
SCIENTIFIC PAPERS
OF THE UNIVERSITY OF PARDUBICE

Series B
The Jan Perner Transport Faculty

12 (2006)

EXTENDING ANNOTATIONAL SSML INTO STRUCTURAL CONTENT
FOR SPEECH SYNTHESIZER

Martin KLIMO, Igor MIHÁLIK

Department of information networks, Faculty of management sciences and informatics,
University of Žilina

1. Introduction
The most common type of input to a speech synthesizer is a plain text. This is

desirable in some sense as it is a commonly agreed format, understandable to everyone.
However, text is not ideal because it is extremely difficult for a computer to automatically
analyze the text and discern the discourse peculiarities of a sentence. In addition there
are cases where the same sequence of words can be spoken in different ways, each
being perfectly acceptable in a given context.

Choosing the correct pronunciation can prove extremely difficult given the range of
pragmatic factors which can influence the context of the sentence. If a synthesis system
does not have access to such information, the speech typically sounds bland and often
the wrong words are emphasized, leading to errors in intelligibility. To tackle this problem,
many research and commercial systems allow for annotations in the text which allow
direct control of aspects of the speech synthesizer’s operation. Thus words can be
emphasized, phrase breaks can be placed and instructions can be given which indicate
how words should be pronounced.

Scientific Papers of the University of Pardubice
Series B - The Jan Perner Transport Faculty 12 (2006) - 193 -

There exists a standardized way of annotating text and it is called Speech
Synthesis Markup Language (SSML)[1]. It is designed to provide a rich, XML-based
markup language for assisting the generation of synthesis speech in Web and other
applications. The essential role of the markup language is to provide authors of
synthesizable content a standard way to control aspects of speech such as
pronunciation, volume, pitch, rate, etc. across different synthesis-capable platforms.

2. SSML Document Processing
A text document provided as input to the synthesis processor may be produced

automatically, by human authoring, or through a combination of these forms. SSML
defines a form of the document. The following are the six major processing steps
undertaken by a synthesis processor to convert marked-up text input into automatically
generated voice output. The markup language is designed to be sufficiently rich so as to
allow control over each of the steps described below so that the document author can
control the final voice output: XML parse, structure analyses, text normalization, text to
phone conversion, prosody analyses and waveform production.

XML parse Structure
analyses

Text
normalization

Text to phone
conversion

Prosody
analyses

Waveform
production

Fig. 1 Steps needed during the process of speech synthesis
Text to speech system presented in this paper covers all previously mentioned

steps. The system is able to process SSML input directly and following sections will
describe more in detail interesting conceptual and implementation aspects of the
synthesizer. Also the extension to SSML language will be presented to give more fine
grained annotations of input text so that the waveform output sounds even more
naturally.

3. SSML Processing
As mentioned before SSML is the primary relevant input to synthesizer. The SSML

does not give put any constraints on how detailed the annotating should be. One can
write SSML like this one:

<speak>
 This is ordinary text. Whatever can be written here and it is a valid and
well
 formed SSML document.
</speak>

To better understand why this is possible one has to take SSML mainly as an
annotational rather than structural tool. Its purpose is not to define tight structure of input
text, but rather allow providing additional informational data (metadata) where it makes

 Martin Klimo, Igor Mihalik:
- 194 - Extending Annotational SSML into Structural Content for Speech Synthesizer

sense to do so. If one wants to specify that the content between <speak> elements
contains two paragraphs the input looks like this:

<speak>
 <p>This is ordinary text.</p>
 <p>Whatever can be written here and it is a valid and well formed SSML
document.</p>
</speak>

User could go deeper and annotate entire text so that the waveform output
corresponds more to the user’s expectations. This is an even more detailed example of
annotated text with elements defined in SSML:

<speak xml:lang=”en-US”>
 <lexicon uri="http://www.example.com/lexicon.file"/>
 <voice gender="female" variant="2">
 <p><s>This is ordinary text.</s></p>
 <p><s>Whatever can be written here and it is a valid and well formed SSML

 document.</s></p>
</voice>

</speak>

As shown SSML gives possibility to set a lexicon that will be used for grapheme to
phonetic transcription, to select a voice used during the speech rendering also sentence
boundaries. The annotations that SSML provides can be divided into three groups
depending on aspect they cover:

• Document structure, text processing and pronunciation (“speak”, “language”,
“lexicon”, “phoneme”, “say-as”, “p”, “s”…)

•Prosody and style (“voice”, “emphasis”, “break”, “prosody”)
•Other elements (“audio”, “mark”, “desc”)

4. From annotational SSML to structural content
Any implementation of speech synthesizer (and any software product generally)

requires analytical and architectural phase. During these phases internal architecture is
defined, the modularity and interoperability between various modules is specified
(communication interfaces). And when taking all of these aspects into account we
discovered that SSML is a perfect basis for the definition of internal structure. Any
XML [3] document (including SSML) is a linearization of tree structure. Each XML
element can serve as a parent element or can be nested inside another XML element.
SSML input shown in previous text can be depicted as tree:

Scientific Papers of the University of Pardubice
Series B - The Jan Perner Transport Faculty 12 (2006) - 195 -

<speak>

<lexicon> <voice>

<p>

This is
ordinary text

<s>

<p>

Whatever can be
written here and it
is a valid and well

formed SSML document

<s>

Fig. 2 Tree like structure of SSML input

Having this basis one needs to define a complete tree with all the required

elements and their attributes. To achieve this we introduced several new elements and
attributes and named this definition as SSML+:

• Compound element for annotating compounds in input text
• Type attribute to set a sentence type (declarative, interrogative,

imperative)
• n-phone element to denote phonetic transcription (not as annotation above

text, but rather element inside syllable element)
• syllable element to denote syllable inside a word

In order to achieve complete SSML+, structure “creational” modules were defined
and implemented. In other words if input SSML text does not contain all necessary
annotations there must be a module that is able to set annotations automatically. Rule-
based engines (RBE [5]) represent a way how this task can be accomplished. We’ve
defined a set of atomically and independently executable modules. Each module M is
determined by conditions:

• preconditions – a set of conditions that have to be met before a module
code is executed, denoted as

• postconditions - a set of conditions that must be always true just after the
execution of module code, denoted as

These modules are executed one by one in undefined order depending on the
result of module preconditions. This method of execution in which the order of module
invocations is not explicitly defined is called implicit invocation [7]. The preconditions and
postconditions determine implicitly the order in which modules are executed.

 Martin Klimo, Igor Mihalik:
- 196 - Extending Annotational SSML into Structural Content for Speech Synthesizer

module1 module 3module 2 module n

SSML
document

SSML+
(complete)

rule based
engine

Fig. 3 Precondition based execution of modules

Let’s have a set of modules:

 },...,,{ 321 nMMMMM = (1)

With preconditions and postconditions:

)}(),...(),(),({ 321 nMPMPMPMPP = (2)

)}(),...(),(),({ 321 nMRMRMRMRR = (3)

To make sure that output of set of modules M produces complete SSML+ the
postconditions of modules M must quarantine that output from modules leads to complete
SSML+.

The approach used to determine these postconditions is based on backward
chaining algorithm from artificial intelligence theory [7]. In terms of preconditions we have
to guarantee that for each module there is a subset M’ of modules M such that the
unification of postconditions triggers modules precondition. And of course there must be
one module in an implicit chain that is triggered by any valid SSML document.

Such modularization brings better understanding of system. The simplicity gives
researchers more time spending on solving the problem each module should handle
without knowing internals of other modules.

Preconditions and postconditions in fact define a contract of module interfaces and
this approach is known as design by contract [10].

5. Formal language
To be able to formally write and reason about preconditions and postconditions a

formal language was defined. Using this language one can create propositional functions
with true predicates for elements of some subset of all elements in a tree. Then
preconditions and postconditions are fulfilled.

The basic form of expression is . Where x represents element of tree,

)(xϕ is propositional function with true or false result when applied on element x . Using
basic form of propositional function and logical functions one can create complex
formulas. One often needs quantifiers for some types of propositional functions:

Scientific Papers of the University of Pardubice
Series B - The Jan Perner Transport Faculty 12 (2006) - 197 -

• represents propositional function and we will write:

For all holds or for each holds .

• represents propositional function and we will write:

There exists that holds

•

There exists exactly one that holds

6. Modules Overview
Last descriptive section of this paper is focused on short enumeration of modules

used in speech synthesizer. The speech synthesizer uses concatenative approach[8,9]
and some of the modules are used cause of the concatenative method:

•Validation of SSML and structure creation (speak, ssml, audio)
•Structural analyses (lang, voice, paragraph, compound, sentence, sentence

type, word, diphone, text norm, text, syllable, say as, sub, desc, mark,
phoneme)

•Grapheme to phoneme conversion (lexicon, ph, word join)
•Prosody analyses (prosody, contours, range, pitch, duration, rate, volume,

emphasis, voice [age/gender], break)
•Waveform production (diphone extract, diphone selection, diphone merge,

contour application, prosody application)

7. Conclusion
We presented the principle and internal design ideas of speech synthesizer

developed at Department of Information Networks. Although the implementation is
focused on Slovak language the principles are applicable to any speech synthesizer with
the aim of producing high quality speech output. Having this skeleton structure of data
and modules we aim to focus deeper into research and implementation of each module
allowing us to tackle specialties of each separately.

Lektoroval: prof. Ing. Karel Šotek, CSc.
Předloženo: 28.2.2007

References
1. Speech Synthesis Markup Language (SSML) Version 1.0,

http://www.w3.org/TR/speech-synthesis
2. The Festival Speech Synthesis System, http://www.cstr.ed.ac.uk/projects/festival/
3. Extensible Markup Language, http://www.w3.org/XML/
4. Associating Style Sheets with XML documents, http://www.w3.org/TR/xml-stylesheet/

 Martin Klimo, Igor Mihalik:
- 198 - Extending Annotational SSML into Structural Content for Speech Synthesizer

http://www.w3.org/TR/speech-synthesis
http://www.cstr.ed.ac.uk/projects/festival/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-stylesheet/

5. Rule Base Engine, http://en.wikipedia.org/wiki/Rules_engine
6. An Introduction to Implicit Invocation Architectures, Benjamin Edwards.

http://www.mach-ii.com/downloads/docs/Intro%20to%20Implicit%20Invocation.pdf
7. AI Application Programming, M. Tim Jones, 2003 Charles River Media, ISBN 1584502789
8. Improvements in Speech Synthesis: Cost 258: The Naturalness of Synthetic Speech, Eric

Keller, 2002 John Wiley and Sons, ISBN 0471499854
9. Text, Speech and Dialogue 2004: 7th International Conference, TSD 2004,

Text to Speech for Slovak Language, pp. 291-298, ISBN 978-3-540-23049-6
Caky, Klimo, Mihalik, Mladsik, 2004 Springer, ISBN 3540230491

10. Applying “Design by Contract“, Bertrand Meyer, IEEE Computer, October 1992, Pages 40-51

Resumé

ROZŠÍRENIE ANOTAČNÉHO JAZYKA SSML NA ŠTRUKTURÁLNY OBSAH PRE REČOVÝ
SYNTETIZÁTOR

Martin Klimo, Igor Mihalik

Článok popisuje spôsob rozšírenia štandardu jazyk SSML, ktorý je primárne určený pre
anotáciu vstupného textu na plne štrukturovaný obsah interne použitý v systéme syntézy reči.
Vysvetľuje použitý prístup pre spracovanie takého SSML vstupu s použitím technológie "rule-based
enginu" a implicitnej invokácie. Pre reasoning v implicitnej invokácii bol navrhnutý formálny jazyk a
tento jazyk je taktiež v krátkosti v článku popísaný.

Resume

EXTENDING ANNOTATIONAL SSML INTO STRUCTURAL CONTENT FOR SPEECH
SYNTHESIZER

Martin Klimo, Igor Mihalik

This paper describes a way of extending standard SSML language that is primary used for
annotating input text into fully structural content used internally for speech synthesis. It explains
approach used for processing such SSML input using rule based engines technology and implicit
invocation. For reasoning in implicit invocation a formal language had to be created. This formalism
is also shortly described in this paper.

Zusammenfassung

DIE VERBREITUNG DES SSML-STANDARD, DER FÜR VOLL STRUKTURIERTEN INHALT IM
SYSTEM DER SPRACHSYNTHESE VERWENDET WIRD

Martin Klimo, Igor Mihalik

Der Artikel beschreibt die Verbreitung des SSML-Standard, der für voll strukturierten Inhalt
im System der Sprachsynthese verwendet wird. Der SSML Standard ist primär für Vermerke der
Input-Texte bestimmt. Im Artikel wird die Art der Verarbeitung solchen SSML-Input unter
Verwendung der rule based engine und implicit invocation erklärt. Für das Reasoning in implicit
invocation wurde eine formale Sprache vorgeschlagen, die auch im Artikel kurz erklärt wird..

Scientific Papers of the University of Pardubice
Series B - The Jan Perner Transport Faculty 12 (2006) - 199 -

http://en.wikipedia.org/wiki/Rules_engine
http://www.mach-ii.com/downloads/docs/Intro to Implicit Invocation.pdf

- 200 -

