
199 

HOW MANY VARIABLES ARE SUFFICIENT FOR THE 
DETERMINATION DISTURBANCE OF CHOLESTEROL 

METABOLISM? 
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University of Hradec Králové, Pedagogical Faculty, Department of Mathematics 

Abstract: The paper describes the methodology of the so-called advanced data mining with 
help the programme parcel STATISTICA  on the example of a “healthy-ill” ensemble. 
Keywords: data mining, answer tree methodology, statistical modelling and decision, data 
management 

1. Introduction 
Software means are quite varied nowadays and they offer a number of levels of analysis of 

data ensembles consisting of various types of variables (both nominal and metric). Analyses 
are connected in a different way with statistical softwares (SPSS, NCSS, STATISTICA, etc.) 
and contain various kinds of procedures (Clementine, Data Miner, Neural Works, Answer 
Tree, Regression Tree, etc.). The present author will demonstrate one of the analyses 
elaborated with the use of the above-mentioned methodology. The results can be compared 
with its “classic” form published in [Půlpán 2003] and applied to the identical data. 

Paper [Půlpán 2002, 2003, 2004] discussed the methodology of diagnosis determination on 
the basis of the construction of a multidimensional mathematical-statistical model containing 
four basic variables: LTH (lathosterol), SIT (sitosterol), CAM (camposterol), and TCH (total 
cholesterol). The diagnosis was formulated in the alternatives healthy-ill in connection with 
cholesterol metabolism. The decision-making was based on a basic sample of 101 subjects 
(“healthy” as regards with cholesterol metabolism) and samples of altogether 189 patients 
with various impairments of cholesterol metabolism. It has been shown that the data under 
study make it possible to establish diagnosis with the use of statistical methods with a degree 
of uncertainty not exceeding 30% of wrong diagnoses. In the present paper, an attempt will be 
made to establish the same diagnosis, but with the use of different means.  

To obtain a set of measured values of the above-mentioned variables in healthy subjects is 
relatively expensive. The present author thus thinks that it is appropriate to present their more 
detailed processing, the results and possibilities of which can inspire further research. 

2. Analysis of the set of the “healthy” subjects using the method of principal 
components 

In a number of analyses we often examine a large number of variables, which, according to 
our assumptions, may be connected with the phenomenon under study. As we do not know 
the degree of action of the individual variables on the phenomenon studied, we attempt to 
introduce into the analysis as many variables as possible. However, it complicates the analysis 
and therefore we endeavour to find objective reasons for a selection of a smaller number of 
variables, which would be sufficient for the description of the phenomenon under study. Two 
multidimensional methods are available for this purpose: the method of principal components 
and factor analysis. Both methods search for a smaller number of new (unmeasurable, latent) 
variables, explaining variability and dependence of the original (measured) variables and their 
linear combinations. All original measurable variables enter the analysis as equal (though it 
need not be so from the standpoint of meaning). Their interrelations are explained by the 
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action of mathematically defined directly unmeasurable (latent) variables, which in the 
analysis of principal components are called components, in factor analysis, factors. In the 
analysis of principal components, mathematical formalism is constructed in such a way so 
that the new variables (components) may explain the variability of the original variables as 
much as possible; in factor analysis, so that the factors may reproduce the linear relationships 
of the original variables (their correlation matrix) as best as possible. It is advantageous to 
require the latent variables not to be able to correlate. 

If we examine in n = 101 randomly selected “healthy” subjects the four signs LTH, SIT, 
CAM, and TCH, we have the measurement in the form of vectors ([1], Table 6) 

ix = (LTHi, SITi, CAMi, TCHi)´,    i = 1, 2, …, 101.                              (1) 
For the above-mentioned vectors the selective covariantional matrix C and the 

characteristic numbers for it are estimated:   

                         C = 



















20.1
79.006.18
68,060.852.6
35.030.250.097.23

   (2)          

λ1 = 25.72, λ2 = 20.97, λ3 = 1.98, λ4 = 1.08, explaining gradually 51.7 %, 42.2 %, 4.0 %, and 
2.2 % from the total dispersion. This leads to the determination of two components, which 
represent the quality of substitution of measurable variables with the latent ones by about 94 
%. It is graphically expressed in two-dimensional Graph 1, where to the order i of the 
characteristic numbers their value λi is assigned. 
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Graph 1: Dependence of λi on i (λ1 > λ2 > λ3 > λ4) 

  
Table 1 lists the component coordinates of the variables LTH, SIT, CAM, and TCH for two 

most important components. They are the coordinates of the characteristic vectors pertaining 
to the characteristic numbers λ1, λ2. (Graph 2 represents the variables under study in 
component coordinates.) By means of the data from Table 1, we can determine from the tetrad 
of the values of the coordinates ix the couple of the main components (Ki

1, Ki
2) for i = 1,2…, 

101 from the linear relations 
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Ki
1 = 0.80 . LTHi +  0.26 . SITi + 0.54 . CAMi + 0.04 . TCHi – 13.25                      (3) 

       Ki
2 = 0.60 . LTHi –  0.39 . SITi –  0.69 . CAMi – 0.03 . TCHi +  4.50.     

                   
Table 2 assigns the component coordinates (K1, K2) to the individual cases of the “healthy” 

subjects according to the previous relations (3). 
 
Tab. 1: Table of component coordinates. 

Variable Component 
         1.                             2. 

LTH 
SIT 
CAM 
TCH 

4.05 (0.80)                   2.76  (0.60) 
1.34 (0.26)                – 1.80 (–0.39) 
2.74 (0.54)               – 3,18 (–0.69) 
0.18 (0.04)               – 0.14 (–0.03) 

 (They are the coordinates of the characteristic vectors of the first two characteristic numbers 
λ1, λ2, the normalized values are bracketed.) 

The importance of the previous linear transformation of measured variables into the 
component ones consists in the fact that all measurements can be represented only in a two-
dimensional graph with the axes of the coordinates K1, K2. In this new system of coordinates, 
all healthy subjects should cover a certain limited region, most probably a single cluster. The 
points lying rather far from the centre of gravity of the cluster correspond to the so-called 
remote values of measurement. The respondents corresponding to the remote values should be 
subjected to special examination (regarding the correctness of their inclusion into the 
“healthy” subjects). An idea about the arrangement of points (Ki

1, Ki
2), i = 1, 2,…, 101 in the 

ensemble of the healthy subjects under study can be obtained from two-dimensional Graph 2. 
In this Graph the measurements of respondents 83, 85, 3, 80, 19, … can be considered to be 
remote measurements. 
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Graph 2: The results of the measurements for the “healthy” subjects in two component 

coordinates 
 
The data from Table 1 can be also transformed into two-dimensional Graph 3. For each of 

the variables LTH, SIT, CAM, and TCH there is a couple of coordinates which correspond to 
the first and second principal component. The representation of these variables in the 
coordinates formed by the values of the first and second component also gives an idea of the 
relation of the original variables in the new, component ones. 
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Graph 3: Projection of variables into the factor plane 

                                     
 If we use for component analysis the selective correlation matrix R 

                                        R = 



















00.1
17.000.1
24.079.000.1

07.011.004.000.1

                                                 (4) 

(the underlined selective correlation coefficients are statistically significant at a 5 % level 
of significance for the zero hypothesis of non-correlativeness), the characteristic numbers λ1 = 
1.90,  λ2  = 0.99, λ3  =0.90, λ4 = 0.20 are obtained, which gradually correspond to 47.6 %, 24.9 
%, 22.5 %, and 5.0 of total dispersion. This corresponds to the quality of substitution of 
measurable variables with the latent ones by about 95 % in three component variables. Table 
5 lists the corresponding component coordinates of the variables LTH, SIT, CAM, and TCH. 
 
Tab. 2: Table of component coordinates under the assumption that they are based on the 
selective correlation matrix. 
 

Variable Component 
         1.                 2.                    3.  

LTH 
SIT 
CAM 
TCH 

 – 0.18                0.95                0.26    
 – 0.92             – 1.80                0.12 
– 0.91              – 0.11                0.24 
– 0.43                  0.22             –0.87   

 
As we can see from a comparison of Tables 1 and 2, the analysis of principal components 

based on the (selective) covariantional matrix C differs from the analysis of principal 
components based on the matrix of mutual (selective) correlations R. The correlation matrix 
is used as the introductory one in the case that the variables under study are of different nature 
and expressed in different units. In the present case the variables under study are expressed in 
identical units, but they measure different phenomena. Nevertheless, we attach greater 
significance to the component analysis from covariances. 
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To examine the cluster of the “healthy” subjects in three component coordinates, the 
situations in three Graphs 4, 5, and 6 must be compared. The Graphs can be imagined as 
orthogonal projections of a three-dimensional cluster into some of the levels of coordinates. 
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Graph 4: Projection of a three-dimensional cluster into the level of the first and second 

factors (according to correlations) 
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Graph 5: Projection of a three-dimensional cluster into the level of the second and third 

factors (according to correlations). 
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Graph 6: Projection of a three-dimensional cluster into the level of the first and third 

factors (according to correlations). 
  
The source data of the “healthy” subjects were processed also by the means of factor 

analysis (the method of the principal components without rotation). Two significant factors 
were extracted corresponding to two characteristic numbers λ1 = 1.905 and λ2 = 0.994. Their 
contribution to the result is evident in Table 3. 
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Tab. 3: Significance of characteristic numbers for factor analysis. 
Characteristic 
number 

% of total dispersion 
 

Cumulative characteristic 
number 

Cumulative % 
 

1.905 47.62 1.905 47.6 
0.994 24.86 2.900 72.5 
 
Table 4 lists factor load, share of factors in communality, and coefficients of factor scores 

for individual variables. Table 5 then lists the residues of correlations which were not 
explained by the two above-mentioned factors. 

 
Tab. 4: Basic results of factor analysis. 
Variables 

 
Factor loads 

 
 

Communalities 
from the 1st factor  from the 2nd factor 

 

Coefficients 
of factor scores 
 

LTH – 0.185       0.947            0.034                   0.932 –0.097         0.953 
SIM – 0.923    – 0.180           0.852                   0.884 – 0.485     – 0.181 
CAM – 0.912    – 0.116           0.832                   0.846 – 0.479     – 0.116 
TCH – 0.432       0.226          

 
Tab. 5: Residues of correlations (underlined values represent significant differences between 
the actual correlations and their estimates with the use of factor analysis). 

 LTH SIT CAM TCH 
LTH 0.07 0.04 0.05 – 0.23 
SIT 0.04 0.12 – 0.07 – 0.12 
CAM 0.05 – 0.07 0.15 – 0.20 
TCH – 0.23 – 0.12 – 0.20 0.76 

 
Similarly as in the analysis of principal components, also here it is possible to evaluate the 

remoteness of some measurements in the ensemble of the healthy subjects by means of the 
values of factor scores in two factors. The cluster of the “healthy” subjects is shown in Graph 
13. 

Table 4 can serve for the construction of the following scheme of the action of latent 
factors on manifest variables: 
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Graph 7: Graph of the factor scores of the “healthy” subjects. 
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3. The relation of the data of the ensemble of “healthy” subjects to “patients”. 
Already at the beginning of the study we stressed that the aim of statistical survey in our 

case is to find an objective method for the classification of any individual into the ensemble of 
“healthy” subjects or “patients”. It cannot be clearly carried out categorically and therefore on 
the basis of the given data we attempt to determine the degree (perhaps as probability) of the 
classification of a subject into one of the two groups under consideration. The research 
method for the solution of this task is the answer tree methodology. On the basis of 
combinations of various statistical criteria, this procedure searches for the “optimal” 
classification into classes according to some categorial variable. It can be a new variable 
“condition”, which will have a value of 1 in the case of a healthy subject and 0 in the case of a 
metabolic disorder. 

The result of the classification using the above-mentioned technique in an ensemble of 101 
healthy subjects and 191 patients is shown in Graph 8. Graph 8 is a tree graph with three final 
nodes 3, 4, 5 (in the shape of a rectangle). Inside each rectangle in the left top corner there is 
the serial number of the node, in the right top corner there is the characteristic of the 
prevailing value of the pertinent “condition”, the degree of which is expressed by a histogram 
(dashed for “health”). The pertinent edges of the Graph are evaluated by the frequencies of 
the source elements of analysis. Between the two edges corresponding to the pertinent 
decision there is a brief statement about the condition of classification. On the basis of the 
conditions stated in the Graph, the “optimal” classification (from the standpoint of the 
programme STATISTICA) was performed and the results presented in Tables 6 and 7. The 
underlined values in Table 6 represent wrong diagnoses. We can see there 32.8 % and 21 %, 
respectively, of wrong predictions “healthy” or “ill”. 

 
Tab. 6: Result of discrimination analysis using the answer tree method. 

                                          
Prediction               Observation           

      0                                   1 
0     164                                43       
1       27                                58 
  

 
Tab. 7: Prediction with the use of an answer tree in contrast to “reality”. 

Node Left branch Right ranch Classes 
  0                  1 

Predicted class 

1 2 3 191              101 0 
2 4 5 100                84 0 
3     91                17 0 
4     73                26 0 
5     27                58 1 
 
The procedure makes it also possible to estimate the order of significance of predictors for 

the analysis. The variable SIT is of greatest significance (see Graph 9). 
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Graph 8: Answer tree for the classification into healthy – ill. 
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Graph 9: Order of significance of predictors for the analysis using an answer tree. 

 
For the sake of information, it is necessary to state that answer trees may significantly 

differ when the method of the selection of branching or degree of agreement is changed (see 
Graph 10). That is why the method is called a “pilot” one.         
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Graph 10: An answer tree in the selection of branching using the method C&RT and the 

degree of agreement estimated by chi-quadrate. 
 

Also the so-called cluster analysis yields the result of the analysis in the form of a tree ([8] 
and [11]). It was employed also here. The ensembles of healthy subjects and patients were 
subject to hierarchical cluster analysis. The result unfortunately strongly depended on the 
selection of metrics (Graphs 11 and 12). Nevertheless, Graph 11 makes it possible to observe 
a closer connection of the cholesterol level and the diagnosis of a disease. But Graph 12 
shows that classification into healthy subjects or patients is connected with the levels of all 
four sterols under study. 
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Graph 11: Hierarchical clustering in the Euclidean metric. 
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Graph 12: Hierarchical clustering in the Manhattan metric. 

                                        
Now let us consider in the examined independent variables LTH, SIT, CAM, and TCH and 

the indicator of health Y the validity of the generalized linear model 
                                            g (E(Y/x)) = x´ . β ,                                                  (5) 
where g is some function of the conditioned mean value of the random variable Y. In our 

case the vector of regressors x´ = (1, LTH, SIT, CAM, TCH). We search for a suitable vector 
of regression coefficients β´ = (β0, β1, … , β4). We assume that n. v. Y possesses alternative 
division (in the respondent is healthy, then Y = 1, if he or she is ill, Y = 0). For alternative 
division EY = p and if we select the function g = g (p) in the form  

                                              g(p) = ln 
p

p
−1

 = logit (p)                                     (6) 

Our model (18) is logistically regressive. Its parameters β0, β1, … , β4 can be estimated by 
the method of maximal reliability, e.g., using the programme STATISTICA. 

From the data of an ensemble of 292 “healthy” subjects and “patients”, the right side of 
expression (5) was obtained in the form 

 A = 1.174 + 0.012 . LTH – 0.354 . SIT + 0.221 . CAM – 0.371 . TCH               (7)                 
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The estimates of the coefficients β0, β1, … , β4 from (7) possess 95 % intervals of 
reliability:                       β0 : (-2.39; 0.04)                       β1 : (-0.05; 0.03) 

                                   β2 : (0.24; 0.46)                        β3 : (-0.30; -0.14)                    (8) 
                                   β4 : (0.12; 0.62) .                                                                                                                                                                    
 According to (5) and (6) we estimate 

                      ln 
p

p
−1

 ~ A 

                       p ~ A

A

e
e
+1

.                                                                                             (9) 

                                                                      
It follows from estimates (8) that little influence of the variable LTH on n. v. Y. is possible. 
The datum p can be then interpreted as the degree of “disease” of cholesterol metabolism. 

On the basis of p value each subject can be classified into some of the two groups, “healthy” 
or “ill”, by expert estimate, e.g., that in the case when p > k0

kr , the subject is declared 
“healthy”, in the contrary case, “ill”. The value p 〉  k kr

0 ,      is considered with the use of a 
different technique (e.g., independent medical diagnosis).  

 
 Example: Let us have a subject A1 from the ensemble of “patients” with data (see [1]) 
 LTH = 1.21; SIT = 6.80; CAM = 4.62; TCH = 4.98. According to (5), (6) and (7) then 

we have 
           A =. 1.174 + 0.012 . 1.21 – 0.354 . 6.80 + 0.221 . 4.62 = 0.371 . 4.98 =. –2.045 

  p  ≈ A

A

e
e
+1

 = 0.115. 

For the first subject from the ensemble of the “healthy” subjects with the data 
 LTH = 5.36; SIT = 6.25; CAM = 9.38; TCH = 3.59 
we have A =. –0.233,   p ≈ 0.442. 

 
Subject A1 is evaluated by logistic regression as “healthy” with the probability 0.115 and the 
first subject from the group of “healthy” subjects as “healthy” with the probability 0.442. ■
  

 Table 8 lists the evaluation of diagnoses according to a priori values Y and the values 
obtained by logistic regression (of a posteriori values Y). 
 
Tab. 8: Successfulness of diagnosis using logistic regression (k kr

0  = 0.5). 
 
A priori 

A posteriori Y 
0                  1 

 
% correct 

         0 
Y 
          1 

157            34 
 
57              44 

    82.2 
 
    43.6 

 
Table 8 shows that logistic regression estimates “disease” much better in the case of 

suspected disease than “health” in those who consider themselves to be healthy. (Is it the case 
also with the diagnoses realized outside logistic regression?) 

We have also employed neural networks to analyze the sample of “healthy” subjects and 
“patients”. We wanted to find whether from the data of the variables LTH, SIT, CAM, and 
TCH it is possible to optimally divide by the algorithm of some of possible neural networks a 
sample of subjects into two groups (clusters), which could be interpreted in such a way that 
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one of the groups would consist prevalently of healthy subjects, the other of patients. The 
procedure Intelligent Problem Solver was employed with the following types of networks. 

1. MLP 4:  4 – 10 – 1 : 1 
2. Linear 3:  3 – 1 : 1 
3. Linear 2:  2 -  1 : 1  
4. RBF 4:  4 – 10 – 1 : 1 
5. RBF 4:  4 – 20 – 1 : 1.  

The successfulness of these analyses can be judged from Tables 9a, b, c, d, e. The analysis 
seems to be very good for the given sample. The ability of the above-mentioned neural 
networks to correctly analyze the measurement of a subject who would not belong to the 
employed training ensemble, however, remains questionable.  
 
Tab.9a): Successfulness of analysis using the network MLP (1). 

A priori inclusion A posteriori inclusion 
0                             1 

Successfulness of inclusion 
successfulness % 

0 143                        48 74.9 
1   20                        81 80.2 
Total 163                      129 292 

 
Tab. 9b): Successfulness of analysis using the network Linear (2). 

A priori inclusion A posteriori inclusion 
0                              1 

Successfulness of inclusion 
successfulness % 

0 139                        52 72.7 
1 23                         78 77.2 

Total 162                       130 292 
 

Tab. 9c): Successfulness of analysis using the network Linear (3). 
A priori inclusion A posteriori inclusion 

0                               1 
Successfulness of inclusion 

successfulness % 
0 140                       51 73.3 
1 24                        77 76.2 

Total 164                    128 292 
 
Tab. 9d): Successfulness of analysis using the network RBF (4). 

A priori inclusion A posteriori inclusion Successfulness of inclusion 
successfulness % 

0 0                       1 77.0 
1 17                      84 83.2 

Total 164                  128 292 
 
 
Tab. 9e): Successfulness of analysis using the network RBF (5). 

A priori inclusion A posteriori inclusion Successfulness of inclusion 
successfulness % 

0 152                      39 79.6 
1 15                       86 85.1 

Total 167                    125 292 
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4. Conclusion 
The programme parcel STATISTICA was used with advantage for the analysis. The 

analysis of relatively large ensembles of “healthy” subjects (altogether 101) and patients 
(altogether 191) could not bring a completely innovative methodology and the results of the 
performing of the concrete task of determination of cholesterol metabolism diagnosis also due 
to the fact that the statistical sample was not randomly selected from a larger and more 
homogeneous population and the number of analyzed variables was a priori limited to the data 
available to the author. In addition, such examination would require special preparation of the 
sample for analysis (particularly for the algorithms of neural networks). Nevertheless, we 
have outlined the possibilities and limits of the analyses used. Some mathematical methods 
would deserve to be repeated on a representative sample in cooperation with physicians. The 
author is a mathematician, not educated in medicine, and therefore he could bring some more 
courageous procedures into analyses. The kind reader will certainly compare the solution of 
the task with the “classic” technique. In addition, the methodology of data mining is 
characterized by effort to represent the results in tables and graphs in relatively hidden 
formal-mathematical algorithms and thus making it possible for non-mathematicians to use 
complex techniques. 
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