , 0 , 255) ;
resultFingerTipSegments . Data [ row , col , 0 ] = 255 ;

}
e l s e
{

// This p i x e l be longs to palm but i s c l o s e to edge o f hand
markResultPixel ( displayImg , row , col , 128 , 128 , 128) ;

}
}
e l s e i f ( intersectionBlobCount == 0)
{

markResultPixel ( displayImg , row , col , 255 , 255 , 255) ;
}

}
}
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8.6.2 createFingersFromFingertipSequences method

This code travels alongside hand contour pixels and if enough subsequent �ngertip pixels
are collected, that as a sequence neighbours at least one �nger segment pixel, detected
�nger is created from this sequence.

pr i va t e s t a t i c void createFingersFromFingertipSequences (
Contour<Point> handContour , byte [ , , ] resultFingerSegmentsData , byte [ , , ] ←↩

resultFingerTipSegmentsData , List<FingerBlob> resultFingerBlobs )
{

i n t pointIndex = 0 ;
var handContourPixels = handContour . ToArray ( ) ;
decimal pixelCount = handContourPixels . Count ( ) ;
i n t x , y ;
var collectedFingerTipPixels = new List<Point>() ;
var lastPoint = handContourPixels . Last ( ) ;
bool lastPixelWasFingerSegment = resultFingerSegmentsData [ lastPoint . Y , lastPoint . X , ←↩

0 ] == 255 ;
whi l e ( pointIndex < pixelCount )
{

var handContourPixel = handContourPixels [ pointIndex ] ;
y = handContourPixel . Y ;
x = handContourPixel . X ;
// Check to a l r eady analyzed p i x e l category , s to r ed in ←↩

resultFingerTipSegmentsData s t r u c tu r e
var isFingerTip = resultFingerTipSegmentsData [ y , x , 0 ] == 255 ;
i f ( ! isFingerTip )
{

// Too shor t f i n g e r t i p arches are d i s ca rded
i f ( collectedFingerTipPixels . Count ( ) > 15)
{

// We have f i n g e r t i p ! ( sequence o f f i n g e r t i p p i x e l s , ne ighbour ing at ←↩
l e a s t one f i n g e r segment p i x e l )

i f ( lastPixelWasFingerSegment )
{

var start = collectedFingerTipPixels . First ( ) ;
var end = collectedFingerTipPixels . Last ( ) ;
var fingerBlob = CreateFingerBlob (

start ,
end , collectedFingerTipPixels . ToArray ( ) ) ;

resultFingerBlobs . Add ( fingerBlob ) ;
}

}
i f ( collectedFingerTipPixels . Count > 0)
{

collectedFingerTipPixels . Clear ( ) ;
}
lastPixelWasFingerSegment = resultFingerSegmentsData [ y , x , 0 ] == 255 ;

}
e l s e
{

collectedFingerTipPixels . Add ( handContourPixel ) ;
}

pointIndex++;
}

}
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Appendix C - How to understand box

plots

In this work, box plot are used for display of statistical data in a standard way. Fig. 8.3
shows an example of a box plot. Box plots provide a visualization of summary statistics
for sample data and contain the following features [1]:

• The tops and bottoms of each box are the 25th and 75th percentiles of the sam-
ples, respectively. The distances between the tops and bottoms are the interquartile
ranges.

• The line in the middle of each box is the sample median. If the median is not centered
in the box, it shows sample skewness.

• The whiskers are lines extending above and below each box. Whiskers are drawn from
the ends of the interquartile ranges to the furthest observations within the whisker
length (the adjacent values).

• Observations beyond the whisker length are marked as outliers. An outlier is a value
that is more than 1.5 times the interquartile range away from the top or bottom of
the box. Outliers are displayed with a red + sign.

• Notches display the variability of the median between samples. The width of a notch
is computed so that box plots whose notches do not overlap (as above) have di�erent
medians at the 5% signi�cance level. The signi�cance level is based on a normal
distribution assumption, but comparisons of medians are reasonably robust for other
distributions. Comparing box-plot medians is like a visual hypothesis test, analogous
to the t test used for means.
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Figure 8.3: Example of a box plot used in the thesis
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Abbreviation list

.NET
A framework for running C# applications, it is an integral component of the Windows
operating system.

3D
3-Dimensional, data with x, y and z coordinates.

API
Applicable program interface, a set of routines, protocols and tools for building soft-
ware applications.

AR
Augmented reality, a user interface where a user senses real a environment which
surrounds him but his senses has an extra digital information from the user interface.
An example is meta information like a distance from other planes that is projected
onto the cockpit window of jet �ghters. It di�ers from VR in a way that user is aware
of the real environment surrounding him.

C#
C# (pronounced as Csharp) is a simple, modern, general-purpose and object-
oriented programming language, with a syntax very similar to the Java programming
language.

CTS
Carpal tunnel syndrome, a health problem caused by repetitive movements of tiny
hand muscles.

EmguCV
Emgu CV is a cross platform .Net wrapper to the OpenCV image processing library.

HCI
Human-computer interaction

HSV
Hue, Saturation and Value - three channels in the HSV color model, that is alternative
to the RGB (Red, Green, Blue) model and is more suitable for a feature detection.
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Hi-vis
High visibility material frequently used in a visual motion capture that marks items
using highly visible contrast color.

IR
Infrared, light waves with a speci�c frequency in light spectrum.

MoCap
Motion capture

OpenCV
OpenCV is a library of programming functions mainly aimed at a real-time computer
vision, developed by the Intel Russia research center in Nizhny Novgorod.

RSI
Repetitive strain injury, a health problem caused by repetitive movements of tiny
hand muscles.

UI
User Interface. System that is used for a bi-directional communication between a man
and a machine.

VR

Virtual reality, a user interface where a user is completely submerged with multi-
ple senses in a virtual world. It di�ers from AR UI in a way that the user is not
aware of what is happening in a real environment that is surrounding him.
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