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1. Introduction 

Prof. Černý and prof. Kluvánek have created a mathematical theory of 
transportation, and the basic ideas have been published in 1991 [2]. At least since this 
date it is well known, that transport and telecommunication network models have the 
same theoretical roots. The mathematical background consists mainly of graph theory for 
optimisation of network topology and queuing theory for optimisation of transport system 
performance. Anyhow, the communication theory has a strong tool at hand - the 
information theory, and its potential is still unused within the transport theory. In 1996 
Anantharam and Verdú has published a paper [3], in which they used the information 
theory for performance analysis of packet networks for the first time. It seems to be clear, 
that if performance of transport and packet systems have the same modelling principles, 
using of information theory should bring some gain also for modelling of transport 
networks.  

Comparing with [3] we have used an alternative approach, finding that there is a 
direct analogy between the interval between two subsequent transport elements and the 
word of unary binary code. Properties of these codes have not yet been studied, because 
of their inefficiency for information transmission. Applying them to studies of intervals in 
transport flow, their understanding can bring new knowledge for qualitative analysis of 
transport elements stream. 
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2. Flow representation by unary code 

With respect to throughput modeling, the basic properties of transport elements are 
described by their placement on a time axis. In addition to this, the individual properties of 
particular transport elements are included, e.g., transportation type, elements types, etc., 
but in this article, we will not take these properties into consideration and we will only 
focus on time positions of transport elements. To simplify our modeling, we will assume, 
that we can divide a transport system with transport flow present into sections in such a 
way, that transport element will stay in each section for an equal amount of time. On one 
hand side, this means simplification, while the time set is countable. One the other hand 
side, it means, we will restrain the transport flows observation to only those parts of the 
system, in which the elements cannot stay. This however, is in compliance with the 
purpose of the article, which describes information properties of transport flows. We will 
call the process of holding an element in such section a time slot. 

From this point of view, the elements flow is fully described by a sequence of 
intervals between them. 

 
Fig. 1 Transport elements flow 

We assume that all time slots are of equal length and in each time slot at most one 
element can appear. Thus, the interval between elements is a natural number. If we 
designate a time slot in which an element has appeared, by symbol “1”, and time slot in 
which no element has appeared, by symbol “0”, then the elements flow is described by a 
sequence of zeros and ones. Thus, each interval corresponds to a sequence of zeros 
terminated by a one. We will call this sequence a code word. 

Interval length Code word 
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Fig. 2 Unary code words 

Such code words form unary bar code, in which a corresponding number of zeros 
is terminated by a one bar. To simplify our modeling, we will only call this code unary 
code, as usually. Thus, intervals between elements are unary code words, which means, 
the point processes problems are transformed into coding area. This provides a basis for 
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answering questions related to amount of information contained in code words which are 
generated by a source, or transferred by an information channel. Using these notions, we 
will be able to talk about the amount of information contained in the position of elements 
on input or output time axis of a transport subsystem. 

In order to be able to use source coding theory, we will not say, that a source 
generates elements between which the interval is of length li with probability pi, but we will 
say, that the source has generated the symbol xi with probability pi, and this symbol is 
encoded into a code word (00.01) of length li. 

  
x3 001 Coder Source 

 
Fig. 3 Coding of source symbols with unary code 

We will assume, that the source generates symbols of a finite set 
 with probabilities { LXXXX ,....,, 21= } ( ) ( ) ( )Lxpxpxp ,....,, 21 , which form a probability 

distribution, i.e., . In the following text, we assume ( ) 1
1

=∑
=

L

k
kxp ( ) 0>Lxp . These symbols 

are generated in such a way, that one symbol is generated in each time slot. We assume, 
that for each n-tuple of generated symbols beginning in time  Nii ∈,

( ) ( ) ( )( )11 ,...., −++= niiii xxxx  the probability of such sequence is given as follows 

( ) ( ) ( ) ( )( )11 ,...., −++= niiii xxxpxp . Furthermore, we will only assume stationary sources, 
which means, that this probability is not dependent on i. Since intervals between transport 
elements, i.e., symbols of sources are randomly generated, the appearance of each 
interval (symbol on source output) brings the following information with 
( ) ( ) ( ) XxxpxpxI ∈−= ,log . Mean amount of information contained in one symbol on 

source output is as follows: 

( ) ( ){ } ( ) ( ) ( ) ( )
1 1

E l
L L

X i i i
i i

H X I x p x x p x p x
= =

= = = −∑ ∑� og i
 

and is called entropy of source ( ){ }xpX, . If not stated otherwise, we will assume 
logarithm of basis 2 and the information (i.e., entropy) is expressed in Shanons [Sh]. 
Thus, in our case, entropy gives the mean amount of information contained in one 
interval between two elements following one after the other. We also interpret entropy as 
an amount of interval uncertainty, where deterministic intervals are of zero uncertainty.  
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Each source symbol represents an interval of a given length, and unary code word 
is assigned to each interval length (see Fig. 4). Shortly we will say that a code word of 
unary code is assigned to a source symbol. 

Source 
symbol 

Probability of source 
symbol 

Code word 

x1

x2

x3

... 

xL

p(x1) 

p(x2) 

p(x3) 

... 

p(xL) 

c1

c2

c3

... 

cL

1 

01 

001 

... 

00...01 

Fig. 4 Unary code words assigned to source symbols 

By the length of a code word we will designate the number of zeros and ones, with 
the help of which the code word is written: ( )( ) ( ) Lixcxcm ii ,....,1, == . It is evident, that 

for a selected unary code, the following statement is true: ( )( ) Liixcm i ,....,1, == .  
 

Theorem 1 

Unary code is immediately decodable. 
 

Proof 

Although the theorem is trivial, while the code is bar code, i.e., the letter of code 
alphabet “1” means the end of the code word, we will do a formal proof. Kraft unequality 
[1] says, that the binary code is immediately decodable IFF the following is satisfied: 

( )( ) 12
1

≤∑
=

−
L

i

xcm i  

While the code word length in unary code is ( )( ) ixcm i = , the left side of Kraft 
unequality is: 

1
2
112

1

≤−=∑
=

−
L

L

i

i  

while the equality occurs when L grows to infinity. 

Although this theorem does not bring anything new to transport elements flows, 
from the formal point of view it is necessary for application of information theory results in 
transport flows. 

The code word length m is random variable, which is given by a probability 
distribution ( ) ( ) LixpimP i ,....,1, === . While later we will be interested in, in what time 

 Martin Klimo, Jana Uramová: 
- 184 - Modelling of Transport Process by Unary Code 



the information is transferred inside the code word, we will use the mean length of a code 

word ( )( ){ } (∑
=

==
L

i
ix xipxcmEm

1

) . 

 
Example 1 

Let us suppose the following source: 

( ){ } ( ) ( ) ( ) ( ){ }1 2 3 4 1 2 3 4, , , , , 0.1, 0.3, 0.4, 0.2,X p x x x x x p x p x p x p x= = = = =
 

Entropy of this source is ( ) Sh85.1=XH . After encoding to unary code, we have 

the code words ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0001,001,01,1 4321 ==== xcxcxcxc , and the middle length 

of a code word is 7.2=m .  

This source represents transport elements flow, in which the intervals occur 
between elements of lengths 1,2,3,4 of slots with probabilities mentioned above. 

It is evident, that we can get the same mean information (entropy), which is 
contained in one interval (unary code word), by changing the symbols order in the source. 

Let us create the source as follows: 14432231 ,,, xxxxxxxx =′=′=′=′ . Then the 

source ( ){ } ( ) ( ) ( ) ( ){ }1.0,2.0,3.0,4.0,,,,, 43214321 =′=′=′=′′′′′=′′ xpxpxpxpxxxxxpX  keeps equal 

entropy , but the mean length of a unary code word is ( ) Sh85.1=′XH mm <=′ 2 . Thus 
a question arises, which re-ordering of symbols leads to the shortest mean length of a 
unary code word.  

 
Definition 1 

If the source ( ){ }xpX,  is first re-ordered into the source ( ){ }xpX ′′, , and then 

encoded by unary code, we will call such unary coding of a source ( ){ }xpX,  an optimal 

one, if no other re-ordering exists ( ){ }xpX,  which mean length of unary code word is 
shorter. 

 
Theorem 2 

For a source ( ){ }xpX,  the following is true ( ) ( ) ( )Lxpxpxp ≥≥≥ ....21  IFF, the unary 
code of the source is the optimal one. 

 
Proof 

Let the unary code of source ( ){ }xpX,  be optimal and let exist i > j, for which 

( ) ( )ji xpxp > . By changing these symbols a source is created, which unary code has the 

mean length lower according to this value 
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( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) 0>−−=+−+ jijiji xpxpjixipxjpxjpxip , which contradicts the 

presupposition, that the unary code of source ( ){ }xpX,  is optimal. 

Thus, when we re-order the source symbols assignments to the intervals lengths 
between elements, in case of unoptimal division of intervals lengths we can reach the 
same mean information contained in one interval with the help of a shorter mean length 
of a unary code. In reality, the division of intervals lengths between transport elements is 
given, and it is not possible to change it. Then a question arises, why we should study 
properties of such re-ordering. The reason is, when we know the properties of optimal 
unary code, i.e., a flow in which the highest mean amount of information is related to one 
time slot, we will know a flow with the maximum uncertainty, to which the other flows can 
be related. 

For demonstration purposes, we will represent a code by a code tree. A code tree 
of a unary code of a source ( ){ }xpX,  is illustrated in the following figure. 

 

 
Fig. 5 Unary code tree for the source ( ){ }xpX,  

 

3. Unary code equivalent to Huffman code 

Huffman code is well known (see e.g. [1]), it is immediately decodable and has the 
shortest mean length of a code word. Next, we will only be using the binary Huffman 
code. We will use its construction as follows: 

• We will order the symbols from left to right in an ascendant way according to 
probabilities. 

 Martin Klimo, Jana Uramová: 
- 186 - Modelling of Transport Process by Unary Code 



• We will assigned codes letters “0” and “1” to the first two symbols on left hand 
side (with the lowest probability) and we will group them into a new symbol, which 
probability equals the sum of probabilities of grouped symbols. If the sum is lower 
then 1, we continue using the previous rule. 

• We will stop the code tree beginning at the top level. 

An example of such construction is illustrated in the following figure. 

 

 
Fig. 6 Construction of Huffman code for the source  

 

The respective code tree is illustrated in the following figure. 

 

 

 
Fig. 7 Huffman code tree for the source 
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Let us look at the source from Example 1. Its entropy is ( ) Sh85.1=XH . The mean 
word length of Huffman code is as follows word length of Huffman code is as follows 

( ) ( ) ( ) ( )[ ] 9.1321 4123 =+++= xpxpxpxpm . Let us remind ourselves, that the mean length 

of unary code of this source is 7.2=m  and mean length of the optimal unary code of this 
source is 2=m . The example only confirms a well known fact [1], that the Huffman code 
achieves the minimal mean code word length from all immediately decodable codes, and 
from above it is approaching the entropy of the encoded source. To complete our notions 
we add, that it is not the only one with this property and for example Shannon-Fan code 
achieves this mean code word length too. However, for some sources, the unary code 
may be almost equal to Huffman code. 

 

Definition 2 

We say, that unary code ( ){ }LixcC iUU ,....,1, ==  is equal to Huffman code 

, if  ( ){ }LixcC iHH ,....,1, ==

( ) ( ) 1,....,1, −== Lixcxc iHiU    a   ( ) ( )( )1,LHLU xcxc =  

i.e., all unary code words except the longest one are words of Huffman code and 
the longest word of unary code is a word of Huffman code after releasing the symbol “1”. 

 

Theorem 3 

Unary source code ( ){ }xpX,  is equal to Huffman code of this source iff,  

 , (1) 
( ) ( ) 11

1

−=≥ ∑
+=

L,...,k     ,  xpxp
L

ki
ik

Proof 

Equality of unary code and Huffman code is identical to the following request: 
During the Huffman code construction the rearrangement of symbols of reduced sources 
according the probability is not desired, i.e., the newly created symbol of reduced source 
has the lowest probability. Then the symbol “0” will be assigned to it. If the unequality in a 
theorem is satisfied, then there will be no rearrangement and after adding “1” the 
resulting code will be also the Huffman code. The other way around, if the unary code is 
also the Huffman code, then there was no rearrangement of symbols of reduced sources, 
which means, the unequality in the theorem is satisfied. 

It is evident, that the unary code, which is equal to Huffman code is also optimal 
code, i.e., ( ) ( ) ( )Lxpxpxp ≥≥≥ ....21 . 
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Example 2 

Suppose source:  

( ){ } ( ) ( ) ( ) ( ){ }10103050 4314321 .xp.xp.xp,.xp;x,x,x,xxp,X 2 ===== . 

The construction of Huffman code of this source is illustrated in the following figure. 

 

 
Fig. 8 Construction of Huffman code of given source 

 

Huffman code and unary code trees of given source are illustrated in the following 
figure. 

 
Fig. 9 Huffman code and unary code trees of given source 

 

Entropy of this source is ( ) Sh69.1=XH . After encoding into Huffman code, its 

mean length is 7.1=Hm  and after encoding into unary code, the mean length of a code 

word is 8.1=Um .  
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If the unary code  is equal to Huffman code , their mean length of a code 

word only differs in a contribution of added “1” to the last word, i.e., 
UC HC

( )LHU xpmm += . 

4. Unary code with the shortest mean length 

The previous theorem answered the question related to the condition which the 
source must satisfy in order for its unary code to be equal to Huffman code. However, 
which source from those, which satisfied the given condition, had the shortest mean 
length of word? The following theorem is related to this question. 

 

Theorem 4 

From these sources ( ){ }xpX, , { }Lx,...,xX 1= , the source with the following 
distribution has the shortest mean word length of unary code. 
 

( ) ( ) 212 1 −== +− L,...,i   ,xp i
i , 10 << p  

( ) ( ) ε−= −−
−

1
1 2 L

Lxp  

( ) ε=Lxp ,  +→ 0ε

Proof 

We will get the Huffman code equal to unary code by removing the symbol “1” from 
the longest word of the unary code. From the basic theorem of sources encoding it is well 
known, that Huffman code will achieve the shortest length if 

( ) ( ) 112 1 −== +− L,...,i   ,xp i
i  

( ) ( ) ( )1
1 2 −−
− == L

LL xpxp  

However, the mean length of Huffman code will stay the same, if we move arbitrary 
part of probability ( )Lxp  to probability ( )1−Lxp , since the code words are of the same 
length. This is not valid for unary code, which mean length of code word is 

( )LHU xpmm +=  and thus the lower the probability ( )Lxp , the lower it will be. But it must 

be non-zero, in order to be able to assign a code word to a symbol of a source  and 
this way to keep the condition of maximal length of a word satisfied. 

Lx

5. Entropy rate of a transport flow 

It is a well known fact, that the highest entropy has the interval between transport 
elements at uniform distribution  and its value is . This 
however, does not mean that a flow with such interval distribution will have the highest 
uncertainty for a given time.  

L,...,i,Lpi 11 == − LlogH =
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We have to realize, that while interval distribution is not interval distribution with the 
highest entropy, it may lead to the highest entropy contained in one time slot and thus 
leading to a flow with the maximum uncertainty. This is caused by the fact that lower 
entropy compared to uniform distribution can by compensated by shorter mean length of 
interval. Thus in order to be able to compare flows of transport elements from the 
uncertainty point of view, we will re-calculate the entropy of an interval for one time slot. 

 

Definition 3 

Let ( ){ L,...,i,xcC iUU 1 }==  be a unary code of a source , 

 and 

( ){ }xpX,

{ } 11 ≥= L,x,...,xX L Um  the mean length of this code. The following quantity we call 

the entropy rate of the unary code  UC

( )
U

U m
XHh = . 

Another article will be dedicated to the searching for a source with the maximum 
entropy rate. As the reader probably anticipates, for ∞→L  it will be a source, which 

probability distribution is approaching the geometric one with a quotient of 
2
1

=p . 

However, for sources with finite number of symbols the situation is more complicated. 

6. Conclusion 

Interpreting intervals between elements in a transport flow as words of unary code 
allows us to use information theory results for its studies. In this article, we have mostly 
concerned with flows, in which the construction of unary code leads to Huffman code, a 
code with the shortest mean length. This means, we have been mostly concerning with 
flows, which have the shortest possible mean interval length, while they have non-
changing uncertainty. The fact, that Huffman code contains in its longest code word one 
“1” less compared to equal word of unary code (interval) means, that we cannot 
automatically take the results about uncertainty related to one symbol of Huffman code 
also for an uncertainty, which is related to one time slot of a transport flow. This means, 
that we have left the problems of transport flows with the highest uncertainty to the next 
article. In order to make the reader understand, which direction in our research we head, 
we have at least introduced the entropy rate definition of a transport flow. 
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Resumé 

MODELOVÁNÍ DOPRAVNÍHO PROCESU UNÁRNÍM KÓDEM 

Martin KLIMO, Jana URAMOVÁ 

Článek analyzuje analogii náhodných intervalů mezi dvěmi jednotkami v dopravním proudu 
a slovy unárního kódu. Tím poukazuje na otázky, které jsou společné pro teorii dopravy a teorii 
informací, což umožňuje  požít výsledky teorii informací v dopravě. Nejsou to jenom otázky 
kvantifikace neuspořádanosti (entropie) dopravního toku, ale rovněž precizování pojmu kapacity 
dopravního systému. Podrobněji jsou prezentovány vlastnosti náhodných intervalů s maximální 
entropií při minimální střední délce. 

 

Summary 

MODELLING OF TRANSPORT PROCESS BY UNARY CODE 

Martin KLIMO, Jana URAMOVÁ 

Analogy of random intervals between two transport units and words of unary binary code is 
analyzed. This way, article is pointing to questions, which are common for transport theory and 
theory of information, which allows usage of theory of information results in tranport. These are not 
only questions of quantification of assortness (entrophy) of transport stream, but also better 
specification of term capacity of transport system. Properties of random intervals with maximum 
entropy under minimum length are presented. 

 

Zusammenfassung 

DIE SIMULATION DES VERKEHRLICHEN PROZESSES MIT DER HILFE DES UNÄREN KODES 

Martin KLIMO, Jana URAMOVÁ 

Die Analogie wurde der ZufallsIntervalls zwischen zwei Transporteinheiten und Wortes des 
monadischen Binärcodes analysiert. Damit weist sie auf die Fragen, die fur die Verkehrstheorie und 
Informationstheorie gemeinsam sind, was die Resultate aus der Informationstheorie in dem Verkehr 
benutzen ermoglichen wurden. Es sind nicht nur die Quantifizierungfragen der Unordnung der 
Transporteinheit, aber auch die Fragen der Prezision des Begriffs uber die  Kapazitat des 
Verkehrssystems. Die Eigenschaften der Zufallsintervalls mit der Maximalentrophie bei der 
minimalen Mittellange wurden umfassend prasentieret. 
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