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Tab. 1: List of used physical quantities 

Quantities Description Unit 

A cross sectional area of circumferential ring mm2 

D diameter of the edge mm 

E Young’s modulus of elasticity MPa 

Etan tangent modulus of hardening MPa 

lg 
reference length lg  (length of ruler to 

measure imperfections) 
mm 

R radius of curvature of spherical cap mm 

p external pressure MPa 

���� elastic critical buckling pressure MPa 

������� 
critical outer pressure of imperfect spherical 

cap in elastic area 
MPa 

������ 
critical outer pressure of ideal spherical cap 

in elastic area 
MPa 

Rp0,2 yield strenght MPa 

r radius of the base circle  mm 

tc wall thickness of the spherical cap mm 

tr wall thickness of the circumferential ring mm 

uy displacement of point in the center of the cap  mm 

w width of the circumferential ring mm 

∆	
 characteristic amplitude imperfection  mm 

∆	 depth of initial geometric imperfection mm 

α elastic imperfection factor (reduction factor) --- 

Γ 

parameter influence of radial stiffness of the 
circumferential ring  

--- 
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δ relative deviation % 

ε strain --- 

µ Poisson´s number --- 

� 
parameter influence the depth of the initial 

imperfections 
--- 

Φ half angle ° 

���� critical stress MPa 

χ buckling reduction factor --- 
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1 Introduction 

Thin-walled structures are often used in different branches 
of industry (chemical, energy, transportation, construction, food, 
etc.). The main advantage of the thin-walled structure is the high 
carrying capacity at low weight of structure. One of the possible 
limiting states of these types of structures is the loss of stability. 
Loss of stability can be significantly influenced by initial 
imperfections of the structure. The initial imperfection usually 
reduces carrying capacity of the structure. The initial imperfections 
sometimes influence the shape of loss of stability. 

Initial imperfections can be considered as the imperfections 
of geometry, the attaching and loading of the structure, initial stress 
or irregularly distributed mechanical material properties, etc. 
The stability can be mainly influenced by initial geometric 
imperfections. Initial geometric imperfection is supposed in the form 
of a local buckle. 

Doctoral dissertation deals with the influence of initial 
imperfections on the loss of stability of thin-walled spherical caps. 
The problem is reduced to the simply supported spherical caps 
subjected to an external pressure. The caps are stiffened by 
the circumferential ring at the lower edge. 

The main aim of the doctoral dissertation is to determine 
a new reduction factor. This factor represents influence of the initial 
imperfections on the loss of stability of the spherical cap stiffened by 
circumferential ring at the lower edge. 
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2 Current situation in the studied problems   

Loss of stability of thin-walled structures has been the subject 
of research of many authors. This chapter provides the summary 
of the most significant authors. Doctoral dissertation is founded 
mostly on research of authors W. Wunderlich and P. Paščenko. 

D. Bushnell [8] marginally dealt with the numerical 
description of the behavior of spherical cap stiffened by 
circumferential ring. Bushnell in his book claims that spherical caps 
are less sensitive to the initial imperfections. This phenomenon is 
explained by nature of construction of a spherical cap, which it 
contains significant bending stress. The author presents that 
the influence of this bending effect on the loss of stability may be 
higher than the influence of bending effect of initial imperfections. 

M. Esslinger and B. Geier [7] performed a series 
of experiments of loss of stability of the complete sphere. They 
found the complete sphere is very sensitive to initial imperfections. 
The authors likened the sensitivity of the complete sphere 
to the sensitivity of the axially loaded cylindrical shells. 
They confirmed that one of the critical load can correspond 
to multiple to eigen shapes of loss of stability. 

P. Paščenko studied loss of stability of thin-walled spherical 
caps in his habilitation thesis [4]. He examined also spherical caps 
with final stiffness in the radial direction. He expressed the influence 
of initial imperfections on the loss of stability by reduction factor. 
This factor was derived for axially loaded cylinder. The author 
himself refers to this approach probably a conservative 

W. Wunderlich [3] studied the loss of stability of spherical 
caps in terms of boundary conditions, the half angle of a spherical 
cap, non-linear material behavior (plasticity) and the influence 
of initial imperfections. Author reached the simple relations intended 
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to design a spherical cap for the uniform load. He compiled his 
findings in the European ECCS recommendations (stability of steel 
structures) [2]. Author did not, however, examine the influence 
of circumferential ring to the loss of stability of the spherical cap. 
Description of research (anchored in the ECCS) is shown in the 
following chapter 2.1. 

2.1 Influence of initial imperfections on the load carrying 
capacity spherical cap according to ECCS [2] 
(author W. Wunderlich) 

2.1.1 Characteristic imperfection amplitude 

 

Fig. 1: Simply supported spherical cap stiffened by circumferential ring.  

Characteristic imperfection amplitude ∆	
  expresses the 
maximum depth of imperfections (local buckle). Its value depends on 
the accuracy class of production and on the geometrical dimensions 
of a spherical cap. The size of the characteristic imperfection 
amplitude is measured by using a ruler for measuring of initial 
geometric imperfections (Fig. 1). 
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Characteristic imperfection amplitude is determined by the equation: 

 ∆	
 
1
��� ∗ �� (1) 

where 

� – fabrication quality parameter from Tab. 2. 

Tab. 2: Value of quality parameter Q 

Accuracy class Description Q 

Class 1 excellent 40 

Class 2 hight 25 

Class 3 normal 16 

The dependence of the characteristic imperfection amplitude 
vs. thickness parameter R/tc is shown in Fig. 2. It is obvious that 
the maximum allowable depth of local buckle increases with 
decreasing thickness parameter R/tc. 

 

Fig. 2: Dependence of the characteristic imperfection amplitude vs. 

thickness parameter R/tc 
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2.1.2 The elastic imperfection factor 

The influence of the initial geometric imperfection 
on the carrying capacity of the spherical cap is expressed by elastic 
imperfection factor α. The elastic imperfection factor α is determined 
by formula 

 
�  0,70

1 � 1,90 ∗ �∆	

�� �

�,�� 
(2) 

where 

∆	
 – characteristic imperfection amplitude. 

Example of elastic imperfection reduction factor α is shown 
in Fig. 3. The value of elastic imperfection factor α decrease with 
the increasing thickness parameter R/tc. Reduction factor is 
conservatively set for hinged spherical cap in the ECCS. 
The bending effect caused by the boundary conditions simply 
supported cap is higher than that hinged cap. Elastic imperfection 
factor (specified in the ECCS) is excessively conservative 
to the design cap with the final stiffness in the radial direction. 

 

Fig. 3: Elastic imperfection factor vs. thickness parameter R/tc 
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3 Aim of the doctoral dissertation  

Doctoral dissertation builds on the current knowledge 
of science and technology in the design of steel spherical cap. 
These findings are anchored in standards, regulations 
and recommendations [1], [2], [18]. The calculation of spherical cap 
with a final stiffness in the radial direction is not included in the 
European the ECCS recommendations [2] or in the standard ČSN EN 
1993-1-6 [1]. Using the relations to calculate simply supported cap 
can be regarded as too conservative. 

P. Paščenko studied limit load of cap with final stiffness in the 
radial direction in his habilitation thesis [4]. The influence of initial 
geometric imperfections on the loss of stability of the spherical cap 
stiffened by circumferential ring is not sufficiently taken into 
consideration in his habilitation thesis [4]. Author used a reduction 
factor determined for axially loaded cylinder shell. 

The aim of the doctoral dissertation is to determine new 
reduction factors and relationships. New reduction factors could be 
applied to common design of spherical cap in practice. Reduction 
factors will express the influence of initial imperfections on the loss 
of stability of a spherical cap with a finite stiffness in the radial 
direction. 

Numerical analyses of the types GNA, GNIA, and GMNA 
GMNIA are the basis for solving the problem. Analyses are 
performed in software COSMOS/M [5] and CosmosWorks [6]. 

Another aim of the doctoral dissertation is to prepare an 
experiment of the loss of stability of the test specimens. Test 
specimens present a real spherical caps stiffened by circumferential 
ring. The aim of the performed experiments is to verify the results 
of numerical analyses. 
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4 Preparation of experiment – development of test 
equipment 

The results of the numerical analyses will be verified by 
experiments. Geometric dimensions of the test specimen are 
determined in this chapter. In addition, the first stage 
of the development of test equipment for testing the loss of stability 
of thin-walled spherical caps is described here. The test equipment 
was developed in this doctoral dissertation and is available 
at the Department of Mechanics, Materials and Machine Parts. 

First series of the tests of the loss of stability were performed 
during the development of test equipment. The main aim of the first 
series tests was to verify functionality of test equipment, the selected 
thickness of circumferential ring and production method of test 
specimens. 

 

Fig. 4: Dimensions of the spherical cap. 

Dimensions of the cap are given in Fig. 4. The thickness of 
wall of the spherical cap is tc=0,5 mm, curvature radius R=514 mm, 
diameter of lower edge D=300 mm, thickness parameter R/tc=1028 
and cross sectional area of the circumferential ring A=7,5 mm

2. 
Width of the ring is w=15 mm and thickness is tr=0,5 mm. 
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4.1 Test equipment 

The test equipment is shown in Fig. 6. The test 
made of cylindrical shells (tubes) with a length of 300 mm,
diameter Ø 273 mm and wall thickness 7.5 mm. The experimental 
model is simply located on the rubber sealing. The loading pressure 
is achieved by the suction pump. The dimensions of experimental 
model should be chosen so that the value of limit pressure is
then maximum attainable pressure pb=0,09 MPa (determined by 
suction pump). 

The loading pressure is continuously regulated by the choke. 
The value of loading external pressure (internal vacuum) is read 
on the analogue pressure gauge. In future test, the loading external 
pressure is supposed to the measured by electronic sensors. 

 

Fig. 5: Test specimen Fig. 6: Test equipment

4.2 Numerical model 

Numerical analysis of the test specimen was performed
production test equipment. The numerical model of the spherical cap 
is shown in Fig. 7. The numerical analysis investigates only the 
influence of boundary conditions on loss of stability thus the initial 
imperfections are not considered. The nonlinear model of material is 
represented by von Mises´s bilinear model with Young´s modulus 
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E=1,8E+5 MPa (N/mm
2
), Poisson´s number �  0,3 , tangent 

modulus Etan=E/10
4
=18 MPa (N/mm

2
) and yield strength 

Rp0,2=180 MPa. 

The nonlinear GMNA analysis (geometrically and materially 
nonlinear analysis) is performed in the FEM computer program 
COSMOS/M [5]. Both material and geometric nonlinearity are 
considered. The Rick´s arc length nonlinear computational procedure 
is used. The FEM mesh of the numerical model is created by 
SHELL4T elements. The spherical cap located on the rubber sealing 
is simulated by simply supported spherical cap. 

 

Fig. 7: Numerical model of the spherical cap 

  

Fig. 8: Equilibrium curve 
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The equilibrium curve is shown in Fig. 8. The curve represents 
a relation of external pressure and vertical displacement of node 
ND_1 (see Fig. 7). The numerical model of the spherical cap 
performs a linear behavior until value of external pressure 
pL=0,0377 MPa (0,377 bar). Then the carrying capacity is falling 
down. 

The loss of stability occurs close to uy=0,81 mm. Deformed 
shapes in the selected steps are shown in Fig. 9 on the next page. 
The limit state occurs in the nonsymmetrical shape of deformation 
called nonlinear axially nonsymmetrical collapse (see Fig. 9). 
This type of loss stability is followed by the creating visible 
circumferential waves of the edge ring. This effect should be verified 
by experiment.   

 

Fig. 9: Process of deformation of the numerical model. 
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4.3 Experimental model 
The experimental model of spherical cap is shown in Fig. 

The dimensions of both numerical model and test specimen are equal 
(see Fig. 4). The experimental specimen is made of carbon steel. 
Young´s modulus E=1,8E+5 MPa (N/mm

2
), Poisson´s number 

η=0,3, and yield strength Rp0,2=180 MPa are taken from the tensile 
test performed at the laboratory. 

The test specimen is not yet equipped with purposely inserted 
the initial imperfections in the form local buckle. Limit
pressure was recorded during the experiment. Limit external 
pressure, in which the loss of stability occurred, are given in Tab. 

on the end of this chapter. The deformed shape of the test 
specimen before and after the experiment is shown in Fig. 10

 

Fig. 10: Original and deformed test 

specimen. 

Fig. 11: Test specimen located 

on the test equipment

The deformed shape is shown in Fig. 9. It is evident that the 
nonsymmetrical collapse occurred. The deformation 
of circumferential ring (creating circumferential waves and rotation 
of the ring) are obvious. 
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Tab. 3: Limit outer pressure. 

Number of test specimen: 1 2 

Limit outer pressure pL 

[MPa] 
0,024 0,022 

The relative deviation 

δ (%) 

Num. model vs specimen 

57 % 71 % 

4.4 Conclusion 

The deformation of the ring caused the loss of tightness of the 
vacuum space. Hence, the experiment was stopped before total 
collapse of the spherical cap. The deformations of the experimental 
model are a bit different from the deformations of the numerical 
model. It is probably caused by initial imperfections. 

The findings are used for verification of the numerical model 
and for adjusting the thickness of the circumferential ring. The test 
equipment will be modified so as to prevent rotation of the ring. 
A thicker ring should be used for the next experimental test 
specimens.  

The relative deviation is relatively high (see Tab. 3). This 
effect can be explained by the elastic imperfection factor (eg Fig. 14, 
Chap. 5). Elastic imperfection factor decreases very quickly even for 
small depth of imperfections. It is difficult to prevent such small 
initial imperfections in the production of test specimens. Neglected 
initial imperfections obviously caused a decrease in load carrying 
capacity of the test specimens. 
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5 Determination of the reduction factor α for 
spherical cap stiffened by circumferential ring. 

 

Fig. 12: Dimensions of the model of roof 

Influence of geometrical imperfections on the loss of stability 
a spherical cap is expressed by reduction factor α. Reduction factor is 
the ratio of critical load of imperfect cap to critical load of ideal cap 
(equation (3)). Nonlinear numerical analysis was performed for 
determination of reduction factor. Numerical analyses were type 
of GNA and GNIA. 

 �  �������
������

 (3) 

where 

������� – critical outer pressure of imperfect cap, 

������ – critical outer pressure of ideal cap.. 

The loss of stability a real roof corresponds to numerical 
model of simply supported spherical cap with prevents tangential 
rotation of the lower edge (see Chap. 6 doctoral dissertation). 
The results of numerical analysis for simply supported caps with 
prevent tangential rotation of the lower edge will be verified 
experimentally. 
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Spherical caps are stiffened by a circumferential ring of width 
w=15 mm. Computations are performed for four types 
of circumferential rings of different sizes of cross sectional areas 
(A1=7,5 mm

2;  A2=15 mm
2; A3=30 mm

2; A4=60 mm
2). 

 

Fig. 13: Numerical model 

The reduction factor α is determined on the basis of the 
numerical analysis. Geometric initial imperfection (local buckle) is 
considered in the middle of the spherical cap. 

Depth of imperfection is gradually increased until it reaches 
the boundary validity of the recommendations ECCS  [2]. Four non-
linear analyses (type GNIA) are performed for chosen depth 
imperfection. 

The influence material nonlinearity (plasticity) is not 
considered in the calculation of the reduction factor α. The influence 
of plasticity on the loss of stability of a spherical cap can be 
expressed as in addition factor of buckling reduction factor χ 
(see Chap. 2.3.6 of the doctoral dissertation).  

Dimensionless parameters ∆w/tc and Γ=A/(r*tc) are 
determined in Chapter 9 of the doctoral dissertation. Dimensionless 
parameters are based on the similarity theory. Reduction factor α 
determined to model the roof can be on the basis dimensionless 
parameters used for the structural design of a real roof. 
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Fig. 14: The diagram of reduction factor 

The diagram of the reduction factor α versus parameter ∆w/tc 
of the cap with the ring of cross-sectional area A1, A2, A3, A4 is shown 
in Fig. 14. The diagram is for a better summary supplemented by 
curve valid for elastic imperfection factor α from ECCS 
(see equation (2)). The elastic imperfection factor for the calculation 
simply supported cap stiffened by circumferential ring is too 
conservative. 

Vertical boundaries 1, 2, and 3 represent the maximum 
allowable depth of imperfection for the accuracy classes (1, 2, 3) 
according to the ECCS [2]. Graph on Figure 14 is shown for better 
illustration in 3D format on Fig. 15. 

The central imperfection of depth greater than ∆w = 0.4 mm is 
not affine to the shape of the collapse of the cap and it starts perform 
as a stiffener. This has the effect that the curve of reduction factor α 
has in fact no decreasing character after crossing depth 
of imperfection ∆w = 0,4 mm. 

 



 Page 21/31  

 

Fig. 15: Reduction factors α vs parameter ∆w/tc and  Γ  "
#∗$%

 . 

Tab. 4: Reduction factors α determined for model of roof - prevent 

tangential rotation lower edges. 

∆w/tc 												'  (
)∗*+ 0,1 0,2 0,4 0,8 

0,03 0,98 0,98 0,98 0,99 

0,14 0,98 0,98 0,99 0,94 

0,30 0,98 0,91 0,78 0,68 
0,60 0,69 0,60 0,51 0,45 

0,90 0,63 0,55 0,47 0,41 
1,20 0,65 0,56 0,48 0,42 
1,60 0,68 0,59 0,50 0,44 

2,04 0,71 0,61 0,53 0,46 
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The so-called the enveloping curve can be created for each 
curve of reduction factor α. The result of the application envelope 
curve can be useful in practise. Reduction factor α never falls below 
the value specified by the enveloping curve. Using the enveloping 
curve is conservative and on the safe side. 

Graph from Fig. 14 supplemented with enveloping curves is 
shown in Fig. 16. Straight line parallel to the axis of depth 
imperfections (x-axis) were used as enveloping curve. Each 
enveloping curve represents a constant reduction factor α. Values 
of reduction factor α for the individual enveloping curve are given 
in Tab. 5. 

 

Fig. 16: Determination of the reduction factors for use in engineering 

practice 

Tab. 5: Determination of the reduction factors for use in engineering 

practice - dimensionless parameter Γ 

Γ  ,
- ∗ ��

 Γ=0,1 
Γ=0,2 Γ=0,4 Γ=0,8 

Reduction factor α 0,62 0,54 0,46 0,40 
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6 Conclusion 

6.1 Short summary of the doctoral dissertation 

Doctoral dissertation focuses on the influence of initial 
geometric imperfections on the loss of stability spherical caps 
stiffened by circumferential ring. Investigated area is limited 
to simply supported spherical caps with the final stiffness 
in the radial direction. The described problem is mostly solved 
by numerical analyses in the environment of program COSMOS/M 
[5] and CosmosWorks [6]. 

Current state of resolution the problem of stability loss 
of a spherical cap was fully described in the introductory part of the 
doctoral dissertation. The aim of glossary topic was to show the area 
of solutions that have not yet been explored. The influence of initial 
geometric imperfections on the loss of stability of cap with the final 
stiffness in the radial direction has not yet been fully described. 

The influence of location of the geometric imperfection (local 
buckle) on the loss of stability of the spherical cap is part of the 
doctoral dissertation. Construction of type roof of cylindrical shell or 
partition of cistern trucks is examined in the doctoral dissertation. 
Boundary conditions (see Chap. 6 of the doctoral dissertation) 
of numerical models are determined so that the results of numerical 
calculation the most correspond with researched types of structures 
(roofs of cylindrical shell and partitions cistern trucks). 

Calculations of the reduction factor α was performed by 
numerical analysis of computational model of simply supported 
spherical cap stiffened by circumferential ring and with prevented 
tangential rotation of the lower edges of the cap. 

The new reduction factor α (see Fig. 16 and Tab. 5) 
established in the doctoral dissertation could find use in designing 
a similar spherical cap in practice. The value of the reduction factor 
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for the real roof can be determined from Tab. 5. Results in Tab. 5 are 
conservative and therefore on the safe side. 

Verification of the results of numerical analysis performing 
the experiment is currently still ongoing. Preparation of experiments 
and the development of the test equipment are described in the 
doctoral dissertation. First tests of the loss of stability test specimens 
were performed on the test equipment. Results of the experiments 
were used to modify test equipment and method of production of test 
specimens. 

6.2 The scientific - technical contribution doctoral 
dissertation 

The influence of initial geometric imperfections on the loss 
of stability of spherical cap with the final stiffness in the radial 
direction has not yet been fully described. Reduction factor α 
referred in the European recommendations ECCS [2], expresses 
the influence of initial imperfections on the loss of stability 
of a spherical cap. 

Reduction factor specified in the ECCS [2] is determined for 
a hinged spherical cap. Using this factor to calculate the loss 
of stability of a spherical cap with the final stiffness in the radial 
direction may be too conservative. 

The results presented in the doctoral dissertation suitably 
complement the current state of knowledge of science and 
technology. Reduction factor α (Fig. 16) provided in the doctoral 
dissertation expresses the influence of geometrical imperfection 
on the initial loss of stability of a spherical cap with the final 
stiffness in the radial direction. The problem of determining 
the reduction factor has not yet been fully resolved. It is necessary 
to finish the verification of the results of numerical analysis 
performing experiment. 
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The results presented in the doctoral dissertation are necessary 
to submit to analysis of professionals. After fulfilling all the criteria, 
it is possible to seek of anchoring the reduction factor α specified in 
Tab. 5 into the recommendations the ECCS and normative 
regulations. 

6.3 Application of results in practice 

The structures types of spherical caps are used in various 
branches of industry for example chemical, energy, food, 
automobile, etc. The doctoral dissertation deals with structures types 
of roof of cylindrical shell, etc. Materials used for production 
of equipment in the chemical, energy and food industry can be very 
expensive. Reduction factors α determined for spherical cap stiffened 
by circumferential ring provides safe reduction of thickness 
of spherical cap. Thinner shells reduce weight of structure and, 
therefore, reduce manufacturing costs. 

Reduction factor α (Fig. 16 and Tab. 5.) can be safely used in 
the design of real roofs of tanks only after complying with additional 
points. 

• Verification results of numerical analysis performing 
the experiment. 

• Verify the correctness dimensionless parameters for caps 
with different half angle Φ. 

• Determine the extent validity calculations reduction factor 
(half angle Φ; thickness parameter R/tc). 

These additional points will be subjected to further research. 
The results presented in this doctoral dissertation are the next step for 
putting the reduction factor α (Fig. 16 and Tab. 5.) for the design 
of spherical caps with the final stiffness in the radial direction 
to the engineering practice. 
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6.4 Objectives for future research 

The main objectives of future research are indicated in the 
previous text. Performed experiments will be associated
contactless scanning of changes in the geometry test specimen
loss of stability. 

Contactless measurement of changes in geometry is en
by ARAMIS, which it works on the principle of optical scanning 
of irregular pattern of points. The exact model of a spherical cap
initial geometric imperfections will be compiled on the
measurement system ARAMIS (see Fig. 17). 

It is necessary to solve the question of how to
the connection of circumferential ring and spherical cap
research. Circumferential ring for the first experiments were welded 
to the shell test specimen. Welding influenced the results
experiment. Now circumferential rings are glued to the shell test 
specimen cap 

Fig. 17: The exact model of a spherical cap created by the measurement 

system ARAMIS. 
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ANOTACE 

Tato práce se zabývá vlivem počátečních imperfekcí na ztrátu 
stability tenkostěnných skořepinových konstrukcí. Zkoumaný případ 
je omezen na prostě podepřený kulový vrchlík zatížený 
rovnoměrným vnějším přetlakem. Kulový vrchlík je vyztužen 
obvodovým prstencem. 
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ANNOTATION 

This work deals with influence of the initial imperfections on 
the loss of stability of thin - walled structures. The problem is limited 
on the simply supported spherical cap subjected to external pressure. 
The spherical cap is stiffened by a circumferential ring. 
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