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Abstract

Synthesized-reference-wave holographic techniques offer relatively simple and cost-effective measurements of antenna
radiation characteristics, and reconstruction of complex aperture fields using near-field intensity-pattern measurements.
These methods allow utilization of the advantages of the methods for probe compensation for near-field amplitude and phase
measurements for planar and cylindrical scanning, including accuracy analyses. Accuracy analyses using mathematical
models considering random processes with correlation intervals are presented. Numerical simulations, taking into account
random as well as deterministic errors and the processing of measurement statistics, are also presented. It is demonstrated
that the given analyses correspond to our measurements and/or numerical simulations.
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1. Introd-uction

ear-field (NF) measurements provide a fast and accurate

method for determining an antenna’s gain, pattern, polariza-
tion, beam pointing, etc. In contrast to conventional far-field meth-
ods, near-field antenna measurement methods make use of a meas-
uring probe in the radiating near-field region of the antenna under
test (AUT). The far-field radiation pattern of the AUT must then be
indirectly computed from the measurements made in a near-field
region. Several methods for near-field antenna measurements have
been described, such as [1-17].

Synthesized-reference-wave holography was proposed in the
PhD thesis [9], where several aspects were thoroughly analyzed.
(These methods allow employing the advantages of methods for
probe compensation for amplitude and phase near-field measure-
ments for planar and cylindrical scanning, including accuracy
analyses [1-7]). Most of the results have been published [10-16],
such as a description of holographic near-field measurements using
probe compensation for planar and cylindrical scanning; a com-
parison of holographic near-field and far-field measurements with
and without probe compensation; accuracy analyses using mathe-
matical models considering random processes with correlation
intervals; numerical simulations considering random errors as well
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as deterministic errors; and the processing of measurement statis-
tics. Paper [17] summarized the cited results (as some of the papers
and the PhD thesis were only in Czech), and gave some new results
(especially numerical simulations). This paper analyzes the accu-
racy, using mathematical models considering random processes
with correlation intervals, the processing of measurement statistics,
and numerical simulations considering random as well as determi-
nistic errors. The analyses given correspond to our measurements
and/or numerical simulations.

2. Accuracy Analyses

Near-field measurements using synthesized-reference-wave
holography with probe compensation for planar and cylindrical
scanning allow employing the advantages of methods for probe
compensation for the amplitude and phase of near-field measure-
ments for planar and cylindrical scanning, including accuracy
analyses [1-7], which should be slightly modified. However, accu-
racy analyses using mathematical models considering random
processes with correlation intervals, measurements using statistical
processing, and numerical simulations considering random as well
as deterministic errors have been done, and they are described
below.
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The theory of near-field antenna measurements applies rigor-
ously to linear antennas. In the theory of probe-corrected near-field
measurements, multiple reflections between the probe and test
antennas are considered negligible, but experimental errors also
limit the accuracy of near-field techniques. The experimental
measurements introduce probe-positioning errors, instrumentation
errors, and — for the planar and cylindrical (or truncated spherical)
scanning geometries — finite scanning errors. Errors are also cre-
ated by room reflections, uncertainties in the far field of the probe,
and uncertainties in the measurement of the insertion loss between
the test antenna and the probe when absolute gain is required. The
NIST 18-term error model can be applied [4, 7]. If the sample
spacing and computer accuracy are adequate, aliasing and compu-
tational errors should be negligible compared to the experimental
errors. The importance of the various near-field measurement
errors depends on the antenna under test, the frequency of opera-
tion, the measurement facility, and the probe. However, results
show that the finite scanning area, the z position of the probe for
planar scanning, receiver nonlinearities in measuring the near-field
amplitude, and, sometimes, multiple reflections are usually the
most important sources of error.

In general, planar scanning is limited to determining the
fields within the forward solid angular region subtended by the
edges of the test antenna and the finite scanning area. Cylindrical
scanning omits only the biconical angular region formed by the
outer edges of the test antenna and the cylindrical scanning area of
finite height. It is possible to use a priori information on the
geometry of the antenna under test (AUT) and to evaluate the far-
field pattern from the estimated near-field data. The method of [3]
takes advantage of the possibility — present in most of the scanning
setups — of moving the probe not only on the scanning surface, but
also along the axis perpendicular to the scanning surface. These
effects are the same, even for synthesized-reference-wave hologra-

phy [17].

The z-position inaccuracies, i.e., the deviation, &, from
planarity of the probe transport over the scanning area, can produce
relatively large errors in the sidelobe levels of the far field. Varia-
tions in the z position of the probe produce corresponding varia-
tions in the near-field phase. Thus, large errors in the sidelobes
occur in the far-field directions corresponding to the predominant
spatial frequencies of the variation in z position across the scanning
area. In the main-beam direction, this is much less critical: the
reduction in gain is given by 8?2 / 2, from the familiar Ruze relation
[1]. The errors in the sidelobes caused by inaccurate z positioning
can be reduced by measuring the deviation of the probe from the
scanning plane and correcting the near-field phase. It should also
be mentioned that receiver phase errors generally have a much
smaller effect on the far field than do phase errors caused by inac-
curate z positioning. This is because typical receiver phase errors
are negligible at the maximum near-field amplitude, and increase
monotonically with decreasing amplitude. However, receiver
nonlinearities in the measurement of near-field amplitude can
cause significant errors in the main beam and sidelobes of the far
fields. The contribution to the output of the probe from the multi-
ple reflections can be estimated by changing the separation dis-
tance between the probe and test antenna, and recording the
amplitude variations that occur in the received signal with a period
of about A/2. If multiple reflections prove significant, they may be
reduced by the sensible use of absorbing material, by decreasing
the size of the probe, by increasing the probe separation distance,
by averaging the far fields computed from the near-field data taken
on scanning planes that are separated by a small fraction of a
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wavelength (about A/4 or less), or by using specially designed
probes that filter the main beam and emphasize the sidelobes.

However, the upper-bound error formulas should be applied
with care. They are dependent upon underlying (usually, explicitly
stated) assumptions that are satisfied by most antennas and near-
field measurement conditions, but which may not be fulfilled in
certain circumstances. For example, it is well known that phase
errors introduced into the main near-field beam of directive anten-
nas cause a reduction in the computed on-axis gain. However, this
gain reduction strictly applies to near-field beams of uniform
phase. When the underlying assumptions can be relaxed, lower
values for upper bounds can usually be obtained. For example, an
estimate of the specific z-position errors for a particular measure-
ment facility allows one to more accurately estimate their effect
upon far-field sidelobes.

Accuracy analyses using mathematical models considering
random processes with correlation intervals have been performed
[9, 11] using the results of [8, 19]. Therefore, only a brief summary
is given. The measurement scanning [17] is done on a finite sur-
face, S, and the most important part of the power radiates through
that surface. The surface S can be transformed onto a square

region, [-1,1]x[-1,1], and normalized coordinates x;,x, could be

used for both planar and cylindrical scanning. If the theoretically
measured values are v(x;,x,) and the values affected by errors are

Vi (x1,x, ), then the following relationship can be considered:

e (x1,72) = (3,314 B (x,32) J1), )

where the values of B(x;,x,) are the amplitude errors, and the val-

ues of g(xj,x,) are the phase errors. As requirements on antenna-
parameter measurements are usually quite strict, only the case of
small errors (i.e., |B(x,x,).|g(%.%;)|<1) can be considered.

The random errors, IB(xl,x2 )| and ¢(x;,x,), are assumed to have

normal distributions, zero means, constant variances given by 0'12;

and 0'3 (i.e., 0';‘;, 0'3 do not depend on x;,x,), and correlation
coefficients rp and 7,. The following correlation coefficients are

considered:

2 2
X X
_1+_2J

rg (X1, Xz)=e (c'z s/, 3}

where ¢, and ¢, are correlation intervals, X;=x -7 and
Xy =xy—1, are differences, and x and x, are normalized
coordinates. Similarly, the correlation coefficient 7, (X1,X3;) can

be used for phase errors.

The radiation patterns are completely described by angular
wave spectra A(K{,K,), which are given by the Fourier transform

of the measured field, F[v(xl,xz )] , and similarly for vg (x;,x;).

It should be noted that the surface S is transformed, as well as K,
K,,and A(Kl K 2) . It is well known (the scaling theorem) that

F[v(hvi.lvy) | = A(Ky /1, Ky /1) [(h). 3)
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Considering the assumptions of synthesized-reference-wave holo-
graphy [17], the following equation can be derived for a suitable
interval |k,| <k :

F[v(xl,xz)e_j“x']

= F|:|E(x1 Xy )|2 e~ 4 ICI2 e

+CE(3,3)+ CE" (x,:)e 2 | @)

= F[C‘E(x],xz)],

where Cexp(—jax;) is the reference signal, and E(x) is the near
field.

The following expression is valid (the bars denote the mean
values)

A (k) =(1-% (ki ko) 6

where the higher-power functions of o, have been neglected. This
means that the mean value of the angular spectra of v (x;,x;) are

equal to the angular spectra of the original field v(x,x,), except
for a multiplicative constant.

The variances of the angular spectra are [8, 19]
2
IAA(KI’KZ)I =a30'129+aq0'§, (6)

where the coefficients ap and @, determine the effects of the

individual B(x,x;) and g(x,x,) errors.

If the individual errors are considered to be independent
errors and ¢;,¢, <1, then [8, 19]

aB(Kl’K2)°'§
1111 ,
*
IIIIV(XI’XZ)V (ms1m2) o575 (X1, X3)
e

& KN XD ey,

[(K, c+K3e?) /4] ol
( 2

(2”)2

I IIV(X],X2)| dx]dxz
Q)
T I (ki exicd) ] 2 I i |A(K1,K2 ) dKdK;

4r

=7meycye

Similarly,
aq (KI’KZ)O-;
2.2 2.2
= -clczi‘fe—[(l(I aekie)4] T T |A(K1,K2)'2 dKdK; .
—0 -

4
®)
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The variances of the angular spectra are given by Equation (6). The

individual terms, chrg and aqag , are given by Equations (7) and

(8). This allows the determination of the variances of the angular
spectra for individual errors.

The random-error assumptions used generally cannot be ful-
filled, but they are fulfilled for various important cases. This could
simplify the analyses of random-error effects (quite general
assumptions would not allow any analysis). It was shown [19] that
nearly the same results can be obtained if rg (or, possibly, 7,) is

given not by Equation (2), but it is only required that the correla-
tion coefficients decrease monotonically with increasing |.X|

and/or | X|. This means that even if the above assumptions are not
exactly fulfilled, Equations (5) to (8) are approximately valid.

Other parameter changes were analyzed [19], such as the
extremes of the angular-spectrum mean values, and the direction
changes for angular-spectrum maximum and beam-width changes.
Linear and surface apertures were also compared. It is clear that the
requirements on the measurement accuracy for a linear antenna
aperture are higher than the requirements for two-dimensional
apertures. This follows from the derivation of Equations (5) and (6)
for the one-dimensional case. This could be explained by consid-
ering the fact that statistical analyses are performed for two coordi-
nates for the two-dimensional case, whereas for linear antennas
they are performed only for one coordinate.

All given equations correspond to the case where radiation
patterns are determined using one realization of near-field meas-
urements. If the mean values are calculated using n realizations,
then the angular-spectrum variances are reduced » times, i.e., the

standard deviation by the Jn times.

The computational accuracies are very high and they should
not be considered if the accuracies of the measurement are consid-
ered. The above analyses could be applied for generator-frequency
instabilities, which change the phase differences between the direct

_ and reference signals, as well as for generator-amplitude instabili-

ties and scalar receiver (or possibly power-meter) errors. Similarly,
they can be used for probe-position inaccuracies.

Periodic errors can be created during scanning. The phase
shifters do not change phases in an arbitrary range, but only for the
interval of [0, 27r]. That means only the values ® -2mrz are set

(where m is an integer), instead of @®. Systematic phase-shifter
errors create periodic errors, the effects of which have been ana-
lyzed by several authors, such as in [20]. If the errors are
A, = fsin®, where @ =—ax is the required phase value, then the

following equation is valid for the interval |k, | <k :

Fv, ()7 | F[C"E(x )]+§F[CE‘ (m)e?™ ],

since the other terms are equal to zero for the interval |kx| <k . The
span of the spatial period NAk determines if the last term will
appear in the interval |k,| <k (see [17] for details).

The selection of Ax or Az scanning for the holographic
method is a difficult problem, as this determines the angular space
[17], and therefore the measurement accuracy.
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3. Measurements

We have done statistical processing of measurements [9, 15].
Near-field measurements performed by line scanning take less time
than those performed by planar or cylindrical scanning. Therefore,
line scanning can be performed many times, and statistical methods
can be used to support both the analyses of the accuracy of the
holographic method for measuring near-field microwave antenna
parameters, and the results of numerical simulations.

We chose a slot antenna (a waveguide with five slots in the
broad wall, terminated by a matched load) for the measurement.
Measurements were carried out with the reference polarization at a
wavelength of A=32mm. The measuring arrangement was
described in detail in [9, 13]. Every measurement was performed
by line scanning with 64 samples. After taking a fast Fourier trans-
form (FFT), 64 values of the angular spectrum could be found. A
maximum of one-third of this number, i.e., 21 values, could be
used. These corresponded to the values of the angular spectrum

(Fourier transform), F [C ‘E (x)] .

Ten measurements were carried out with a dipole probe and a
spacing of Ax=5mm, with x values ranging from —-160 mm to
155 mm, i.e., N =64 samples. The measured values (Meas. 1,
Meas. 5, and Meas. 9) are shown in Figure 1. The other measure-
ments were omitted for the sake of clarity. The angular-spectrum
values of these measurements are shown in Figure 2 (to be more
accurate, these are the amplitudes in dB, normalized to the first
angular-spectrum value). For clarity, only the angular-spectrum
values corresponding to the measurements in Figure 1 are shown.

1
b
e Meas. 1

® 00000 Meas. 5

ﬁr'; VUVVV Meas. 9

-———S

«

x[mm)

e 2 L

-150 -100 -50 0 50 100 150

Figure 1. A measurement with a dipole probe, Ax=5mm,
aAx=2r/3, along a straight line.
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Figure 2. The values of the spectrum,
2010gF[v(x)e’j“"], measured with a dipole probe using

Ax =5mm.

angular

2

B

When testing the statistical hypothesis that the variance, o
of a random variable, x, is o? =0'§, the critical value of the F

distribution and a suitable level of significance are considered. The
sample mean,

1
== s (10)
and sample variance,
s2=-L 3" (y-%) an
T ’

for random samples x;,x,,...,x, can be calculated.

The sample mean values, Equation (10), of the angular spec-
trum using 10 measurements are plotted in Figure 3. The mean
values were normalized to the maximum mean of the angular
spectrum. The mean values of the angular spectrum, measured with
a dipole probe and Ax =5mm spacing, are shown as a solid line.
Each of the values was plotted as a function of the angle, 9. For
comparison, the radiation pattern measured in the far field is shown
by a dashed line. The radiation pattern differs from the angular
spectrum (see [1]), yet it is evident that in the vicinity of the main
lobe, the far-field measurements and the near-field measurements
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obtained by the dipole probe using a step size of Ax =S5mm are in
good agreement.

To show the influence of an incorrect choice of the spacing
Ax, ten measurements were performed with the dipole probe, a
spacing Ax =7.5mm, and a number of samples N =64, i.e., Ax
ranged from —240 mm to 232.5 mm. In this case, the individual
components of the angular spectrum affected each other (aliasing).
The sample mean values of these measured values are shown as
circles in Figure 3. Ten measurements were carried out to show the
influence of the probe. An open-ended 5 x 22.86 mm waveguide
was used as a probe, with a step size of Ax=5mm, and N =64
samples, i.e., Ax ranged from —-160mm to 155 mm. The angular
spectrum of the probe will change the resulting spectrum, as fol-
lowed from [1]. Therefore, a probe correction is necessary for
computing radiation patterns. The sample mean values of these
measurements are plotted as crosses in Figure 3.

The sample variances of the angular spectrum were calcu-
lated from Equation (11) using 10 measurements every time. The

20 log F[v(x)exp(-jax)]
0
. o
o ' N
o | I3
[ |
") e
" d 4! 3
H I
} "
H I
W H
H TR &
! -
i il B
TR
) : 430 1
, o o I
3 | ‘I
in | " i
an | " i
?ll " " +
’ " ] ||
i [} |‘ +
b it
I 0 40 f
W + b (o]
v " | L))
1 1 I uj A [ ]
-60 0 60

+++++ Open-ended waveguide Ax =5 mm

Far-field radiation pattern F{w(x)exp(— _]a:)] [dB]
e Dipole Ax =5 mm

00000  Dipole Ax = 7.5 mm
Figure 3. The sample means of the angular spectrum,

20 logF[v(x) e“j"x:'.
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i forbir=|f

----- vaniances (6) with ¢, = 1/32

variances (6) with ¢, =1/8

8[°]

-60 60
Figure 4. The variances of the measurements with a dipole,
Ax =5mm.

§? — ekt =]’
—— o]

variances (6) with ¢, = 1/32

variances (6) with ¢, =1/12

8[°]

60 60
Figure 5. The variances of the measurements with a dipole,
Ax =7.5mm.
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2
angular spectra, IAF [v(x)e’f‘“]’ , of the measurements per-

formed with the dipole probe and with step sizes of S mm and
7.5 mm are shown in Figures 4 and 5 as solid lines. For compari-

son, the sample variances of the angular-spectrum amplitudes,

2
{IAF [v(x)e‘f‘”‘]‘} , are plotted in Figure 4 and 5 with dashed

lines. The variances were normalized to the maximum mean of the
angular spectrum.

For comparison with theory, it is necessary to estimate the
variances of individual error sources. The measurements (see
below) indicated that the longitudinal z-position errors with

a'g ~107> were the most important. The variances can be calcu-
lated using Equation (6). Assuming (see [8]) that ¢, =2/N =1/32,
the values shown in Figures 4 and 5 by dots were obtained. Obvi-
ously, the assumption ¢; =2/N is not correct (in fact, the correla-
tion interval is larger).

If we assume that the correlation interval is determined by the
properties of the scanner (scanning equipment), we arrive at more
realistic values. If the correlation interval was 20 mm for non-nor-
malized coordinates, i.., ¢;=1/8 for Ax=5mm spacing and
¢, =1/12 for a step size of 7.5 mm, the values obtained are as

shown in Figures 4 and 5 by the shorter dashes. The values
¢ =1/8 and ¢, =1/12 are also not quite satisfactory. However, the

agreement between the measured and calculated (Equation (6))
results using considerable simplification became worse with
increasing c; : see [9, 14]. Therefore, the values of Equation (6) do

not agree well with the variances calculated for an increasing ¢
using Equation (11). For the limiting case ¢; — o, the variances
are given by

IAF[vq (xl )e"ja"l :“2 = agF‘[C‘E(xl ):"2 . (12)

However, this estimate is too low in the main-lobe region and too
high in the sidelobe region. If the properties of the scanning
equipment are not known, we can use a combination of Equa-
tion (6) for ¢; >22/N (in the sidelobe region) with Equation (12)
having effect particularly in the main-lobe region. We can thus
conclude that the use of Equation (6), derived with considerable
simplifications, results in an approximate estimate for the variance,
provided that the correlation interval, ¢, is determined by the

scanning-equipment characteristics.

As mentioned above, only approximately one-third of the
angular-spectrum values can be used (more accurately, those for
n=12,..,11 and n=>55,56,...,64). When replacing the remaining
values by zeros (for n=12,13,...,54) and performing the inverse
Fourier transform, the approximate field amplitude and phase dis-
tributions along a line can be obtained; detailed analyses can be
found in [17].

The sample mean values of the field distribution, calculated
with Equation (10) using 10 values each time, are shown in Fig-
ure 6. The solid line (or the circles) represent the values determined
by measurements with a dipole and Ax =5mm (or Ax=7.5mm),
and the crosses show the results of measurements with an open-
ended waveguide. Individual cases differed, due to an improper
choice of the sample interval, Ax (measurement with the dipole
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x[mm]
L A L

0 50 100 150

= Dipole Ax = 5 mm

+++++ Open-ended waveguide Ax =5 mm
00000 Dipole Ax = 7.5 mm

Figure 6. The sample means of the measured fields (calculated
using angular spectra).

410°¢
x[mm]
-150 -100 -50 0 50 100 150
Dipole Ax=5mm +++++ Open-ended waveguide Ax =5 mm
00000  Dipole Ax = 7.5 mm

Figure 7. The sample variances of the field-amplitude errors,
0'129 » normalized to the maximum mean of the field amplitude.
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%

-150 -100 -50 0 50 100 150
+++++ Open-ended waveguide Ax =5 mm

Dipole Ax =5 mm

00000

Dipole Ax = 7.5 mm

Figure 8. The sample variances of the field phase errors, 0'3 .

and Ax =7.5mm), or the influence of the probe (measurement with
an open-ended waveguide).

The sample variances of the field-amplitude errors, O'g , were
normalized to the maximum mean of the field amplitude. The
measurement results are shown in Figure 6 using a solid line (or
circles) for a dipole probe and Ax =5mm (or 7.5 mm), and using
crosses for an open-ended waveguide.

The sample variances of field phase errors are plotted in Fig-
ure 7. The solid line, circles, and crosses represent the measure-
ments with a dipole using Ax=5mm, Ax=7.5mm, and with an
open-ended waveguide, respectively.

Variances determined by filtering and inverse Fourier trans-
form present only a rough idea about the distributions and magni-
tudes of the measured field variances (see [9, 14]). On the other
hand, these variances cannot be immediately found by holographic
measurement, although this is possible in the case of amplitude and
phase measurements.

As follows from Figures 7 and 8, the amplitude-error vari-
ances were of the order of 107*, and the phase-error (position-
error) variances were of the order of 1073, Transverse x-position
errors caused an increase in phase errors for |x| >100, because the
phase was not constant for |x|>100 but varied very quickly: see

Figure 6. Because the field amplitudes were too low in this region,
only a negligible influence can be assigned to the phase errors.

IEEE Antennas and Propagation Magazine, Vol. 50, No. 6, December 2008

4. Numerical Simulations

We performed numerical simulations, considering random
errors as well as deterministic errors of typical problems occurring
in near-field measurements [9, 12, 14, 16]. Computer-generated
random sequences are needed for numerical simulations. Being
interested in Gaussian random sequences, the correlation sequence
of Equation (2) was used. The theoretical analysis derived above
used considerable simplifications. Antennas with constant ampli-
tude and phase distributions are usually assumed, but this type of
distribution does not come in question in near-field measurement.
A typical field distribution is one where the phase varies quickly at
the edge and the amplitude is small. Therefore, the input sequence,
E (i) (the near-field distribution) was considered to be

E(i)=sin® (ﬂi/64)exp{j[(i—32)/32:|2 ,B+jzzm/3+jq(i)}, (13)

where i=1,2,..,64; m=i for i=12,.,11; m=0 for
i=12,13,...,53 and m =—i for i=54,55,...,64; a and S are con-
stants; and q(i) are Gaussian random sequences with the correla-
tion sequence given by Equation (2).

The measurements on a line (one-dimensional case) in the
near field for both the amplitude and phase measuring method

when the Fourier transform, F[E (i )] , was determined by the FFT,

and by the holographic method using Equation (4) were simulated
for @ =3 and for values of # of 0 or 27 . The near-field data were

filtered (a quarter of the transformed values was only inverse trans-
formed). Every problem was simulated with 30 realizations of

E(i).

0,1

0,01

A
64
Figure 9. The mean values, F[E(z)], for ¢, =1/32 and
o =0.01.

0,001
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Figure 10. The sample variances of the angular spectra,

lAF[v(x)e'j“x ]'2 and (AIF [v(x) e'j“":l

o =0.01.

107

2
) , for ¢ =1/32 and

Various problems for several values of ¢, B, and standard
deviation o were simulated. See Figure 9 for the mean values,

F[E ( )] . The other cases were nearly the same and they are there-
fore not shown. The sample variances of the angular spectrum,

)
IAF[v(x) e/ :“ , and those of the angular-spectrum amplitudes,

N2
(AIF [v(x)e’f"x]” , are plotted in Figure 10. For the sake of

brevity, only some of the calculated simulations are discussed here.

Numerical simulation can be used to solve problems of meas-
uring microwave antennas in the near field without the influence of
the considerable limitations needed for an analytical solution. It
was shown [9, 11] that theoretical estimates can be used for a good
description of the variances for small intervals of ¢; . With increas-

ing ¢, the differences between the theory and numerical simula-
tions become more significant (particularly for ¢; >1/8).

5. Conclusions

Synthesized-reference-wave holographic techniques offer
relatively simple and cost-effective measurements of antenna
radiation characteristics, and reconstruction of complex aperture
fields using near-field intensity-pattern measurement. We have
proposed synthesized-reference-wave holography. These methods
allow employing the advantages of methods for probe compensa-
tion for near-field amplitude and phase measurements for planar
and cylindrical scanning, including accuracy analyses. We have
published most of the results, such as a description of holographic
near-field measurements using probe compensation for planar and
cylindrical scanning, a comparison of holographic near-field and
far-field measurements with and without probe compensation, and
accuracy analyses using mathematical models considering random
processes with correlation intervals, numerical simulations consid-

ering random errors as well as deterministic errors, and the proc-
essing of measurement statistics.

The importance of the various near-field measurement errors
depends on the antenna under test, the frequency of operation, the
measurement facility, and the probe. However, the results show
that the finite scan area, the z position of the probe for planar scan-
ning, receiver nonlinearities in measuring the near-field amplitude,
and, sometimes, multiple reflections, are usually the most impor-
tant. It is necessary to estimate the variances of individual error
sources for comparison with theory. Our measurements (shown in

Figures 1 to 8) indicated that the longitudinal z-position errors with
cr; ~107> were the most important for our measurement facility.

The variances can be calculated using Equation (6). We have dem-
onstrated that the assumption ¢; =2/N (given in the references) is
not correct. The approximate estimates of the variance present rea-
sonable results (as shown by analyses of the measurements per-
formed by line scanning) if the correlation interval, ¢, is deter-

mined by the properties of the scanning equipment.

This paper has summarized the analyses of accuracy using
mathematical models considering random processes with correla-
tion intervals, processing of measurement statistics, and numerical
simulations. It was demonstrated that the given analyses corre-
sponded to our measurements and/or numerical simulations.

It was shown by filtering and inverse Fourier transforming
that the amplitude and phase error estimates corresponded to our
measured values. We can conclude that the described method is
applicable both to the field measurement, performed by line scan-
ning, and to the error analyses of this method.
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