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A method based on the dividing of the particle resistance into the frictional and
shape components is suggested for the calculation of incompressible Newtonian
Sluid-fluidized bed system of spherical particles. This method led to the relationship
which ineludes the general aspects of relationships of both the Richarson—Zaki and
Wen—Yu types. The form of the dependence of a ratio of shape to frictional
resistance on the Reynolds number has been determined experimentally. A
comparison is made with a set of relationships given in the literature.

Introduction

In our previous papers {1-3] we dealt with the solution of flow of Newtonian and
non-Newtonian fluids through beds of particles and of fall of asingle particle in non-
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Newtonian fluids. The difference from earlier ways of solving these problems
consisted in that the resistance of both the single spherical particle and spherical
particles in the bed appearing in the momentum balance was divided into the
frictional and shape components. This led to introduction of a new dimensionless
quantity (denoted as ) given by the ratio of the shape and frictional resistances
which is called the resistance number.

For creeping flow of Newtonian fluids (NF) and generalized Newtonian fluids
(GNF) through fixed and fluidized beds of spherical particles the value of resistance
number is the same as in the Stokes” approach for a single spherical particle {1,2]
(v = 1/2). In the region of manifestation of Reynolds number the forms of
dependences of quantity y onthe Reynolds number for both the fixed and fluidized
beds must be determined experimentally.

The aim of the present study is to determine the course of the above-
mentioned dependence for fluidized bed. This knowledge is a condition necessary
for extending the validity range of the relationships suggested in Ref. {2] for the
calculations of fluidized bed in flow of an NF and GNF on the region of
manifestation of inertial forces.

Theory

The paper [2] solves the problem of momentum transfer in the system GNF-
fluidized bed of spherical particles by adopting the modified Rabinowitsch—-Mooney
equation,

D,, - 310 fr‘ 2 Pty (1)

2+)
TWJ 0

where Dw cand T, s are the consistency variables, D(t) is the dependence of the
shear rate [ on the shear stress 1, and £2 is the dimensionless characteristic which
depends on the porosity £ of the fluidized bed [2].

The equation (1) can be written as

. T
= _wf ‘
Dw,f B i ' (2)
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where p, is the effective viscosity of the system considered. Foran NF p, = p,
where p is the dynamic viscosity.

Using the transformation of consistency variables for flow of an NF and GNF
through fixed bed of spherical particles, Eqs. (3) and (4) were obtained for
consistency variables for fluidized bed [2]

Zuch,b _ 2”Mvj£‘3.29-2.18[0g(|ﬂyj)
vy = — )

ch

D

n

(p, - p)gde

T]pJ - U———
6(1 +Wf)Mm"

(4)

where the correction factor for the wall effect M . is given by the formula

Moo= +i82.1810g(l +y) - 0,02

wf (5)

In Egs. (3) - (5) u,,, = u/e is the characteristic velocity for a flow of a fluid
through the beds (mean velocity in the voids), # is the superficial velocity, / , is the
characteristic linear dimension of the bed, d is the diameter of spherical particle, D
is the diameter of the column of circular cross-section, p_is density of the particles, p
is density of the fluid, and g is the gravitational acceleration.

The Reynolds number for a flow of an NF and GNF through the beds is given
by the relationship (6)

puch b l"c.h
Re = e—t 6
b n (6}

which after substitution for quantity /,, using Eq. (3) with u_, , = /e assumes for
the fluidized bed the form

pud RES +2.1810g(1 +yy

p‘e AJWJ

Re, , = (7)
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For € = 1(2 = -5/2) and d/D = 0 (M, = 1) Eqs (1) - (4) and (7)
assume the forms valid for a single spherical particle {3].

In analogy to the fixed bed and single particle [2,3], it is presumed that the
course of dependence v, = FRe, J) does not depend on the rheological properties
of GNF in both the creeping region of flow (Wf = |/2) and the region of
manifestation of Reynolds number. Then it is possible to apply to GNF also the form
of the dependence v, = F{(Re, ) determined experimentally with NF (i, = p)
along with relationships (1} and (2), with that for dimensionless characteristic Q [2],
and with relationships (3) - (5) and (7).

In Ref. [2] the range of porosity and of d/Dratio (in which the relationships
suggested for the creeping region of flow (y, = 1/2) agree well with experiment)
was experimetally delimited (the latter parameter up to the value 4/D < 0.083).

Results and Discussion

When looking for a suitable form of dependence v I = F(Re, J), we presumed that
it would be similar to that valid for a single particle. Here the value of resistance
number y_can be calculated using some of dependences of the drag coefficient C,,

_ 4p, - plgd
Cp= ——— ®)
3pu,

where u, is the fall velocity, on the Reynolds number Rep

pu d
Re, = —F (9)
u
given in the literature, and Eq. (10) in the form
C,Re
= LA 1
Yy 16 (10)
Owing to its simplicity, Eq. (11) is used
24
Cp = (1 +aRe)) (11
€
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where a and b are numerica) coefficients. Oseen [4] was the first to adopt the
relationship of type (11) with the values of coefficients a = 3/16 and & = 1.An
equation of type (11) with the valuesof @ = 0.15 and b = 0.687 for the region of
Reynolds number 0.2 < Re, < 500 — 1000 was also used by Schiller and
Naumann [5], and with the values of a = 0.125 and & = 0.72 for
0.2 < Rep < 1000 by Lapple [6].

After introducing C,, from Eq. (11) in Eq. (10) and after rearranging we
obtain the relationship

b

=y,-0.5 = 1.5aRe, = a'Re, (12)

wRe,p

where the quantity v,  represents the contribution to the value of resistance
number v, in creeping region of flow (v, = 1/2) due to the effect of Reynolds
number.

The course of dependence g, » = F(Re, J) was determined on the basis of
our experiments using glass and lead spherical particles and aqueous glycerol
solutions (Mikulagek [7]). The reliable experimental results were achieved by means
of a calming section situated below the bed. A montejus has been used for the
transport of the fluid through the column. For the region of higher values of
Reynolds number we took the experimental data by Withelm and Kwauk {8], who
used glass spherical particles and water. The physical properties of the systems
adopted, inclusive of values of d/D ratio, are presented in Table 1. A part of the
results obtained with these systems is depicted in Fig. 1.

From Fig. ! it can be seen that, within the given range of experimental values
Re, ,the dependence vy, ; = F(Re, ) can be approximated by three dependences
of type (12) with different values of coefficients a’ and b. First we determined
values of the coefficients for the dependence corresponding to the highest range of
values of Reynolds number.

In order to fix the lower limit of this dependence, we used the value
Wpr = 1/2 comresponding to the first break in the dependence log
Yees = F(logRe, J}. For fixing the upper limit we took into account the fact that the
relationships for consistency variables for fluidized bed were obtained by a
transformation of relationships for consistency variables in fixed bed. These
relationships, for unit porosity, are changed into the relationships valid for a flow
through a tube involving — as a characteristic linear dimension / , of system—the
hydraulic radius r, = D/4 [9].1f/,, = D/4,theReynolds number which limits the
occurrence of turbulence in the tube assumes the value

Re,, = %20 = 580 (13)
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We have used this value, in analogy to fixed bed of particles [9], to delimit
the laminar region of flow also for fluidized bed. From Fig. 1 it can be seen that this
value agrees well with that characterising the second break in the dependence log
Ve, = F(logRe, ). The experimental results for s> 1/2and Re, < 580 then
allow us to derive a dependence of the following form

Vrey = 0.34Re, ] (14)

which is represented in Fig. 1. From Eq. (14) with the limit value of y,, . = 1/2 it
follows that Re, by = 172

Comparison of Eq. (14} with relationships valid for a single particle shows
that the value of exponent at the Reynolds number is greater than the value 0.687
used in the relationship by Schiller and Naumann [5]. Tt is, however, practically
identical with the value 0.72 recommended by Lapple [6], whose relationship in the
form given by Eq. (12) is represented in Fig. 1, too.

For the range of values Re, , < 1.72, we have presumed the value of
exponent & = 1 like in Oseen’s approach [4], and accepting the condition of
Wpes = 1/2 for Re, . = 1.72, we have obtained the dependence in the form of Eq.

(15)
Vg, = 0.29Re, (15)

which is also presented in Fig. 1. Using relationship by Oseen [4], we get for the
coefficient @’ = 1.5a (a = 3/16) the value of 0.28 which is practicaily identical
with the value of 0.29 determined for fluidized bed. For the range of the highest
values of Reynolds number 580 < Re, s 1300, the dependence derived (depicted
in Fig. 1, too) thus reads as follows

Veey = 40Re, 7" (16)

The comparison of experimental values of the quantity 1 + V.., appearing in the
relationships for both consistency variables and the values calculated from Eqs (14)
— (16), experimental values of Reynolds number Re, b foexp and relationship
I+ Y, = 1.5 +y,, . was carried out with the use of mean relative deviation &

lN
=EZ rIl (17)
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where the relative deviation Bf. |

R LELLV R o

il
L5+ lP’Relf, calc

The values of mean relative deviation & for the individual systems are also
given in Table L. For practical purposes it is appropriate to delimit also the creeping
region of flow by a certain value of v, , quantity comparabte with experimental
error. With the use of the value of the minimum deviation given in Table I
(& = 1.9%), the relation y Re‘f/ 1.5 = 0.019, and relation (15), it is then possible
to determine the value Re, s 0.1.

Table I Properties of systems adopted and experimental results

System d P, diD 1l P N 8

mx=I1073  kgm™ Pasx107 kgm™ %
1 1.47 2506 0.073 9.54 1158 23 1.9
2 147 2506 0.018 7.81 1136 22 2.8
3 1.78 2515 0.022 7.81 1136 14 3.7
4 1.78 2515 0.044 7.81 1136 16 3.9
3 1.78 2515 0.089 9.54 1158 - 24 36
6 2.55 2512 0.064 8.10 1149 14 3.2
7 1.97 11093 0.049 9.54 1158 20 3.0
8

521 2351 0.069 1.00 1000 29 3.0

Systems 7 and 8 in Ref. [8]

For comparison of the relationships suggested with those given in literature,
we will express Eq. (2) with p, = u, after the respective substitutions for
consistency variables using Eqs (3) and (4) in the form

Are”

Reo

= 12(1 + y )M, (19)

and the Reynolds number Re, , given by Eq. (7) in the form
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R Re g"" (
ey = 20)
]Mw,f

In Eqs (19) and (20) the Archimedes number 4»

- d3
4 = P PIPE | a1
uz

the Reynolds number Re_

dp
Re, = wap 22
: (22)
and

n = 4.29 + 2.18log(l +y) (23)

ForM, .= 1,e =1 ,whenu = u,,, and for creeping region of flow ( v, = 1/2),
the relationship (19) changes into Stokes’ approach in the form valid for fall of
single particle (Eq. (24) with v, = 1/2) and the Reynolds number Re by (Eq.(20))
assumes the form valid fora smg]e particle Re ", (Eq.(9)). Due tothe dlfferent course
of dependences ¥, = F(Re )and y, = F(Re, ) (seeFig. 1},inthe transientregion
the relationship for ﬂu1d1zed bed does not change into the form valid for a single
particle (Eq. (24)).

Ar

For the purposes of calculation of fluidized bed in creeping region of flow, the

result of Stokes’ approach (Eq. (24) with y, = 1/2) is modified with application
of Eq. (25), introduced by Lewis et al. [10].

Re, = — (25)
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Fig. 1 The dependence of quantity ,, on the Reynolds number Re for fluidized bed (f} and
single paricle (p): © - glass particles-aqueous solutions of glycerol, ® - lead particles-
aqueous solution of glycerol; A —glass particles-water (Wilhelm and Kwauk [8]);
Egs (14) - (16); — — — - Eq. By Lapple [6]

Two main methods are used for calculations in the region of manifestation of
the Reynolds number; that by Richardson and Zaki [11] starts from relationship
(25), in which the course of dependence n = F(Re ) is determined experimentally.
Similarly it is possible to consider [12] the dependences »n = F(4r) or
n = F(Ar/Rep). '

When using the relationships valid for a single particle, it is possible to arrive
at the relationships of the second method (Wen and Yu [13]) in the following way.
After substitution of Re a in Eq. (24) with the use of Eq. (25), some of the
dependences Ar/Re, = F(Re) valid for a single particle (in which
F (Rep) = F(Re_} is adopted) are used on its right-hand side. Then the approach
leads to relationship

Are" = F(Re ) (26)

in which the value of exponent » is determined experimentally. A relation of type
{26) can also be obtained by another procedure (Goroshko ef @/. [14], Hartman et
al. [15]).
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Both the approaches have been combined by Xie [16], who chooses the
characteristic velocity of system in the same way as our procedure does for the
mean velocity u/e in the voids. Then the relationship of type (26) contains the
expression Re /¢ instead of Re . Using the form of dependence n = F(Re,)
determined by Richardson and Zaki [11], Xie [16] determines the course of
dependence Are” = F(Re,/c) experimentally.

Both the main ways mentioned (in the first one » is dependent on Re whereas
in the second » is independent of Re) are also combined in our own approach. Here
the value of exponent » in Eq. (23) is expressed as a sum of two terms. The first one
is a numerical constant (like in relationships of type (26)), whereas the second
depends on the value of the (1 + wf) quantity and hence on the value of Reynolds
number (like in relationships of type (25)).

In order to compare the relationships suggested with those taken from
literature, we have chosen for the basis the comparison at the porosity value
£ = 0.68, which represents the mean value between the minimum and the
maximum values (e, = 042;¢e = 0.93 used for experimental delimitation of
validity of the relationships suggested for creeping region of flow [2). First, using
Eq. (14) or (15), we calculate the value of Re, . number for the chosen values of
quantity v, s (where the value corresponding to the Reynolds number 580
delimiting the laminar region of flow was taken for the maximum).

Second, using Eq. (23), Eqs (19) and (20) with M, . = [, we calculated the
values of Re_ and Ar numbers. From the values found for the Archimedes number,
and using the relationship by Hartman et al. [17], we calculated the Re , value.

Using the relationships given in literature for calculation of fluidized bed, we
determined the Re, value, which we then compared with that found by our
procedure using the relative deviation 9, ,

6_2 = _.-..Rm x 100 % (27)
b Re

0,0wn

In the comparison with relationships of type (25) we determined the n value with the
help of relationships by Richardson and Zaki [11]

4.45Rep_0'1 I < Re, < 500

3
I

(28)

=
1

2.39 Re, > 500
and with the use of relationship by Garside and Al-Dibouni [18]
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5.09 + 0.2839Re "’ i .
" = 4 107 < Re, < 3x10* (29)

1+0.104Re "

In the comparison with the relationships of type (26) we adopted the equation
by Wen and Yu [13] (Eq.(30)), that by Goroshko et al. [14] (Eq (31)), and that by
Hartman ef al. [15] (Eq. (32)). In the comparison with the equation by Xie [16) (Eq.
(33)), the value of exponent » was calculated from Eqs (28).

Are™? = 18Re, +2.7Re, " (30)

4,75
Re = —Are (31)
18 + 0.6y Are*™

Are*™ = 20.36Re, + 1.44Re, ™" (32)
.75
R R
Are" = e"kls +£[ e") ] (33)
£ 4 £

The v,  values chosen and the corresponding values of 8, deviations are
given in Table II. With the same chosen values of the quantity v, ,we also carried
out comparisons for the porosity values € = 0.680+ (.22, which are near the
maximum and the minimum porosity values (g, = 0.93,¢ . = 0.42) Fromthe
calculated values of relative deviations 8, , and using Eq. (17), we determined the
values of mean deviation 8, which are given in Table III for all the porosity values
chosen. In this table, the value given for porosity £ = 0.46 and Eq. (25) (where n
was calculated using Eq. (29)) is presented along with a value of mean deviation not
including the results obtained for the two highest values of v, s Quantity. The
values calculated here for Reynolds number Re_ were higher than the value
delimiting the validity of Eq. {29). From the tabfe it is obvious that the worst
coincidence is that with the oldest relationship (Richardson and Zaki [11]), whereas
the best is with the newest one (Xie [16]). At the present, the comparison with the
relationships by authors [12,19-21] led to similar results (the mean relative
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deviations lie in the range from 20 —25%).

The deviations given in Tables I and ITI can be compared with those of the 1 + v,
quantity given in Table I with the help of Eq. (19} with M - = 1, where nis given
by Eq. (23). Thus we can obtain Eq. (34) for the values of deviation in Reynolds
number

Table I Comparison of suggested equation with equations given in literature for porosity
£ = 0.680 using relative deviation &, ,

Waes Egs, 3,

25,28  (30) G @909 62 (33)
0.2 7.0 -1.0 -2.2 -14.5 -5.6 -11.5
0.5 16.4 6.2 8.6 -19 59 -3.3
0.7 19.6 8.1 13.4 31 10.2 -23
1 239 10.2 19.0 15.0 14.3 -1.8
2 34.6 14.6 294 21.2 19.3 ~1.8
5 48.0 20.1 30.8 254 19.4 -1.0
7 434 223 26.6 231 17.8 -3.0
10 37.4 25.2 20.8 18.9 16.2 -4.2
20 20.4 30.9 6.9 5.0 12.4 -5.5
32 6.2 354 -2.5 -7.1 10.1 -57

Table Il Comparison of suggested equation with equations given in literaturc using mean
relative deviation &

£ Egs, 8, %

(25). 28) 30 (1) (25), (29) (32) (33)
0.46 37.5 8.9 11.2 18.4 4.6 7.8
0.68 25.7 17.4 16.0 13.5 13.2 4.0
0.90 225 21.7 26.2 17.7 20.9 4.5
All data:
5, % 28.6 16.0 17.8 16.4 12.9 5.4
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E:Z.IS log(1+0.018, )
i2 =

- 1{x100 % (34)
1+0.015,,

For instance, for the mean deviation & = 8” 3.5% and the porosity

= 0.68 therelative deviation §, , is - 4.6%,for ¢ = 0.9itis §,, = -3.7%; and

for e = 0.46itis 5, = -5.7 %. Companson of these values wn‘.h those presented

in Tables II and TII shows that the deviations from the relationship by Xie [16] ar «.

the porosity values practically coincide with our own experimental error. This is

caused by the fact that both the approaches involve one more dimensionless

variable, along with relationship for its calculation, as compared with the other
approaches.

Moreover, in our relationships there is (additional) resistance number y. With
regard to the fact that this quantity also appears in the relationship for calculation
of Reynolds number Re, 7 (Eq. (7)), it is always necessary to use the method of
successive approximation in calculations of fluidized bed. On the other hand, it is
not necessary to adopt the relationships valid for a single particle. In contrast to the
procedures used so far, the approach is devised in a way also allowing application
of the relationships suggested to the calculation of flow of GNF through fluidized
bed of spherical particles. Like in the case of fixed bed of particles, it is presumed
(by adopting the theoretical part of Ref. [1]) that the validity region of the
relationships suggested can be extended also to fluidized bed of nonspherical
particles.

Conclusion

The equation previously derived for the calculation of incompressible Newtonian
fluid-fluidized bed system can also be used in the region of manifestation of the
Reynolds number. Among the relationships given in the literature, that by Xie [16]
best coincides with the relationships suggested.

Symbols

numerical coefficient, Eq. (11)
numerical coefficient, Eq. (12)
Archimedes number, Eq. (21)
numerical coefficient, Eq. (11)
drag coefficient, Eq. (8)
diameter of spherical particle, m

~

Y T R OR
D
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D column diameter, m
D shearrate, 5!
D, . consistency variable for flow through fluidized bed, Eq. (3), s~
g  gravitational acceleration, m s~
!, characteristic linear dimension, m
M, , correction factor for wall effect, Eq. (5)
n exponent at porosity
N pumber of experiments
r,  hydraulic radius, m
Re, Reynolds number for beds of particles, Eq. (6)
Re_, Reynolds number for fluidized bed, Eq. (22)
Re, Reynolds number for a single particle, Eq. (9)
u  superficial velocity, ms™'
uy, (= w/€) characteristic velocity for flow through fixed and fluidized bed,
ms!
u, fall velocity, m s7!
o mean relative deviation
8.  relative deviation
£ porosity of bed
u dynamic viscosity, Pa s
p, effective viscosity, Pas
p  density of fluid, kgm™
p, density of particie, kgm™
T shear stress, Pa
T,s consistency variable for flow through fluidized bed, Eq. (4), Pa
y  resistance number
Q  dimensionless parameter, Eq. (1)
Indexes
b bed
cale calculated
crit  critical
exp experimental
f fluidized bed
lit  referenced to relationship given in literature
max maximal
min minimal
own referenced to our own relationship
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p particle

Re  referenced to region of manifestation of Reynolds number
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