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1. INTRODUCTION

An important problem in reliability assessment is the determination of the probability,
with which can be expected that a random variable y (e.g. strength or life time) does not attain
a certain level, or, vice versa, determination of the ,guaranteed minimum value®,
corresponding to a very low probability of its non-exceedance. The value of the distribution
function F is calculated in the former case, and the quantile in the latter. The distribution of
strength or time to failure can often be approximated by the Weibull distribution function:

B
F(y)=1-exp _(y 7/) fory >y, 1M
a
F(y)=0 fory<y.
The quantile, corresponding to the probability F of non-exceedance, is determined as
1/ p
y(F) = y + a[—ln(b—F)] : @

Three constants, i.e. the parameter of the distribution shape B, the scale parameter «,
and the location parameter y (corresponding to the minimum possible or threshold value) give
this distribution great flexibility, and, together with its simple form (1) and (2), contribute to its
wide use. However, there are also problems. The rigorous procedure for the determination of
parameters of a three-parameter distribution is complicated. Moreover, the quantities a, b, c,
determined from the finite number of data, are only estimates of the true parameters «, B, v.
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Thus, also the calculated values of the distribution function F(y) or quantiles y(F) are only
estimates, and their true values can be different. The determination of confidence limits for the
parameters «, p only is not sufficient, since both quantities are correlated. The methods for the
determination of the confidence interval for the threshold value y are either not transparent
(the use of special tables is necessary), or not very accurate. In reliability analysis, however,
the knowledge of the minimum guaranteed value or low-probability quantiles is extremely
important. This paper presents a simple method for estimation of the parameters «, B, y, and
the confidence limits for quantiles and the probability F.

2. DETERMINATION OF DISTRIBUTION PARAMETERS

The estimates a, b, ¢ of the parameters «, B, y can be obtained in more ways, the best
known being the method of moments, method of maximum likelihood, and method of ieast
squares. The first two methods need special tables or an iterative procedure; see e.g. [1, 2]. In
engineering practice, therefore, the third method is often used, which also enables an easy
visual check of the suitability of the approximation. This method uses the fact that
a rearrangement of Eq. (1) gives the expression

1 1
ln(y~c) = Ina + Eln[lnl_FJ, (3)

which corresponds to the straight line equation
Y = A + BX 4)

in coordinate system

¥ = ln(y—c) , X = ln{ln[l/(l—F)]}, (5)

with unknown constants A (= In a), B (= 1/b) and c¢. The way of their determining depends on
the expected minimum value of y.

2. 1 Two-parameter distribution

Strength or time to failure are sometimes assumed to have the minimum possible value
Vmin Z€T0, sO that ¢ = 0. The determination of the remaining two parameters a, b in such case
is easy. Ranking the measured values y; in ascending order (the minimum value has subscript
j =1, the maximum value has j=n, where n is the number of measurements), and
coordinating each value the probability F; (see below), the corresponding values X, Y] are
calculated, from which the constants A, B are determined using the least squares method
(Fig. 1), and then a, b.
~ The probability £, corresponding to the j-th value, is usually calculated using some of
the following expressions:
j=05 j=103 j

b/ n (a)’ F/ = (b) > F/ = n +1 (c) s (6)

Il
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Fig. 1 Random sample W40HO01 from the parent distribution with parameters « = 100, = 2,
y = 200, approximated by Weibull distribution.
2-P - two-parameter distribution (c = 0); 3-P - three-parameter distribution (¢ = 213,9),
y1=206,3 ; sample size n = 40.
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Each expression gives somewhat different values F, and it is impossible to decide,
which one is the best. The formula (a) according to Hazen gives the mean of the j-th interval
for F, while the expression (b) corresponds approximately to the median of y in the j-th interval
[3, 4]. The expresion (c), recommended by Gumbel [5, 2] yields the highest F values for low
J-values, so that the pertinent distribution function should give the most conservative results,
i.e. higher probability F with which a certain very low value of y can occur, or lower value of
a quantile y for the demanded low probability F. A comparison of expressions (a) - (c) also
shows that the F; values obtained using Eq. (6b) will always lie between those obtained by
(6a) and (6c¢).

Notice. The F; values have a definite value, given by the number of the measurements,
n. Thus, X corresponds to the independent variable in the least squares method, while Y
corresponds to the dependent variable.

2. 2 Three-parameter distribution

The lowest value of y is sometimes obviously higher than zero. (This is also indicated
by the non-linear distribution of the measured values plotted for ¢ = 0 in the Y(X) diagram; cf.
Fig. 1). The reliability assessment or determination of quantiles using two-parameter
distribution could be too conservative (leading to poor utilising the strength of the material or
life of the structure), and the three-parameter Weibull distribution may be more suitable. The
threshold value ¢ is sometimes determined empirically as the asymptote of the values Y=1Iny
plotted in the diagram Y(X), or as the value, which gives the Y(F) function the ,best" linear
shape (Fig. 1). A less empirical approach utilises the condition that the scatter of the
measured values around the distribution function must be minimum. This scatter can be
characterised: a) by means of the sum of squared differences between the transformed
measured values Yy and the corresponding values Y; of the linearised regression function (4),
or b) by means of the sum of squared differences between the measured values y., and the
corresponding values y; of the untransformed function (2). The method a) gives implicitely
more weight to the lowest values y;, since the logarithm of y; - ¢ (i.e. the distance from the
regression line) grows significantly for very small values of this difference. The method b),
which minimises the scatter around the original (untransformed) distribution function, does not
Jprefer” any value, and accounts better for the general character of the distribution.

With the approach b), it is possible to work either with the sum of squared differences
or with the residual standard standard deviation, defined by

e )

o J

“ 14 n — 2

" The number of degrees of freedom v is smaller than the number of measurements n by
2 (which correspond to two regression constants a, b; the third constant (c) is chosen).

When the a) approach is used, which works with the linear regression function, it is
also possible to use the residual standard deviation, defined by
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As a criterion in this case, the coefficient of correlation, r, may be used as well, and the
fit of the transformed (linearised) data is best if ris maximum.

The procedure is as follows. A starting value ¢, is chosen (e.g. the minimum measured
value of y), the corresponding values Yj; and F;; are determined using Egs. (5) and (6), then
(using the least squares method) the constants A4, B, in the straight line equation (4), and the
constants a4, by of the distribution function (1). Inserting a; and b4, together with ¢y, into Eq. (7)
or (8) yields the residual standard deviation S 1 OF Sies+. in the following step, ¢, is chosen
(a little smaller than ¢4), and the values a,, b, and S..s» (Or Sies2) are calculated and compared
With Swes1 (OF Sies). This continues until the residual standard deviation is minimum. The
corresponding values a, b, ¢ are the best estimates of «, B, y. (An analogous procedure is
used if the optimisation criterion is the maximum of r.) A great advantage of this approach is a
simple algorithm for finding the optimum values a, b, c; they can also be quickly found using
universal programs like Excel.

3. DETERMINATION OF CONFIDENCE INTERVALS FOR QUANTILES
AND VALUES OF DISTRIBUTION FUNCTION

The quantiles y(F) of the Weibull distribution are calculated using Eq. (2). Instead of the
true parameters «, B, v, however, only their estimates a, b, ¢ are inserted into Eq. (2), which
were obtained from a (random) sample of size n. The use of another sample would result in
different values of a, b, ¢, as well as of quantiles y(F). The procedures for determination of
confidence limits for the parameters a, B of two-parameter distribution can be found in various
literature; e.g. [2, 3]. However, there are only few works regarding the confidence interval for
the threshold value y of the three-parameter distribution, and the pertinent methods are either
little transparent and need special tables [2], or are not much accurate [6]. In reliability
analysis, however, it is just the minimum guaranteed value and low-probability quantiles,
which are of primary importance. The knowledge of confidence limits for the parameter a or 8
alone is not sufficient for this purpose, as both quantities are mutually correlated [7]. In the
following part, a simple method for estimation of confidence limits for quantiles and values of
the three-parameter distribution function is proposed; the two-parameter distribution will be
addressed in another paper. '

3. 1 Quantile function

The lower and upper limit for the values y(F) of the quantile function can generally be
expressed in the form

Vg F) = y(F) £ @, ,(avs5,), 9

where @ is a certain function of the shape of the distribution, scatter of the measured values,
probability F, number of degrees of freedom and confidence level. Preliminary study of the
random samples generated from a population with known parameters have shown that the
experimental sample can be, as a whole, shifted aside from the parent distribution function.
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Thus, the determination of confidence limits cannot be based only on the scatter of the
measured values around the sample distribution function, but must also consider the variance
of the position of the sample as a whole. This position (as well as its variance) can be
characterised best by means of the sample mean y. Expressing the value of the quantile
function y(F) as the sum of the distribution average y and the distance of y from y,

y(F) = 5 + [y(F)-3] = 5 + &, (10)
one obtains the total variance of the y(F) value of the quantile function as

2 2 2
Sy(,,) — ‘Sﬁ + 55 . 11)

However, both quantities, y and 8, have different distributions. The function F cannot,
therefore, be expressed simply as a product of the resultant standard deviation s, and the
critical value of Student’s distribution like in the case of confidence interval for the mean
alone. It is better to express @, in analogy with Eq. (11), by the means of half-widths A of the
confidence intervals for y and §:

O = JAZ+AS (12)

For larger samples, the distribution of sample means can be approximated by normal
distribution, so that it can be written

(13)

where

, (14)

is the sample standard deviation of y, and fy/ v is the critical value of the Student's
distribution for v = n - 1 degrees of freedom; « is the probability that the true value y will lie
outside the confidence limits, i.e. P(t>ty y) = a. (In some tables, {y , denotes the value for
which P(t|> ty \) = o, and which corresponds to the twice as high probability [8]).

The determination of the width of the confidence interval for & is more complex. With
respect to the definitions (10) and (2), one can write

l 1/b 1 1/b
_ _ — 1
o(F) a (lnl—F] (lnl—F*j , (15)

where F* is the value of the distribution function corresponding to y (Fig. 2). The variance of &
thus generally depends on the variance of the estimate of the scale parameter a and the
shape parameter b (which are, moreover, mutually correlated), and on the variance of the F*
value. Exact expression of Ag would, therefore, be very complicated. However, it is sufficient
for our purposes to know only the approximate limits Agmin and Agmax, between which the true
value Ag lies.
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The lower limit AgF) min for the estimate of the width of the confidence interval for § can
be obtained if one neglects the variance of the shape parameter b and of the F* value, and
considers only the random variability of the scale parameter a. This quantity has ¥?
distribution, and its lower and upper confidence limits can be determined using the
expressions [1, 8]

( 2n j”ﬂ ( 2n )”ﬁ 5
a, =a|——— a, =a| ——— ,
5 e (27) u 2ran (20) (16)

where y°4(2n) is a-quantile of the y? distribution for v = 2n degrees of freedom; « is the
probability that the true value of the scale parameter a will be lower than a, or higher than a,.
If only the estimate b is known instead of the parameter B, it is better to use the following
expressions:

z

Z—aQn al2.n
a, = aexp[—%j,a,’ = aexp(— b?) (17)

where z(a, n) are quantiles of the random variable b/B, which are tabulated [1].

The half-width of the confidence interval for & can be expressed (with respect to Eq. 15)

as
Aswn (F) = (a-a )Y, (18a)
A(S',[/,mm ( F) = (a(/ —a ) LP' (18b)

where W is given by the expression
| 1/h 1 1/h
Y (F, Fx,b) = |1 [ (PO T "
A .
With regard to the definition (2), one can also write
FY — 5
w(F, ey = 2 Y (20)
a

¥ thus expresses the distance of y from the distribution mean y, related to the scale
parameter a.

Inserting (18) and (13) into (12) gives the estimate of ® needed for the determination of
the two-sided confidence limits (9) for the quantile function y(F):

2
q)L,(/[Y(F)] = \/tm‘vz S‘T + (a -a,, ) p? o 1)

(As the expression in the parentheses is squared, it does not matter whether the term
for the upper limit is written ay - a or a - ay.) When calculating the lower limit @, ay is inserted

if y< y, and a_ if y > y. When calculating the upper limit @y, a, is inserted if y < y, and ay if
Yi Y-
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The maximum possible width A§g), max Of the confidence interval for 5(F) can be
estimated using the idea that the random variation of the quantile function y(F) consists of the
variation of the sample mean position y, and variation of the ,slope* of the distribution
function, which is caused by the fluctuations of the values a, b calculated from random
samples (Fig. 2). As follows from Eq. (18), the distance between the true value of the quantile,
¥p(F), and the value y(F) calculated from the sample values a, b is larger for larger difference
between the true and calculated value a, and for larger value of the term ¥, which also
depends on b. Since there is only a low probability that both terms, a and ¥ (or b) will attain
their limit values simultaneously, the maximum possible width of the confidence interval for
3(F) can again be estimated using Eq. (15), into which we now insert the limit value a, (or ay)
of the scale parameter, and that of the limit values b_ or by of the shape parameter, which
gives the larger value V. Two-sided confidence limits for the parameter o are determined from
Eq. (16) or (17); those for 8 can be calculated by [1]

b, = b/ll-a/2,n , b, = b/la/2,n’ (22)

where Iy, \, denotes the quantiles of the random quantity b/B, which are tabulated [1]; o is the
probability that the true value will lie outside the interval < b; by >.

1

y

Fig. 2 Variance of sample distribution function: variance of the mean and of the slope.
p - distribution function of the parent population, y - sample mean, a - sample
estimates of the scale parameter «; L, U - lower and upper confidence limit.

Notice. A part of the variance of 3 is caused by the scatter of F*. The simulation with
random samples (Section 4) has shown that this scatter, and especially that of the term
{(In[1/(1-F*]}""b is relatively small and need not be taken into account.

The lower and upper limits of the confidence interval for the quantile function, y, (F) and
yu(F), can again be obtained using Egs. (9), (21) and (19). Inserting F = 0 gives the limits
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yLu(0) = ¢y of the confidence interval for the threshold value y of the three-parameter
distribution.

3.2 Distribution function

The values y, (F) and yy(F) for various values of F create a confidence band, which
should, with probability 1 - a, cover the true values y corresponding to the probabilities F
(Fig. 3). This band can also be used for the construction of confidence intervals for the F
values of distribution function, corresponding to the particular values of y. A straight line
y = const, plotted in the coordinate system F - y, crosses the distribution function at the point
F. and the upper and lover limit of the confidence band at the points Fy a F_ (Fig. 3).

1
F

iV - —————

FiYy-——————~—

FYW ===

l
|
; |
| |
| |
I |

y(F,) ylF) y(F,) y
Fig. 3 Confidence limits of quantiles y(F) and of distribution function F(y).
L, U - lower and upper limit; y(F) = yL(F) = yU(F).

The probability that the true value F(y) will be higher than F; or lower than F_equals «. The
point y(y) makes the upper limit of the confidence interval for ~(y), and, simultaneously, the
lower limit y; of the confidence interval for the quantile corresponding to the probability Fy
(horizontal line in Fig. 3). Similarly, the point F (y) makes the upper limit y, of the quantile for
Fi. Thus,

v (F) = y(F) = »(F). 23)
Expressing y, in the left of the equations (23) as
w(F) = y(E) - @ [yF). (24)

gives, after solving for y(F,) and making the inverse transformation, the upper limit of the
probability F for the quantile y:
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F+® -c\’
F,(y) = 1 - exp —(y() — ) - (@5)

This expression differs from Eq. (1) for the mean value F(y) by the term ®,_ determined using
Egs (21) and (19) and added to the y-value. Rigorously, the value F; should be inserted into
(19) for F, i.e. the value, which is not know yet. The calculations should, therefore, be
performed in an iterative way. However, as the confidence band width varies with F only
slowly, the F value can be used in (19) without significant error.

Lower limit F_ of the confidence interval for F(y) is obtained if the term ®_ in (25) is
replaced by - @y.

The proposed approximate methods for estimation of the parameters o, B, y of three-
parameter Weibull distribution are based on several simplifying assumptions, and are thus
valid only under certain limitations:

1. The minimum value of strength or time to failure cannot be lower than zero. If the
computed ¢ value is negative, the proposed distribution function is not suitable, and
another distribution should be tested, e.g. two-parameter Weibull function.

2. Another kind of distribution may also be more suitable if the lower confidence limit for the
threshold value y was obtained negative, cL = y(F=0) < 0.

3. The threshold value cannot be higher than the lowest measured value y1. If cU is higher
than y1, the upper confidence limit for y(F) should not be used, especially for low
quantiles.

Since in reliability assessment we need to know especially the ,guaranteed minimum
values® of strength or time to failure, or the values which will not be attained only with a very
low probability, it is especially the lower confidence limit y, (F) for quantiles and the upper
confidence limit Fy(y) for the distribution function, which are of major importance. It is thus
possible to determine only these limits. One-sided confidence limits for the confidence level
1 - o can be obtained if «/2 in the pertinent formulae is replaced by a.

4. EXPERIMENTAL PART

The properties and suitability of the proposed methods were tested on simulated
samples, generated from a population with known distribution. Pseudo-random numbers
uniformly distributed in the interval (0; 1) were generated by the program Excel and
transformed using Eq. (2) into the numbers having Weibull distribution with parameters
a =100, B =2, y = 200. In this way, 30 samples were created with 10 values each (n = 10),
then 30 samples with 40 values each, and 30 samples with 100 values. Always, the j-th
sample with 10 values was contained in the j-th sample with 40 values, which, again, created
a part of the j-th sample with 100 values. For all 90 random samples, the coefficients a, b, ¢ of
the three-parameter distribution were determined, using:

a) method of moments, using the tables in [1],

b) method of least squares, with the calculation of cummulative probabilities F
according to Hazen, Eq. (6a), and with the minimisation of the residual standard
deviation s, defined by Eq. (7),

c) method of least squares like b), but with the cummulative probabilities
determined according to Gumbel; Eq. (6c),
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d) method of ieast squares, with the cummulative probabilities calculated according
to Eq. (6a), and with the maximisation of the correlation coefficient r.

The least squares method was also used for the determination of the constants a, b of two-
parameter distribution (assumed ¢ = 0) for three groups of samples (with n = 10, 40 and 100).
Confidence intervals (for 1 - o = 0,9) were determined for the quantiles of the three-parameter
empirical distributions, and also for the parameters a, B of these distributions, as well as of the
parent distribution, using tables in [1].

All files with the input y;, F; data, calculated distribution characteristics and graphs are
archived at the KDMPS in printed form as the appendix to the "97 Report of the grant project
GA CR 103/97/0139, and also stored on 3,5 discs as Excel files. The individual files are
denoted by alpha-numerical code; e.g. W10GS089: the letter W means Weibull distribution, the
following number (10, 40 or 100) denotes the sample size, the following letter (G or H) tells
whether the cummulative probabilities F; were determined according to Gumbel or Hazen, the
following letter denotes the optimisation criterion (S - minimum of the residual standard
deviation, R - maximum of the correlation coefficient r, Z - two-parameter distribution with zero
threshold value, ¢ = 0). The sample number is given by the last two numbers (01 through 30).
The data necessary for the method of moments and the pertinent results are contained in the
files for three-parameter distribution.

Fig. 1 shows a random sample and its approximation by the two- and three- parameter
distributions. Figs. 4 -6 show examples of three-parameter distributions. The solid curve
corresponds to the parent function (with parameters «, B, y), dashed curve is the empirical
distribution function with the parameters determined by the method of moments, and dash-
and-dot curve belongs to the distribution function with the parameters determined by the least
squares method. The confidence limits (dotted curves) were determined by Eq. (9) for the
distribution function obtained by the moment method. The confidence level in all cases was
1- o =0,90. A brief overview of all results is given in Table 1.

An extremely important lesson from this simulation of 90 samples is that relatively often
the samples were significantly shifted aside from the parent distribution function (Fig. 4). Also
the slope of the sample distribution sometimes markedly differed from that of the parent
distribution function, especially for small samples (Fig. 5). With increasing sample size n, the
scatter of the measured values around the empirical distribution function got smaller, and their
distribution in the F(y) diagram came closer to the parent function (Figs. 5, 6).

_ The width of the confidence bands for three-parameter distribution were smallest for
y = y (equal to the width of the confidence interval for the mean), and gradually grew for both
y growing and decreasing. Generally, the band width decreased with growing sample size (in
correspondence with the critical values fy y and zq v, as well as the standard deviation of the
mean, which is indirectly proportional to the square root of n; see Egs. (21), (13) and (16).

The experience obtained from the approximations of the quantile (or distribution)
functions using the five methods can be divided according to the kind of the distribution.
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Fig. 4 Three random samples of size n = 40, approximated by three-parameter Weibull

distribution.
parent distribution function, - - - - - - approximation with parameters
determined by the method of moments, (- . - . - . - least squares method),

....... confidence limits for 1 - a = 0,90.
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Fig. 5 Three random samples of size n = 10 - 40 - 100, approximated by three-parameter
Weibull distribution. (Larger sample always contain all values from the smaller one.)

parent distribution function, - - - - - - approximation with parameters
determined by the method of moments, (- . - . - . - least squares method),
....... confidence limits for 1 - a = 0,90.
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Fig. 6 Three random samples of size n = 10 - 40 - 100, approximated by three-parameter
Weibull distribution. (Larger sample always contain all values from the smaller one.)

parent distribution function, - - - - - - approximation with parameters
determined by the method of moments, (- . - . - . - least squares method),
....... confidence limits for 1 - a = 0,90.
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Method Cmin Cmax I'I(C>Y) CL,min CL,max n(CL>Y) Cu,min Cu,max n(CU>Y)
W10MM -85.1 238.8 11 -124.0 203.0 1 -47.9 276.2 10
W10HS 0.0 252.8 15 -39.6 207.4 2 341 289.0 10
W10HR 0.0 2521 17 -39.6 21170 3 341 299.7 8
W10GS 0.0 252.8 14 -47.7 200.9 1 37.4 288.1 11
5 W40MM 147.2 226.7 16 132.8 211.8 7 161.1 248.8 8
| W40HS 168.5 223.8 18 154.2 208.7 3 182.3 2446 3
:\ W40HR 180.4 2281 18 161.7 2123 4 196.0 2425 1
| W40GS 1541 222.0 16 139.3 206.1 2 168.3 245.0 4
| W100MM 168.5 220.5 15 159.6 207.7 6 177.2 2325 10
W100HS 180.3 216.3 17 170.2 205.6 2 190.1 226.4 2|
W100HR 189.5 217.8 15 178.3 206.9 2 199.5 228.1 1 ;
W100GS 176.1 2155 17 165.8 204.6 2 186.1 225.8 3|
Method amin amax  N(@>a) bmin bmax N(b>p) Y1, min Y1,max n
W10MM 52.4 424.5 19 1.15 10.25 15 2021 256.2 10
W10HS 34.4 338.6 16 0.89 8.54 14 2021 256.2 10
W10HR 26.6 338.6 13 0.75 8.54 16 2021 256.2 10
W10GS 36.2 340.8 16 0.74 7.02 14 2021 256.2 10
W40MM 481 157.3 15 1.05 4.15 174 2021 233.8 40
W40HS 61.9 133.7 12 1.30 3.60 13 2021 233.8 40
W40HR 62.4 126.0 11 1.36 2.90 13 202.1 233.8 40
W40GS 63.4 148.8 14 1.22 377 12 2021 233.8 40
W100MM 59.7 136.3 15 1.15 3.29 15 200.7 2222 100
W100HS 78.0 126.8 12 1.61 2.87 15| 200.7 2222 100
W100HR 76.4 123:2 13 155 2.58 14 200.7 2222 100
W100GS 79.6 131.8 14 1.59 2.87 13 200.7 2222 100

Tab. 1 Scatter in the simulated samples; influence of the method and sample size.

MM - distribution parameters determined by the method of moments, H, G - parameters
determined by the least squares method, with cummulative probabilities calculated
according to Hazen (H) and Gumbel (G); S, R - optimisation criterion: S - minimum
residual standard deviation, R - maximum correlation coefficient.

min, max - minimum and maximum value of 30 samples, L, U - lower and upper
confidence limit (1-a = 0,90), n(a>a), n(b>p), n(c>y) - number of cases (in 30 samples)
with the parameter estimates a, b, ¢ exceeding the true parameters « = 100, f = 2,
7= 200.

4.1 Two-parameter distribution

This distribution has zero threshold value (¢ = y = 0), and also the values of quantiles
y(F) for very low probabilities F were always smaller than the quantiles y,(F) of the parent
(three-parameter) distribution (Fig. 1). However, for higher (but still relatively low) values of F,
the quantiles calculated using the sample distribution function were often higher than the
quantiles of the parent distribution (Fig. 1). With n = 10, for example, y(F=0,01) was larger
than y,(F = 0,01) in one case of 20, y(F=0,03) was larger than y, in three cases of 20, and
y(F=0,1) was larger than y, in twelve cases of 20. With larger samples, the quantiles of the
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empirical distribution functions were lower than the quantiles of the parent function up to
higher values of £, but later they exceeded the y, value more often. With n = 40, for example,
¥(F=0,03) was larger than y,(F = 0,03) in one case of 20, but for F = 0,1 y was larger than y, in
15 cases of 20.

It is obvious from these results that even the two-parameter distribution (especially if
used without checking the quality of the fit) need not guarantee safe conclusions, especially
for higher quantiles.

4.2 Three-parameter distribution

The main conclusions from the simulation are as follows:

1. The differences between the distribution functions determined for a certain sample
by the four methods a) - d) were, in general, smaller than the differences between
the individual samples. Often, the distribution function obtained by the least squares
method coincided almost with the function obtained by the method of moments,
though there were also significant differences in several cases (e.g. sample
W10HSO07 in Fig. 5 and W10GSO01 in Fig. 6).

2. The empirical coefficients a, b, ¢ of the three-parameter distributions were in
approximately one half of all cases (regardless the method of their determination)
smaller, and in one half larger than the parameters «, B, y of the parent population.
In several cases, the constants a, b were siginficantly out of the confidence limits
constructed for «, B. The variation of the constants a, b, ¢ was generally larger for
smaller samples.

3. The calculated constant ¢ was in about one half of all cases lower and in one half
higher than the true threshold value y of the parent distribution, and its variation was
large. The distribution of the generated values was such that for two of the smallest
samples (n = 10) ¢ was obtained negative using both the method of moments and |
least squares. On the other hand, the maximum value of ¢ significantly exceeded |
the threshold value y = 200. in the group of 30 samples, . = 220,5 for the sample |
size n = 100, Cnax = 228,1 for n = 40, and C.x = 252,8 for n = 10; see Table 1. This
means that reliability assessment or dimensioning for a very low (acceptable)
probability of failure cannot be based only on the distribution function (or the
threshold value c) determined by the least squares method or by the method of §
moments (and, perhaps, by the method of maximum likelihood, as well), but it is |
necessary to use the confidence interval for these estimates also. |

4. Two-sided confidence band, constructed, using Egs. (9), (21) and (19), for the ©
minimum width Ag) min, cOvered (at confidence level 1 - o = 0,9) in most cases the
parent function as well as the experimental values y; (Figs. 4 - 6). Sometimes,
however, the distribution function left the band in a certain region (sample
W40GS18 in Fig. 4, samples W10HS07 and W40HSO07 in Fig. 5, and sample
W10GS01 in Fig. 6, for example). In several cases the calculated lower limit ¢, was
higher than the true threshold value y. Such kind of error can be dangerous when
the ,guaranteed” values should be determined, and was, therefore, studied in more
detail.

The safest results were obtamed by the varlant c) of the Ieast squares method i.e. that

sing the
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residual standard deviation s, defined by Eq. (7). With sample size n = 10, ¢, was higher
than y in one case of 30. With n = 40, ¢, was higher than y in two cases of 30, and the same
result was obtained for n = 100 (Table 1). These five one-side exceedings in 90 cases
correspond approximately to the probability 5%, which can be expected for (./0-sided interval
at confidence level 1 - o = 90%. When 1 - o was raised to 0,96, ¢, was higher than y only in
one case of 90, which again corresponds (safely) to the statistical definition of the interval.
The variant c) gave also the lowest exceedings of the threshold value: with 1 - o = 0,90, the
highest value c_ . Obtained for n = 10 was 200,9, for n = 100 it.was 204,6, and for 40 it was
206,0 (and dropped to 201,9 for 1 - o = 0,96).

The results of other methods were slightly worse. With 1 - o = 0,9, the variant b) gave
¢ > yin 7 cases of 90, the variant d) gave ¢, >y in 9 cases of 90, and the method of moments
gave ¢ > y in 14 cases of 90. Also the maximum values of ¢, were higher (Table 1). The
thorough evaluation of the individual methods, however, would need a larger number of
experiments. '

The upper limit ¢, of the confidence interval was mostly (not always) higher than the
threshold value y (Tab. 1). For more than one half of all cases ¢, was even higher than the
lowest measured value y;, which contradicts to the reality. That means that Eqgs. (9) and (21)
for the determination of the upper limit of y(F) are not suitable for low probabilities F.
Fortunately, it is the lower confidence limit (i.e. y, or ¢.), which is important for the
determination of the guaranteed minimum values, (and, analogously, the upper limit ~; for the
probability F).

Let us now consider the influence of individual factors on the width of the confidence
band for distribution function. This width is minimum at y = y (equal to the width of confidence
band for the mean value), and grows continuously for y increasing as well as decreasing. At
the threshold value y = ¢ (i. e. for F = 0) the width was about 40 - 70 percent iarger than that
for y, the increase being larger for smaller samples (Fig. 6). Similar widths were again
attained for F as high as 0,9 - 0,95. For higher values F the width grew faster, and at = 0,999
was about twice or three-times that for y. These numbers correspond to the case, where only
the variance of the average value y and of the scale parameter a were considered (i.e.,
A§r),min Was used for the determination of ®). Some role is also played by the vaiiance of the
distribution shape parameter b and of the value F* in the distribution function, corresponding
to the average value y. The influence of F* is small, partly because it appears in the
expression (15) for b only in the term {In[1/(1-F*)]}"'b. The coefficient of variation of this term
was 3,7% for 30 samples of size n = 10, 1% for 30 samples with n = 40, and less than half
percent for 30 samples with n = 100. Thus, the influence of the variance of F* can be
neglected. The influence of the variance of b was, except for high probabilities £, also small.
At the threshold value c (i. e. for F = 0), the confidence intervals considering the upper limit by
in Eq. (19) instead of b were wider by about 2% for 1 = 10 [i.e. ®pa(F = 0) = 1,02 O, {F = 0)].
For n = 40 they were wider by 1%, and for n = 100 they were wider by 0,8%. (For F > 1%,
however, these intervals were narrower than those constructed without considering the scatter
in b, while slightly wider were the intervals constructed using the lower limit b in Eq. 19). The
difference between the @ values, determined for A§ min and A§ max Was smaller than 2% for F
up to F = 0,8 and began to grow faster only for F > 0,9, especially for small samples. The
widths of confidence intervals for F = 0,999 (and for A§ max determined using the lower limit by)
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were for n = 100 larger by about 20%, and for n = 40 they were larger by 50% compared to the
case not considering the variance of b. For n = 10, the increase of width was even faster, and,
for very high values of F, the solution lost stability; for example, the lower limit of confidence
interval for F > 0,999 was even lower than that for F = 0,75. With respect to this ambiguous
character, and especially due to the small influence of the scatter of the parameter b for most
values of F and for larger samples, it is thus preferrable to determine confidence intervals by
the simpler method (i. e. for A min), inserting the sample estimate b of the shape parameter
into (19). The reliability of the estimate can be increased by slightly increasing the confidence
level 1 - a.

5. SUMMARY

Four variants of determining the parameters of Weibull distribution by the least squares
method were proposed and tested, and also a method for obtaining confidence limits for the
quantile and distribution functions of the three-parameter distribution. The individual methods
for parameter estimation differed in ordering cummulative probabilities F; to the measured
values y; (see Egs. 6a-c in Section 2.1), and by the criterion for finding the optimum estimates
of the parameters (minimum residual standard deviation of the measured values from the
sample distribution function, or the maximum value of the correlation coefficient, see Section
2.2),

The proposed method for determining the confidence intervals for quantile function is
based on decomposing the total variation of the y(F) value into the variation of the sample
average and the variation of the slope of the sample distribution function. With respect to the
complex relationships between all these quantities, simpler expresions were developed for the
determination of the minimum and maximum possible width of confidence intervals
(considering only the variation of y and a in the former case, and of y, a and b in the latter;
see Section 3.1). The confidence limits for distribution function F(y) can be obtained by
a simple transformation of the expressions for confidence limits of the quantile function
(Section 3.2).

The differences between the three-parameter distribution functions, obtained for
a particular sample by the methods a) - d) as well as by the method of moments were, in
general, smaller than the differences between the individual samples. Also, the two-sided
90%-confidence intervals, constructed using Egs. (9), (21) and (19), covered in most cases
the substantial part of the parent distribution function and of the measured values, regardless
the method for parameter determination as well as the kind of confidence interval
(i.e. corresponding to the minimum or maximum possible width of A).

A more comprehensive evaluation of the individual methods would need more
extensive testing. Nevertheless, in the accomplished tests the safest results were obtained by
the variant c), i. e. with determining the cummulative probabilities by the Gumbel's expression
F, = j/An+1) and minimising the residual standard deviation around the untransformed
distribution function. The number of samples for which the lower confidence limit ¢, was
higher than the true threshold value y of the parent distribution was approximately the same
for all groups of samples (i. e. independent of the sample size) and corresponded to the
chosen confidence level. It has also been proven that (except for very high values F) the
scatter of the shape parameter b is small compared to the scatter of the sample average y
and of the scale parameter a. Thus the confidence limits can be estimated by inserting the

Jaroslav Mencik:
-22- The use of Weibull distribution for reliability assessment



sample estimate for b into Eq. (19), without considering its scatter. Sufficient reliability of the
estimate can be obtained by choosing a suitable confidence level 1 - a.

The variation of experimental values was pronounced especially for small samples,
where also the confidence interval were widest. In some cases the calculated threshold value
¢ was much lower than the true value y. In such cases, another distribution should be chosen.
Always it is necessary to check the fit.

With increasing sample size n, the distribution of experimental values approached to
the parent distribution, and the width of the confidence band decreased. The accuracy of the
estimate can thus be increased by increasing n. For relatively narrow intervals at high
confidence level, large sample size is necessary, with n = 100 or more. When deciding about
the extent of measurement and the confidence level, it is always necessary to compare the
testing costs with those due to over-dimensioning the structure (due to wide confidence
intervals), and the costs caused by the eventual failure.
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Resumé
POUZITi WEIBULLOVA ROZDELENI PRI POSUZOVANI SPOLEHLIVOSTI

Jaroslav MENCIK

Je popsan zplsob odhadu parametri Weibullova trojparametrického rozdéleni metodou
nejmensich Ctverctl, a stanoveni konfidenénich mezi pro hodnoty kvantild a distribuéni funkce.
Testovani pomoci nahodnych vybér(, generovanych pocitatem ze zakladniho souboru se znamym
rozdélenim, ukazalo, Ze vybérovy soubor se pfi malém rozsahu pomérné Casto lisil od zakladniho
souboru polohou nebo sklonem, a vybérové charakteristiky se pohybovaly kolem skute¢nych
parametrll v Sirokych mezich. Pii vypoctu kvantili nebo hodnot distribuéni funkce je proto nutno
urCovat vzdy konfidenéni intervaly. Navrzeny zplsob jejich stanoveni, vychazejici z rozptylu polohy
stfedu a sklonu vybérového rozdéleni, zajistuje dostatecnou spolehlivost odhadu zejména dolni
konfiden¢ni meze pro kvantily a horni meze pro hodnoty distribu¢ni funkce. K dispozici je i ceska
verze Clanku.

Summary
THE USE OF WEIBULL DISTRIBUTION FOR RELIABILITY ASSESSMENT

Jaroslav MENCIK

A method is proposed for estimation of the parameters of Weibull three-parameter
distribution (based on the least squares method), and a method for the determination of confidence
limits for the values of quantile and distribution functions. Testing of 90 random samples,
computer-generated from a distribution with known parameters, has shown that the distribution of
small samples often differed from the parent distribution by the position or slope. Thus, when
determining quantiles or values of the distribution function, confidence intervals must also be
determined. The proposed method for their obtaining (based on the decomposition of the total
variance into the variance of the mean and slope of the sample distribution function) ensures
a sufficient reliability especially for the estimates cf the lower confidence limit for quantile function
and upper limit for the values of distribution function.

Zusammenfassung

DIE VERWENDUNG VON WEIBULLVERTEILUNG FUR ZUVERLASSIGKEITSBEURTEILUNG

Jaroslav MENCIK

Der Aufsatz beschreibt eine Methode fir Abschatzung der Parametern von Weibull
Dreiparameterverteilung mit der Methode der kleinsten Quadrate, und auch eine Methode fir die
Bestimmung von Konfidenzgrenzen fir Quantile und Werte der Distributionsfunktion. Die
Methoden wurden getestet mittels 90 Zufallsproben generiert aus einer Verteilung mit bekannten
Parametern. Es hat sich gezeigt, daf} besonders kleine Proben unterschieden sich oft von der
Grundverteilung entweder durch die Lage oder Neigung der Distributionsfunktion. Die entworfene
Methode fiir die Konfidenzgrenzenbestimmung, die die Streuung beider dieser Grofen
berlicksichtigt, gibt genligende Zuverldssigkeit besonders fiir die untere Grenze fur Quantile und
die obere Grenze fiir die Werte der Distributionsfunktion.
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